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Astronomical X-ray spectra are used to access a wide variety of 
parameters related to black hole systems
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● composition
● ionization parameter: ξ=4πflux/density
● Column density 
● Accretion dynamics
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Microphysics in the models used to interpret the observations are largely untested



An X-ray reflection spectrum is produced when hot coronal 
emission is reflected by an accretion disk in a black hole system



• Astrophysical models of black hole 
accretion disks suggest high Iron 
abundances in multiple 
systems that are often many times 
the Iron abundance in the sun. 

• This phenomenon is known as the 
Supersolar Iron Abundance 
Problem.

An X-ray reflection spectrum is produced when hot coronal 
emission is reflected by an accretion disk in a black hole system



The Supersolar Fe Abundance Problem has been informed 
by high density effects in accretion disk models

• Historically, models have imposed an upper 
bound (n

e
 ≤ 1015 cm-3) on the plasma 

density in the accretion disk.
• This low density limit was suspected to be a 

large part of the reason for many of the 
supersolar Iron abundance determinations. 

Jiang et al. (2019)



• Historically, models have imposed an upper 
bound (n

e
 ≤ 1015 cm-3) on the plasma 

density in the accretion disk.
• This low density limit was suspected to be a 

large part of the reason for many of the 
supersolar Iron abundance determinations. 

• Recently, high density effects have been 
incorporated in XSTAR. 

• Iron abundances were revised to lower 
values for many systems. 

• However, some abundance values are still 
quite high and the physical assumptions 
have not previously been tested against 
laboratory data.

Jiang et al. (2019)

The Supersolar Fe Abundance Problem has been informed 
by high density effects in accretion disk models



Models assume low density (≤ 1e15 cm-3)  and constant 
density for the accretion disk atmosphere

Density for standard α-disk

● high accretion rates 
● Radiation pressure-dominated inner region

Svensson & Zdziarski (1994)
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Density for standard α-disk

● high accretion rates 
● Radiation pressure-dominated inner region

Low density models (ne ≤ 1015 cm-3) are only 
valid for high mass and low coronal power.

Svensson & Zdziarski (1994)
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Models assume low density (≤ 1e15 cm-3)  and constant 
density for the accretion disk atmosphere



Density for standard α-disk

● high accretion rates 
● Radiation pressure-dominated inner region

Low density models (ne ≤ 1015 cm-3) are only 
valid for high mass and low coronal power.

For a 10 solar mass BH, at the minimum f, the 
density is still near ne ~ 1022 cm-3.

Svensson & Zdziarski (1994)
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The low density (≤ 1e15 cm-3)  assumption for accretion disk 
atmospheres is likely incorrect



All Spectra are similar at high energies (≳ 5 keV), and show 
increasing divergence at low energies

Observable X-ray band (0.1 - 200 keV)

higher density → higher 
temperature → thermal 
part of spectrum skews 
toward higher energies



The most notable change in the reflected spectrum with higher 
densities is the increase in soft emission

Observable X-ray band (0.1 - 200 keV)

higher density → higher 
temperature → thermal 
part of spectrum skews 
toward higher energies

Note suppressed Kβ 
emission for highest 
densities indicating 
higher ionization state.

Soft excess

Shape of soft excess 
is roughly similar to 
blackbody emission 
because the dominant 
source is free-free 
(Bremmstrahlung) 
emission.
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We built a laboratory analog for accretion disk X-ray emission and absorption
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We built a laboratory analog for accretion disk X-ray emission and absorption
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We built a laboratory analog for accretion disk X-ray emission and absorption
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We built a laboratory analog for accretion disk X-ray emission and absorption
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Advantages
• study individual process   1    2    3
• single element
• known drive
• controlled uniform plasma size
• higher spectral resolution 
• higher signal to noise

Challenges
• dynamic evolution
• ensure higher density doesn’t impact results
• measurement accuracy
• residual non-uniformities

laboratory

We built a laboratory analog for accretion disk X-ray emission and absorption



All required inputs are obtained on a single Z shot, confirm the 
plasma is photoionized and in relevant regime

17

Z-pinch
Power, Energy

Z-pinch

P~220TW
E~1.6MJ

Absorption spectroscopy

Z-pinch
Imaging

~50000x
expansion

G. Loisel, J. Bailey, D. Liedahl et al., PRL 119 (2017)

return current canister

Z pinch
absorptionemission

5 cm

SiSi

Expanded foil
Initially ~800Å with 
~1000Å CH tamping

Emission spectroscopy



Photoionized Iron and Calcium emission data can be used to 
test the physical assumptions of high density effects in XSTAR
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Photoionized Iron L-shell and Calcium 
K-shell ions are created when sample is 
located closer to the z-pinch (~3cm).
Observed charge state distributions can 
be compared against model predictions.
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Thicker tamper material will be used to achieve different 
densities and interrogate relative density effects in XSTAR
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Prismspect models predict likely observable 
differences in different density plasmas. 



Potential future line of inquiry: Calcium can be used as a 
surrogate to examine K-shell behavior instead of Iron 
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Photoionized Iron L-shell and Calcium 
K-shell ions are created when sample is 
located closer to the z-pinch (~3cm).
Observed charge state distributions can 
be compared against model predictions.
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Summary: the new high density version of astrophysical code 
XSTAR shows promise but requires validation from the laboratory
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New high density plasma effects in 
XSTAR have informed the 

supersolar Fe abundance problem

We have built a laboratory analog 
for black hole accretion disks that 

we can use to test the microphysics

Z-pinch

Z-pinch
Imaging

~50000x
expansion

Emission Absorption

We collected Fe L-shell and Ca K-shell 
data. Variable density Fe plasma data 

will help validate the models.

Remaining Challenge: Properly characterize the X-ray drive for a valid input to the models.


