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Astronomical X-ray spectra are used to access a wide variety of

parameters related to black hole systems
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® composition E [keV]
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Microphysics in the models used to interpret the observations are largely untested
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An X-ray reflection spectrum is produced when hot coronal
emission is reflected by an accretion disk in a black hole system
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An X-ray reflection spectrum is produced when hot coronal
emission is reflected by an accretion disk in a black hole system

0t GX 339-4
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* Astrophysical models of black hole
accretion disks suggest high Iron
abundances in multiple
systems that are often many times

NUSTAR FPMA -e- the Iron abundance in the sun.

NuSTAR FPME_S_ = > .
| ... ..Ul This phenomenon is known as the
Supersolar Iron Abundance

Problem.
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The Supersolar Fe Abundance Problem has been informed

by high density effects in accretion disk models

* Historically, models have imposed an upper
bound (n_<10% cm™) on the plasma
density in the accretion disk.

* This low density limit was suspected to be a
large part of the reason for many of the
supersolar Iron abundance determinations.
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The Supersolar Fe Abundance Problem has been informed

by high density effects in accretion disk models |
Jiang et al. (2019)
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* Recently, high density effects have been

Mrk 79 00—

incorporated in XSTAR.
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* Iron abundances were revised to lower
values for many systems. 1934 —e o
 However, some abundance values are still Ark 564 * .
quite high and the physical assumptions GX 339-4 -

have not previously been tested against

laboratory data. 1 10 ‘




Models assume low density (£ 1e15 cm™3) and constant
density for the accretion disk atmosphere
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Models assume low density (£ 1e15 cm™3) and constant

density for the accretion disk atmosphere |
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The low density (S 1e15 cm™) assumption for accretion disk
atmospheres is likely incorrect
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For a 10 solar mass BH, at the minimum f, the
density is still near n_~ 102 cm™,




All Spectra are similar at high energies (2 5 keV), and show
increasing divergence at low energies
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The most notable change in the reflected spectrum with higher
densities is the increase in soft emission

Shape of soft excess
is roughly similar to
blackbody emission
because the dominant
source is free-free
(Bremmstrahlung)
emission.

higher density — higher

temperature — thermal
part of spectrum skews
toward higher energies
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We built a laboratory analog for accretion disk X-ray emission and absorption
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We built a laboratory analog for accretion disk X-ray emission and absorption
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accretion disk laboratory

@ X-ray illumination

@ Photon ionization and atomic kinetics
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accretion disk

@ X-ray illumination

@ Photon ionization and atomic kinetics

@ Plasma emission

We built a laboratory analog for accretion disk X-ray emission and absorption

laboratory
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accretion disk

@ X-ray illumination

@ Photon ionization and atomic kinetics

@ Plasma emission
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We built a laboratory analog for accretion disk X-ray emission and absorption

laboratory
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@ X-ray illumination

@ Photon ionization and atomic kinetics

@ Plasma emission

Advantages

e study individual process @@@
* single element

* known drive

e controlled uniform plasma size

* higher spectral resolution

* higher signal to noise

Challenges

e dynamic evolution

e ensure higher density doesn’t impact results
* measurement accuracy

* residual non-uniformities

laboratory
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We built a laboratory analog for accretion disk X-ray emission and absorption
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. | All required inputs are obtained on a single Z shot, confirm the

1
plasma is photoionized and in relevant regime |
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s | Photoionized Iron and Calcium emission data can be used to
test the physical assumptions of high density effects in XSTAR |

Fe L-shell emission image on Z (XRS3)

Photoionized Iron L-shell and Calcium
K-shell ions are created when sample is
located closer to the z-pinch (~3cm). |

Observed charge state distributions can
be compared against model predictions. !

Preliminary model (Prismspect)
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.+ | Thicker tamper material will be used to achieve different

densities and interrogate relative density effects in XSTAR |
Prismspect models predict likely observable > ‘
differences in different density plasmas. _FE::;;PEEK
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, | Potential future line of inquiry: Calcium can be used as a
surrogate to examine K-shell behavior instead of Iron

Ca K-shell emission image on Z (XRS?) -~
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Summary: the new high density version of astrophysical code
XSTAR shows promise but requires validation from the laboratory

New high density plasma effects in
XSTAR have informed the
supersolar Fe abundance problem
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We have built a laboratory analog
for black hole accretion disks that
we can use to test the microphysics
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We collected Fe L-shell and Ca K-shell
data. Variable density Fe plasma data
will help validate the models.
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‘ Remaining Challenge: Properly characterize the X-ray drive for a valid input to the models. ‘




