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1
2 Abstract
3
4 The dynamic cylindrical cavity expansion model for a rate-dependent target material was
5 previously derived by Warren to examine the effects of strain-rate sensitivity on the radial stress
6 acting on a perforating projectile. However, the equations presented were largely analytical and
7 were not further applied to predict the ballistic performance of ductile target plates. The current
8 work expands on Warren’s derivation to model the dynamics of conical and ogival geometries,
9 and the rate-dependent model is compared to prior experimental results of 7.62-mm APM2

10 rounds impacting 6061-T6511 aluminum alloy plates. Results show that including rate effects
11 improves the ballistic performance prediction, even for a marginally strain-rate sensitive material
12 such as Al6061-T651. However, existing semi-empirical variations of the cavity expansion
13 model can provide the same degree of accuracy if target material rate-sensitivity parameters are
14 not readily available.
15
16 Keywords: Ballistic impact. Cavity expansion. Strain-rate sensitivity. Plate perforation.
17
18 Introduction
19
20 In an early series of works [1–4], Forrestal and colleagues derived cylindrical cavity expansion
21 (CCE) equations to model the dynamic response of rate-independent, strain-hardening target
22 plates under ballistic impact. In the CCE model, the target plate is idealized as infinitesimally
23 thin layers (i.e. plane strain conditions) perpendicular to the direction of projectile perforation. A
24 set of closed-form equations were then derived [5] to predict the ballistic performance of
25 aluminum target plates against ogival- and conical-nosed long rod projectiles at normal incidence
26 impact using the rate-independent CCE model. Subsequent works [6–12] used a semi-empirical
27 variation of the CCE model to successfully predict the ballistic impact performance aluminum
28 and steel plates impacted by armor-piercing rounds.
29
30 In a parallel series of works, Forrestal et al. derived closed-form spherical cavity-expansion
31 (SCE) equations for long rods penetrating deep metallic targets [13–15]. In contrast to plate
32 perforation dynamics, which can be accurately described by CCE models, deep target penetration
33 dynamics are more accurately represented by SCE models. Earlier SCE formulations assumed
34 rate-insensitivity of the target materials, and the depth of penetration results were well-predicted
35 for aluminum targets. Warren & Forrestal [16] later developed closed-form SCE models for the
36 deep target penetration of rate-dependent materials (rSCE).
37
38 Following the rSCE model, Warren [17] then derived cylindrical cavity expansion equations for
39 rate-dependent materials (rCCE). While the radial expansion stress was shown to increase as a
40 result of rate effects, the rCCE model itself was not applied to predict the results of ballistic
41 perforation experiments.
42
43 In this work, equations for the rCCE model are derived and applied to the ballistic perforation of
44 ductile target plates. The rate-independent CCE equations are presented in the first section to
45 form a basis for analysis, before rate effects (as derived by Warren) are included in the
46 subsequent section. Equations are then derived for the target resistive forces acting on generic
47 conical- and ogival-nosed projectiles, before model predictions are presented for 7.62-mm
48 APM2 rounds impacting 6061-T6511 aluminum alloy plates. Different variations of the



1 cylindrical cavity expansion model are compared to ballistic experimental results to explain the
2 success of semi-empirical model predictions as demonstrated in previous works.
3
4
5 Derivation of model equations
6
7 Rate-independent cylindrical cavity expansion (CCE)
8
9 The stress-strain law for a typical strain-hardening material is given by the modified Ludwik

10 equation
11
12 (1)
13
14 In Equation 1, σ is the true stress, E is the target elastic modulus, ε is true strain, Y is the quasi-
15 static target yield stress, and n is a strain-hardening exponent obtained from fitting Equation 1 to
16 quasi-static uniaxial compression test data to high strains greater than 1.0 [18]. The exact
17 solution for the radial stress σr at the cavity surface when expanding radially with velocity V is
18 the sum of two loading responses: quasi-static strain hardening and target inertia.
19
20
21 (2)
22
23 (3)
24
25 (4)
26
27 In Equations 2 to 4, ρt is the target density, ν is the Poisson’s ratio, and B is a target radial inertia
28 given by
29
30
31 (5)
32
33
34 (6)
35
36 Since B is velocity-dependent, an empirical parameter B0 is usually curve-fitted so that a closed-
37 form solution may be obtained as [3]
38
39
40 (7)
41
42 Assuming a frictionless perforation process [5], the perforation dynamics can be modeled with
43 the solution of the differential equation
44
45
46 (8)
47
48 where z is the penetration depth, Vz the axial velocity, and mp is the projectile mass given as



1
2
3 (9a)
4
5
6 (b)
7
8 with a being the projectile radius, ρp the projectile density, L the projectile shank length, k1 the
9 nose shape factor, and the projectile nose length. From Ref. [5], the axial force Fz acting on the

10 projectile nose is given as
11
12
13 (10)
14
15 N is a dimensionless nose shape factor dependent on the target inertia, the derivation of which
16 will be expanded upon in subsequent sections. Solution of Equations 8 to 10 gives
17
18
19 (11)
20
21 The ballistic limit velocity Vbl is obtained by integrating the perforation depth from to the plate
22 thickness , and the perforation velocity Vz from to .
23
24
25 (12a)
26
27
28 (b)
29
30
31 (c)
32
33 For a striking velocity Vs above the ballistic limit Vbl, the residual velocity Vr can be calculated
34 by integrating Vz from to in Equation 12 to give
35
36
37 (13)
38
39
40 (14)
41
42 Multiplying Equation 12c by and substituting into Equation 14, the residual velocity can be
43 explicitly expressed as a function of Vs and Vbl
44
45
46 (15)
47
48 From Equation 12a, C is a dimensionless term related to the inertia of the target material via B0
49 in Equation 7. A three-term series approximation for the exponential terms in Equations 12c and



1 15 gives
2
3
4 (16)
5
6
7 (17)
8
9 These series approximations allow for the inertial effects via the C term to be easily excluded for

10 certain materials where target inertia is negligible during the perforation process. Prior studies
11 often excluded the effects of target inertia in Equation 16 [5,19], but instead used an empirical
12 constant κ for ballistic performance prediction such that
13
14
15 (18)
16
17 Rate-dependent cylindrical cavity expansion (rCCE)
18
19 Warren & Forrestal [16,17] subsequently derived a strain-rate sensitive perforation model,
20 starting with a rate-decoupled stress-strain law [20,21]:
21
22 (19)
23
24
25 (20)
26
27 In Equations 19 and 20, Yd is the dynamic yield stress of the target material. The rate-sensitivity
28 modification to the post-yield stress consists of a curve-fitted rate parameter α, reference strain-
29 rate , and strain-rate sensitivity exponent β. When α = 0, the rate-independent modified Ludwik
30 equation (Equation 1) is recovered. The exact solution for the rate-dependent radial stress is now
31 the sum of three loading responses: quasi-static strain hardening, target inertia, and strain-rate
32 sensitivity. The equations are given as
33
34
35 (21)
36
37 (22)
38
39
40 (23)
41
42 where Rc is the cavity radius, usually taken as the projectile shank radius for the cylindrical
43 cavity expansion model. The subscript R indicates rate-dependent forms of the variable. Warren
44 showed that strain rate effects have a negligible influence on the strain-hardening portion of the
45 stress-strain curve [17]. Therefore, Equation 22 can be approximated with Equation 3 without
46 significant deviation, essentially decoupling the strain-hardening effects from the strain rate
47 effects to give
48



1
2 (24)
3
4
5 Derivation of resistive force equations
6
7 For a rate-dependent target material, the axial force acting on the projectile nose after a change
8 of variable is
9

10
11 (25)
12
13 Equation 25 requires the following set of integrals to be solved
14
15
16 (26)
17
18
19 (27)
20
21
22 (28)
23
24
25 (29)
26
27 By inspection, a general form of the set of integrals can be expressed as
28
29
30 (30)
31
32
33 Conical-nosed projectiles
34



1
2
3 Figure 1: Dimensions of (a) conical-nosed and (b) ogival-nosed projectiles.
4
5
6 From Figure 1a, for a conical-nosed projectile with apex angle 2θ, . Solving the integrals in
7 Equations 27 to 29, we get
8
9

10 (31)
11
12 Factoring out I0 from Equation 26 and defining gives
13
14
15 (32)
16
17
18 (33)
19
20
21 (34)
22
23 Ogival-nosed projectile
24
25 From Figure 1b, for an ogival-nosed projectile
26
27
28 (35)
29
30
31 (36)
32
33 The variables , , and , where is the caliber-radius-head (CRH) of the projectile [5]. The special
34 case of m = 2 for Equation 30 was solved by Forrestal & Warren [5] to give



1
2
3 (37a)
4
5
6 (b)
7
8 Unlike the conical-nosed projectile, the solution for Iβ in this case requires numerical integration,
9 since there is no generalized closed-form integral solution. Using exact solutions at = 1 and = N

10 as fixed end constraints, a near-exact polynomial fit for can be obtained for numerical solutions
11 to Equation 30 (Figure 2). can be evaluated with
12
13
14 (38)
15
16 The fit coefficients C1 to C4 for different caliber-radius-head values are given in Table I.
17

18
19
20 Figure 2: Polynomial fit of numerical solutions to integral for = 3.
21
22
23 Table I: Coefficients for different CRH values.
24

CRH C4 C3 C2 C1
1 0.0171 -0.113 0.340 -0.590
2 0.0321 -0.211 0.599 -1.008
3 0.0453 -0.293 0.798 -1.225
4 0.0568 -0.361 0.953 -1.371
5 0.0668 -0.420 1.080 -1.481
6 0.0758 -0.471 1.187 -1.568



7 0.0838 -0.516 1.280 -1.641
8 0.0912 -0.557 1.362 -1.703
9 0.0979 -0.594 1.435 -1.757
10 0.1041 -0.628 1.501 -1.805

1
2
3 Solution with the rate-dependent force (Equation 32) for either nose geometry gives
4
5
6
7 (39)
8
9 Analytical solutions for Equation 39 again require numerical integration to calculate Vbl, since β

10 is a real, non-integer value.
11
12
13 Numerical results
14
15 Numerical results for 6061-T6511 aluminum alloy are presented and compared to prior ballistic
16 plate perforation data by Ryan et al. [10]. Warren and Forrestal [16] gave material properties for
17 alloy 6061-T6511 as E = 68.9 GPa, ν = 0.33, Y = 276 MPa, ρt = 2710 kg/m3, n = 0.072. The rate-
18 sensitivity constants were obtained from prior studies across a broad range of strain rates [16],
19 from quasi-static compression (10-3 s-1) to pressure-shear experiments (105 s-1). These values are
20 reported as α = 32.0 MPa, β = 0.348 (given as m in reference), and = 1000 s-1. The projectile is a
21 7.62-mm APM2 round with radius a = 3.93 mm and mass mp = 10.8 g. The AP round has a CRH
22 of approximately 3.0, giving N = 0.1272 and = 0.6589. Five variations of the CCE model are
23 plotted in Figure 3 for comparison, and their respective sums of squared errors (SSE) are
24 reported as follows:
25 I) Rate-independent (α = 0), no target inertia (C = 0), SSE = 1.59×106;
26 II) Rate-independent (α = 0), with target inertia, SSE = 4.04×105;
27 III) Rate-dependent, no target inertia (C = 0), SSE = 8.08×105;
28 IV) Rate-dependent, with target inertia, SSE = 1.67×105; and
29 V) Rate-independent (α = 0), no target inertia (C = 0), empirical fit (κ = 1.211), SSE =
30 1.33×105.
31



1
2
3 Figure 3: Variations of CCE model predictions for 7.62-mm APM2 round impacting 6061-
4 T6511 aluminum alloy plates of different thicknesses.
5
6
7 The largest difference in ballistic performance appears to stem from target inertia effects,
8 especially for much thicker targets, since C is a quadratic function of the target thickness. The
9 rate-dependent model with inertia (Variation IV) provides the best prediction of the experimental

10 data without empirically determined constants. It appears that ballistic performance predictions
11 may be improved even though aluminum is often considered a relatively rate-insensitive material
12 – this improvement in prediction may be true across the board for other more rate-sensitive
13 materials.
14
15 Naturally, the empirically scaled rate-independent model (Equation 18, Variation V) in Figure 3
16 best fits the experimental data, as is the purpose of a least-squares fit. Such an empirical scaling
17 has been previously used to model the plate perforation of AP rounds on an extensive range of
18 aluminum alloys to great degrees of accuracy [6–11,22]. However, a comparison of Variations
19 IV and V shows that the inclusion of rate effects results in a nonlinear response that cannot be
20 linearly scaled, and such effects may be more pronounced for other materials that are
21 considerably more rate-sensitive than aluminum.
22
23 Nonetheless, the frequent lack of experimental data across a broad range of strain rates to obtain
24 the constants α and β for any target material has to be a consideration when including rate-
25 sensitivity effects for ballistic performance prediction. Further work examining more rate-
26 sensitive targets would provide further insight into the rate effects on the perforation dynamics in
27 order to improve ballistic performance predictions.
28
29



1 Conclusions
2
3 Ballistic perforation equations for the rate-dependent cylindrical cavity expansion model were
4 solved for conical- and ogival-nosed projectile geometries using material rate-sensitivity
5 constants presented by Warren & Forrestal. Numerical results were presented for 7.62-mm
6 APM2 rounds impacting relatively rate-insensitive 6061-T6511 aluminum alloy plates and
7 compared with experimental ballistic impact data. The rate-dependent cavity expansion model
8 was in good agreement with experimental data without the need for empirically determined
9 constants, but simplified semi-empirical cavity expansion models derived with quasi-static

10 properties provide an accurate performance prediction. This latter approach can be advantageous,
11 as fewer material parameters are required for first order approximations.
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