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Abstract

The dynamic cylindrical cavity expansion model for a rate-dependent target material was
previously derived by Warren to examine the effects of strain-rate sensitivity on the radial stress
acting on a perforating projectile. However, the equations presented were largely analytical and
were not further applied to predict the ballistic performance of ductile target plates. The current
work expands on Warren’s derivation to model the dynamics of conical and ogival geometries,
and the rate-dependent model is compared to prior experimental results of 7.62-mm APM2
rounds impacting 6061-T6511 aluminum alloy plates. Results show that including rate effects
improves the ballistic performance prediction, even for a marginally strain-rate sensitive material
such as Al6061-T651. However, existing semi-empirical variations of the cavity expansion
model can provide the same degree of accuracy if target material rate-sensitivity parameters are
not readily available.

Keywords: Ballistic impact. Cavity expansion. Strain-rate sensitivity. Plate perforation.
Introduction

In an early series of works [1-4], Forrestal and colleagues derived cylindrical cavity expansion
(CCE) equations to model the dynamic response of rate-independent, strain-hardening target
plates under ballistic impact. In the CCE model, the target plate is idealized as infinitesimally
thin layers (i.e. plane strain conditions) perpendicular to the direction of projectile perforation. A
set of closed-form equations were then derived B! to predict the ballistic performance of
aluminum target plates against ogival- and conical-nosed long rod projectiles at normal incidence
impact using the rate-independent CCE model. Subsequent works [6—12] used a semi-empirical
variation of the CCE model to successfully predict the ballistic impact performance aluminum
and steel plates impacted by armor-piercing rounds.

In a parallel series of works, Forrestal et al. derived closed-form spherical cavity-expansion
(SCE) equations for long rods penetrating deep metallic targets [13—15]. In contrast to plate
perforation dynamics, which can be accurately described by CCE models, deep target penetration
dynamics are more accurately represented by SCE models. Earlier SCE formulations assumed
rate-insensitivity of the target materials, and the depth of penetration results were well-predicted
for aluminum targets. Warren & Forrestal [16] later developed closed-form SCE models for the
deep target penetration of rate-dependent materials (rSCE).

Following the rSCE model, Warren [17] then derived cylindrical cavity expansion equations for
rate-dependent materials (rCCE). While the radial expansion stress was shown to increase as a
result of rate effects, the rCCE model itself was not applied to predict the results of ballistic
perforation experiments.

In this work, equations for the rCCE model are derived and applied to the ballistic perforation of
ductile target plates. The rate-independent CCE equations are presented in the first section to
form a basis for analysis, before rate effects (as derived by Warren) are included in the
subsequent section. Equations are then derived for the target resistive forces acting on generic
conical- and ogival-nosed projectiles, before model predictions are presented for 7.62-mm
APM2 rounds impacting 6061-T6511 aluminum alloy plates. Different variations of the
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cylindrical cavity expansion model are compared to ballistic experimental results to explain the
success of semi-empirical model predictions as demonstrated in previous works.

Derivation of model equations

Rate-independent cylindrical cavity expansion (CCE)

The stress-strain law for a typical strain-hardening material is given by the modified Ludwik
equation

(1)
In Equation 1, o is the true stress, E is the target elastic modulus, ¢ is true strain, Y is the quasi-
static target yield stress, and # is a strain-hardening exponent obtained from fitting Equation 1 to
quasi-static uniaxial compression test data to high strains greater than 1.0 [18]. The exact

solution for the radial stress o, at the cavity surface when expanding radially with velocity V is
the sum of two loading responses: quasi-static strain hardening and target inertia.

2)

3)

4)
Ir} eqLations 2 to 4, p, is the target density, v is the Poisson’s ratio, and B is a target radial inertia
given by

()

(6)

Since B is velocity-dependent, an empirical parameter B, is usually curve-fitted so that a closed-
form solution may be obtained as [3]

(7)

Assuming a frictionless perforation process [5], the perforation dynamics can be modeled with
the solution of the differential equation

(8)

where z is the penetration depth, V. the axial velocity, and m,, is the projectile mass given as
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(92)

(b)

with a being the projectile radius, p, the projectile density, L the projectile shank length, k; the
nose shape factor, and the projectile nose length. From Ref. [5], the axial force F, acting on the
projectile nose is given as

(10)

N is a dimensionless nose shape factor dependent on the target inertia, the derivation of which
will be expanded upon in subsequent sections. Solution of Equations 8 to 10 gives

(11)

The ballistic limit velocity ¥V, is obtained by integrating the perforation depth from to the plate
thickness , and the perforation velocity V. from to .

(12a)

(b)

(c)

For a striking velocity V; above the ballistic limit V,;, the residual velocity V. can be calculated
by integrating V, from to in Equation 12 to give

(13)

(14)

Multiplying Equation 12¢ by and substituting into Equation 14, the residual velocity can be
explicitly expressed as a function of V and V),

(15)

From Equation 12a, C is a dimensionless term related to the inertia of the target material via B,
in Equation 7. A three-term series approximation for the exponential terms in Equations 12¢ and
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15 gives

(16)

(17)

These series approximations allow for the inertial effects via the C term to be easily excluded for
certain materials where target inertia is negligible during the perforation process. Prior studies
often excluded the effects of target inertia in Equation 16 [5,19], but instead used an empirical
constant x for ballistic performance prediction such that

(18)
Rate-dependent cylindrical cavity expansion (rCCE)

Warren & Forrestal [16,17] subsequently derived a strain-rate sensitive perforation model,
starting with a rate-decoupled stress-strain law [20,21]:

(19)

(20)

In Equations 19 and 20, Y, is the dynamic yield stress of the target material. The rate-sensitivity
modification to the post-yield stress consists of a curve-fitted rate parameter a, reference strain-
rate , and strain-rate sensitivity exponent . When a = 0, the rate-independent modified Ludwik
equation (Equation 1) is recovered. The exact solution for the rate-dependent radial stress is now
the sum of three loading responses: quasi-static strain hardening, target inertia, and strain-rate
sensitivity. The equations are given as

21)

(22)

(23)

where R. is the cavity radius, usually taken as the projectile shank radius for the cylindrical
cavity expansion model. The subscript R indicates rate-dependent forms of the variable. Warren
showed that strain rate effects have a negligible influence on the strain-hardening portion of the
stress-strain curve [17]. Therefore, Equation 22 can be approximated with Equation 3 without
significant deviation, essentially decoupling the strain-hardening effects from the strain rate
effects to give
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(24)

Derivation of resistive force equations

For a rate-dependent target material, the axial force acting on the projectile nose after a change
of variable is

(25)

Equation 25 requires the following set of integrals to be solved

(26)

(27)

(28)

(29)

By inspection, a general form of the set of integrals can be expressed as

(30)

Conical-nosed projectiles
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Figure 1: Dimensions of (a) conical-nosed and (b) ogival-nosed projectiles.

From Figure la, for a conical-nosed projectile with apex angle 26, . Solving the integrals in
Equations 27 to 29, we get

1)
Factoring out /, from Equation 26 and defining gives
(32)
(33)
(34)
Ogival-nosed projectile
From Figure 1b, for an ogival-nosed projectile
(35)
(36)

The variables , , and , where is the caliber-radius-head (CRH) of the projectile [5]. The special
case of m =2 for Equation 30 was solved by Forrestal & Warren [5] to give
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19

20
21
22
23
24

(372)

(b)

Unlike the conical-nosed projectile, the solution for /; in this case requires numerical integration,
since there is no generalized closed-form integral solution. Using exact solutions at =1 and = N
as fixed end constraints, a near-exact polynomial fit for can be obtained for numerical solutions
to Equation 30 (Figure 2). can be evaluated with

(38)

The fit coefficients C; to C, for different caliber-radius-head values are given in Table 1.
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Figure 2: Polynomial fit of numerical solutions to integral for = 3.

Table I: Coefficients for different CRH values.

CRH Cy C; G G
1 0.0171 | -0.113 | 0.340 | -0.590
2 0.0321 | -0.211 | 0.599 | -1.008
3 0.0453 | -0.293 | 0.798 | -1.225
4 0.0568 | -0.361 | 0.953 | -1.371
5 0.0668 | -0.420 | 1.080 | -1.481
6 0.0758 | -0.471 | 1.187 | -1.568
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7 0.0838 | -0.516 | 1.280 | -1.641
8 0.0912 | -0.557 | 1.362 | -1.703
9 0.0979 | -0.594 | 1.435 | -1.757
10 | 0.1041 | -0.628 | 1.501 | -1.805

Solution with the rate-dependent force (Equation 32) for either nose geometry gives

(39)

Analytical solutions for Equation 39 again require numerical integration to calculate 7}, since S
is a real, non-integer value.

Numerical results

Numerical results for 6061-T6511 aluminum alloy are presented and compared to prior ballistic
plate perforation data by Ryan et al. [10]. Warren and Forrestal [16] gave material properties for
alloy 6061-T6511 as E = 68.9 GPa, v=0.33, Y =276 MPa, p,= 2710 kg/m?, n = 0.072. The rate-
sensitivity constants were obtained from prior studies across a broad range of strain rates [16],
from quasi-static compression (10~ s™!) to pressure-shear experiments (10° s!). These values are
reported as o = 32.0 MPa, £ = 0.348 (given as m in reference), and = 1000 s!. The projectile is a
7.62-mm APM2 round with radius @ = 3.93 mm and mass m, = 10.8 g. The AP round has a CRH
of approximately 3.0, giving N = 0.1272 and = 0.6589. Five variations of the CCE model are
plotted in Figure 3 for comparison, and their respective sums of squared errors (SSE) are
reported as follows:

I) Rate-independent (a = 0), no target inertia (C = 0), SSE = 1.59x105;

II) Rate-independent (a = 0), with target inertia, SSE = 4.04x10°;

III) Rate-dependent, no target inertia (C = 0), SSE = 8.08x10°;

IV) Rate-dependent, with target inertia, SSE = 1.67x10%; and

V) Rate-independent (o = 0), no target inertia (C = 0), empirical fit (x = 1.211), SSE =

1.33x10°.
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Figure 3: Variations of CCE model predictions for 7.62-mm APM?2 round impacting 6061-
T6511 aluminum alloy plates of different thicknesses.

The largest difference in ballistic performance appears to stem from target inertia effects,
especially for much thicker targets, since C is a quadratic function of the target thickness. The
rate-dependent model with inertia (Variation IV) provides the best prediction of the experimental
data without empirically determined constants. It appears that ballistic performance predictions
may be improved even though aluminum is often considered a relatively rate-insensitive material
— this improvement in prediction may be true across the board for other more rate-sensitive
materials.

Naturally, the empirically scaled rate-independent model (Equation 18, Variation V) in Figure 3
best fits the experimental data, as is the purpose of a least-squares fit. Such an empirical scaling
has been previously used to model the plate perforation of AP rounds on an extensive range of
aluminum alloys to great degrees of accuracy [6—11,22]. However, a comparison of Variations
IV and V shows that the inclusion of rate effects results in a nonlinear response that cannot be
linearly scaled, and such effects may be more pronounced for other materials that are
considerably more rate-sensitive than aluminum.

Nonetheless, the frequent lack of experimental data across a broad range of strain rates to obtain
the constants a and f for any target material has to be a consideration when including rate-
sensitivity effects for ballistic performance prediction. Further work examining more rate-
sensitive targets would provide further insight into the rate effects on the perforation dynamics in
order to improve ballistic performance predictions.
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Conclusions

Ballistic perforation equations for the rate-dependent cylindrical cavity expansion model were
solved for conical- and ogival-nosed projectile geometries using material rate-sensitivity
constants presented by Warren & Forrestal. Numerical results were presented for 7.62-mm
APM?2 rounds impacting relatively rate-insensitive 6061-T6511 aluminum alloy plates and
compared with experimental ballistic impact data. The rate-dependent cavity expansion model
was in good agreement with experimental data without the need for empirically determined
constants, but simplified semi-empirical cavity expansion models derived with quasi-static
properties provide an accurate performance prediction. This latter approach can be advantageous,
as fewer material parameters are required for first order approximations.
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