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ABSTRACT:  

For 2D-temperature monitoring applications, a variant of EIT (Electrical Impedance 

Tomography) is evaluated computationally in this work. Literature examples of poor sensor 

performance in the center of the 2D domains away from the side electrodes motivated this study 

which seeks to overcome some of the previously noted shortcomings. In particular, the use of 

‘sensing skins’ with novel tailored baseline conductivities were examined using the EIDORS 

package for EIT. It was found that the best approach for detecting a hot spot depends on several 

factors such as the current injection (stimulation) patterns, the measurement patterns, and the 

reconstruction algorithms. For a well-performing combination of these factors, tailored baseline 

conductivities were assessed and compared to the baseline uniform conductivity. It was 

discovered that for some EIT applications, a tailored distribution needs to be smooth and that 

sudden changes in the conductivity gradients should be avoided. Still, the benefits in terms of 

improved EIT performance were small for conditions for which the EIT measurements had been 

‘optimized’ for the uniform baseline case. Within the limited scope of this study, only two 

specific cases showed benefits from tailored distributions. For one case, a smooth tailored 

distribution with increased baseline conductivity in the center provided a better separation of two 

centrally located hot spots. For another case, a smooth tailored distribution with reduced 

conductivity in the center provided better estimates of the magnitudes of two hot spots near the 

center of the sensing skin. 

 

INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS:  

Across various industrial disciplines, there are numerous applications which have a strong need 

to monitor internal temperatures of large machineries and assemblies, sometimes with complex 

(i.e., not flat) internal structures. As a particular example, battery-based grid storage solutions are 

very expensive, and any battery cell failure must be detected early so that a catastrophic 

cascading thermal-runaway situation can be avoided [1]. Brute-force installation of 

thermocouples to monitor 2D-temperature fields in spaces between large battery packs, however, 

may lead to an excessive amount of wiring. For example, if a 2 cm spatial resolution is required 

for a square surface of 1 m x 1 m, approximately 2500 thermocouples would be required, with an 
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associated 5000 individual wires. If the same 1 m2 area could be monitored with electrodes 

attached along the four edges, only 200 wires would be required if the same 2 cm spacing is 

applied. With this motivation, a variant of EIT (Electrical Impedance Tomography) is considered 

in this work, sometimes called Electrical Resistance tomography (ERT) [2]. The detection 

principle uses a ‘temperature sensing skin’, for which the local electrical conductivity goes down 

with a local increase of temperature (i.e., a hot spot). This change is detected indirectly by 

monitoring the changes in voltage potential at discrete locations (i.e., electrodes) along the edges 

of the 2D surface being monitored, with the voltage being a result of current injection into the 

electrodes following predetermined stimulation patterns. While the results of Rashetnia et al. [2] 

indicated potential of this 2D temperature monitoring application of EIT, the publication 

included examples of poor sensor performance in the center of the 2D domain. Said performance 

motivated this study, which seeks to overcome some of the previously noted shortcomings. In 

particular, the use of novel ‘sensing skins’ with tailored baseline conductivities are examined 

here.  

This work was performed computationally using the EIDORS package for EIT, executed in 

MATLAB. It was found that the best approach for detecting a hot spot depends on several 

factors. In particular, the magnitude of the relative reduction in local conductivity matters 

greatly, suggesting that EIT is most promising for combinations of large temperature changes 

and sensing skins with high temperature coefficient of resistance. Additionally, three factors 

have a great influence on the result: the current injection (stimulation) patterns, the measurement 

patterns, and the reconstruction algorithms. For a well-performing combination of these factors, 

tailored baseline conductivities were assessed and compared to the baseline uniform 

conductivity. The study covered many combinations of the factors above with various hot-spot 

distributions and baseline conductivity distributions. It was discovered that for some EIT 

conditions reconstruction artifacts can occur if the tailored conductivity distribution has sudden 

changes in the conductivity gradients. Hence, sudden changes in the conductivity gradients 

should be avoided by the use of smooth distributions with gradually changing conductivity 

gradients. Two different smooth distributions were assessed: one with higher baseline 

conductivity near the center of the measurement domain, and another with reduced baseline 

conductivity near the center. Simulations confirmed that the changes to the conductivity 

distribution had a substantial influence on the voltage distribution and the current-flow patterns 

between current-injection electrodes. The benefits in terms of improved EIT performance, 

however, were small for conditions in which the EIT measurements had been ‘optimized’ by the 

choice of stimulation and measurement patterns, as well as the algorithm and the use of fine EIT 

meshes. 

Within the limited scope of this study, benefits from a tailored distribution were only observed 

for two cases. One case used a common EIT algorithm (One step Gauss-Newton reconstruction), 

for which a smooth tailored distribution with increased baseline conductivity in the center 

provided a better separation of two centrally located hot spots, as compared to a baseline uniform 



 

 

conductivity. Another case used a TV (Total Variation) Reconstruction algorithm, and in this 

case the magnitudes of two hot spots near the center of the sensing skin were slightly better 

captured for a smooth tailored distribution with reduced conductivity in the center. 

Overall, it can be concluded that EIT has strong potential for 2D temperature measurements. 

Future work should be devoted to the systematic determination of how the optimal combination 

of stimulation patterns, measurement patterns, and reconstruction algorithms change with the 

specific application. Such efforts should be prioritized over the use of tailored baseline 

distributions, which seem to provide relatively limited benefits.  

 

DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT AND 
METHODOLOGY:  

This work was performed computationally in its entirety using the EIDORS package for EIT [3], 

executed in MATLAB R2022b. For convenience, the application examples shown here were 

developed based on the EIDORS tutorials published online by Adler [4]. Any referenced 

MATLAB scripts can be retrieved from either [3] or [4]. The EIDORS package includes 

algorithms for automated mesh generation, automated generation of different current stimulation 

patterns, automated generation of different electrode voltage measurement patterns, as well as 

multiple built-in reconstruction algorithms for solving the inverse problem. 

New MATLAB code, however, had to be developed for the generation of tailored baseline 

conductivity () distributions. This was done conveniently by tailoring the function calls to the 

build-in MATLAB script elem_select.m. Below is an example for the smooth baseline 

distribution with elevated conductivity in the center of a circular domain: 

% Conductivity Modification Quadratic 
scale_fcn = inline('(1.5-1*(x.^2+y.^2))','x','y','z'); 

img.elem_data = elem_select(img.fwd_model, scale_fcn); 

The above distribution and others used in this study are shown graphically in Fig. 1. To 

superimpose ‘hot spots’ with locally reduced conductivity on these tailored distributions, a 

different function call of the built-in MATLAB script elem_select.m was performed. 

% Add a hot spot with 50% conductivity, slightly above the center of the domain. 
local_rel_cond_red = 0.50; 
select_fcn = inline('(x-0.18).^2+(y-0.32).^2<0.1628^2','x','y','z'); 
img.elem_data_object = elem_select(img.fwd_model, select_fcn); 
img.elem_data = img.elem_data - img.elem_data .* img.elem_data_object * 
local_rel_cond_red; 

 



 

 

 

Figure 1 Conductivity vs. radius for the examined baseline distributions. 

For an example with three hot spots with a local relative reduction of conductivity of 50% ( = 

-50%), this would then render conductivity distributions like those shown in Fig. 2. 

 

     

 a) Uniform  b) Quadratic  c) Inverse Quadratic 

Figure 2 Conductivity distributions with three hot spots with 50% local reduction in 

conductivity ( = -50%) for three different baseline distributions. Plotted scale = 0 – 

2 for all three cases. 

However, for most electrical conductors a change of local conductivity on the order of a few 

percent is a more realistic scenario [5]. Figure 3 shows such a scenario with  = -5% in the hot 

spots. In this case, the local change of conductivity in the hot spot is substantially lower than the 

total spread of baseline conductivity for the Quadratic and Inverse Quadratic cases. 
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a) Uniform   b) Quadratic  c) Inverse Quadratic 

Figure 3 Conductivity distributions with three hot spots with  = -5% for three different 

baseline distributions. Plotted scale = 0 – 2 for all three cases. 

EIT can be broadly categorized by the use of either absolute or difference methodologies, as 

discussed by Smyl [6]. Various numerical methods exist for image reconstruction in EIT. In 

absolute EIT, the conductivity distribution is reconstructed based on a single set of voltage 

measurements. Absolute EIT typically requires iterations to solve the nonlinear EIT problem. In 

difference EIT, the change in the conductivity between two states is reconstructed from voltage 

measurements that correspond to each of the two states. In this study, focus is given to the use of 

difference EIT since it provided better EIT performance. In addition, for temperature monitoring 

it can be argued that difference EIT is a natural choice since most applications are expected to 

facilitate reference measurements for which the 2D temperature field is uniform (e.g., before 

system start-up). For the results presented below, relatively fine meshes were used for both the 

forward and inverse problems. The forward meshes shown in Figs. 2 and 3 were generated with 

the Netgen Mesher in EIDORS and have 2940 nodes, 5718 elements, and include 32 electrodes. 

 

RESULTS AND DISCUSSION: 

The combination of stimulation patterns and measurement patterns can influence the EIT 

performance greatly. As a starting point, the EIT performance is examined for the baseline 

uniform conductivity distribution and for three hot spots with a local reduction of conductivity of 

5 % ( = -5%). Five different reconstruction algorithms were used, following the EIDORS 

example by Adler in MATLAB script tutorial120a.m [7]. These five algorithms are listed in the 

caption of Fig. 4 and are used in the following figures. 

The results show that the stimulation and measurement patterns and methodologies have a strong 

influence on the detection of hot spots with a 5% reduction of conductivity. By a visual 

comparison column by column in Fig. 4, the largest effects are found for algorithm 1) One step 

Gauss-Newton reconstruction (Tikhonov prior) and algorithm 3) One step Gauss-Newton 

reconstruction (Laplace filter prior), which both show great performance improvements for some 



 

 

of the altered stimulation and measurement patterns. The nomenclature used here for the 

stimulation and measurement patterns reflects the definitions in the EIDORS package. 

 

 
A: Adjacent Stimulation, Adjacent Measurement, No Measurement on Current-Injection Electrodes, Rotate 

Measurements, Without Noise. 

B: Opposite Stimulation, Adjacent Measurement, No Measurement on Current-Injection Electrodes, Rotate 

Measurements, Without Noise. 

C: Adjacent Stimulation, Opposite Measurement, No Measurement on Current-Injection Electrodes, Rotate 

Measurements, Without Noise. 

D: Mono Stimulation, Adjacent Measurement, Measurement on Current-Injection Electrodes, Rotate 

Measurements, Without Noise. 



 

 

E: Mono Stimulation, Opposite Measurement, Measurement on Current-Injection Electrodes, Rotate 

Measurements, Without Noise. 

F: Adjacent Stimulation, Mono Measurement, No Measurement on Current-Injection Electrodes, Rotate 

Measurements, Without Noise. 

G: Opposite Stimulation, Mono Measurement, No Measurement on Current-Injection Electrodes, Rotate 

Measurements, Without Noise. 

H: Mono Stimulation, Mono Measurement, Measurement on Current-Injection Electrodes, No Rotation of 

Measurements, Without Noise. 



 

 

I: Mono Stimulation, Mono Measurement, Measurement on Current-Injection Electrodes, Rotate 

Measurements, Without Noise. 

Figure 4 Effect of stimulation and measurement patterns (A-I) on the performance of five 

different reconstruction algorithms (from left to right): 1) One step Gauss-Newton 

reconstruction (Tikhonov prior), 2) One step Gauss-Newton reconstruction (NOSER 

prior), 3) One step Gauss-Newton reconstruction (Laplace filter prior), 4) One step 

Gauss-Newton reconstruction (with automatic hyperparameter selection), 5) Total 

Variation reconstruction.  = -5% and no simulation of measurement noise. 

The top performing algorithms are 2) One step Gauss-Newton reconstruction (NOSER prior) and 

5) Total Variation reconstruction. For these two, there are several stimulation and measurement 

patterns that provide near equally strong performance. The choice of stimulation and 

measurement patterns, however, must also consider susceptivity to noise. Hence, the simulations 

were modified to add measurement noise equivalent to a signal-to-noise ratio (SNR) of 48 dB 

and then repeated. The results are shown in Fig. 5. 

The response to noise is overwhelming strong for cases H and I, indicating that those 

combinations of stimulations and measurement patterns are impractical. The effect of noise is 

also strong for case A. Hence, for further studies with hot-spot scenarios like this example, cases 

B, C, D, E, F, and G should be considered. Going forward, case F will be used since the 

performance is most even across the five algorithms. 

 

A: Adjacent Stimulation, Adjacent Measurement, No Measurement on Current-Injection Electrodes, Rotate 

Measurements, With Noise. 



 

 

B: Opposite Stimulation, Adjacent Measurement, No Measurement on Current-Injection Electrodes, Rotate 

Measurements, With Noise. 

C: Adjacent Stimulation, Opposite Measurement, No Measurement on Current-Injection Electrodes, Rotate 

Measurements, With Noise. 

D: Mono Stimulation, Adjacent Measurement, Measurement on Current-Injection Electrodes, Rotate 

Measurements, With Noise. 

E: Mono Stimulation, Opposite Measurement, Measurement on Current-Injection Electrodes, Rotate 

Measurements, With Noise. 



 

 

F: Adjacent Stimulation, Mono Measurement, No Measurement on Current-Injection Electrodes, Rotate 

Measurements, With Noise. 

G: Opposite Stimulation, Mono Measurement, No Measurement on Current-Injection Electrodes, Rotate 

Measurements, With Noise. 

H: Mono Stimulation, Mono Measurement, Measurement on Current-Injection Electrodes, No Rotation of 

Measurements, With Noise. 

 

I: Mono Stimulation, Mono Measurement, Measurement on Current-Injection Electrodes, Rotate 

Measurements, With Noise. 

Figure 5 Same as Fig. 4 but with random noise equivalent to a SNR of 48 dB added to the 

measured values. (Note, this is a simulation of noise since no actual experimental 

measurements were performed.)  = -5%. 



 

 

In the following, case F will be used to evaluate how the EIT performance responds to changes 

of the baseline conductivity, as shown in Fig. 3. Again, we are evaluating three hot spots with a 

local reduction of conductivity of 5%, as shown for the three baseline distributions above. 

 

Uniform 

Quadratic 

Inverse Quadratic 

Figure 6 Effect of tailored baseline distributions for Case F with  = -5% and no simulation of 

measurement noise. 

Without measurement noise, a change of the baseline distribution from uniform to either the 

Quadratic or Inverse Quadratic distribution does not provide much benefit for the two best 

performing algorithms 2 and 5. In fact, the non-uniform background distributions induce a 

moderate level of artifacts, especially for algorithm 5 (TV Reconstruction). The only small 

benefit of a tailored baseline distribution is seen for the Inverse Quadratic distribution for which 

the magnitudes of the two hot spots near the center are slightly better captured for algorithm 5. 

Figure 7 shows that these observations do not change with the addition of measurement noise 

since case F is relatively robust against noise. 



 

 

Uniform 

Quadratic 

Inverse Quadratic 

Figure 7 Effect of tailored baseline distributions for Case F with  = -5% and with simulation 

of random measurement noise equivalent to SNR = 48 dB. 

Next, the three distributions were evaluated for a scenario with a much stronger reduction of the 

local conductivity  = -50%, as shown in Fig. 2. The results are plotted in Fig. 8. As discussed 

above, the stimulation and measurement pattern Case F was selected for its good performance 

with and without measurement noise for all five algorithms when the local reduction of 

conductivity was 5%. In this case with a much stronger reduction of  = -50%, it appears like 

the stimulation and measurement pattern Case F is no longer the best choice for all algorithms. In 

particular, algorithm 5 (TV reconstruction) shows artifacts along the lower edge. When the 

tailored baseline distributions were applied, the number of artifacts grew drastically for 

algorithm 5, especially for the Inverse Quadratic distribution. Under these conditions, the only 

real benefit from a tailored distribution was observed for algorithm 3 (One step Gauss-Newton 

reconstruction (Laplace filter prior)), for which the Quadratic distribution allowed a better 

separation of the two centrally located hot spots. 



 

 

Uniform 

Quadratic 

Inverse Quadratic 

Figure 8 Effect of tailored baseline distributions for Case F with  = -50% and no simulation 

of measurement noise. 

During the workflow of this study, many other combinations of mesh refinement, number of 

electrodes, stimulation and measurement patterns, and algorithms were examined. For some of 

the cruder models (which also require much shorter computational time) benefits of tailored 

baseline distributions were observed for certain combinations of hot spots. Hence, the use of the 

tailored distribution should not be discounted since it may provide sufficient benefits for specific 

circumstances. On the other hand, it may be challenging to generate ‘sensing skin’ for which the 

conductivity varies non-linearly with distance from the center. If that is the case, the use of 

linearly varying conductivity might be considered, as illustrated in Fig. 1. For the conditions of 

Figs. 6 & 7 with  = -5%, the difference between the EIT images for Linear and Quadratic was 

found be very small (not shown here). The same was true for the Inverse Linear and Inverse 

Quadratic distributions. 



 

 

However, for some of the tested applications of absolute EIT, a substantial benefit of the 

smoother quadratic distribution was observed. Figure 9 shows an example for the Linear and 

Quadratic distributions.  

 

Actual  distribution

    

Reconstructed  distribution

    

Actual Relative Value of 

.   

 



 

 

Reconstructed Rel. Value of 

   

      Linear    Quadratic 

Figure 9 Comparison of Linear and Quadratic baseline distributions for Absolute EIT with  = 

-50% and without simulation of measurement noise. 

This example of absolute EIT followed the approach used to analyze tank phantom data acquired 

with 32 electrodes as contributed by Newell and explained by Adler [8]. This included the 

treatment of the electrode size and resistance. Figure 9 shows that the main difference is the 

strong reduction of artifacts for the Quadratic distribution, especially near the center. It can be 

noted from Fig. 1 that both linear distributions have conductivity gradients that change abruptly 

in the center of the domain, and this example of absolute EIT is clearly sensitive to such abrupt 

changes. Hence, for some EIT conditions, a smooth baseline conductivity distribution is 

preferred. 

 

ANTICIPATED OUTCOMES AND IMPACTS: 

Despite being a study of limited scope, the generated results clearly demonstrate that difference 

EIT has a strong potential to enable 2D-temperature measurements and hot-spot detection in 

settings in which brute-force thermocouple installation are impractical (i.e., large-scale 

geometries). The original motivation for this study was to use tailored conductivity distributions 

to improve the accuracy of the EIT technique for hot-spot detection near the center of the 2D 

field, far away from the side-mounted electrodes. While it was demonstrated that tailored 

conductivity distributions can provide some benefits for specific scenarios, it also became clear 

that other factors are more important and should be given greater attention. These factors include 

the choice of inverse reconstruction algorithms. In the course of this work, various combinations 

of ‘standard’ choices for stimulation and measurement patterns and algorithms were examined. 

Hence, there are potentially substantial benefits that could be gained by developing and using 

new custom stimulation and measurement patterns, with the ‘optimal’ combination most likely 

dependent on the particular application and associated requirement for measurement accuracy. 



 

 

It is suggested that future work should systematically quantify and document the effects of the 

numerous choices that are available for EIT temperature imaging, showing the trade-offs 

between experimental complexity, computational requirements, and measurement accuracy. 

Such knowledge is required for informed decisions of how to best implement temperature 

monitoring and hot-spot detection of large internal surfaces for which brute-force thermocouple 

installations are impractical. 

It is anticipated that this SAND report will form the basis for a journal publication on this subject 

of EIT applications. 

 

CONCLUSION:  

It was found that the best approach for detecting a hot spot using EIT with a sensing skin 

depends on several factors. In particular, the magnitude of the relative reduction in local 

conductivity matters greatly, partly because it influences the choice of the most appropriate 

algorithm. For hot-spot detection using a sensing skin with a typical temperature coefficient of 

resistivity, the local reduction of the local conductivity may be limited to a few percent. 

Systematic studies of hot-spot detection with an assumed 5% reduction of local conductivity 

revealed that the ability to detect one or several hot spots was greatly influenced by three factors: 

1. The current injection (stimulation) patterns, 2. The measurement patterns, and 3. The 

reconstruction algorithms. For a scenario with a 5% local reduction of conductivity, Case F was 

selected as the best choice of stimulation and measurements patterns (using Adjacent 

Stimulation, Mono Measurement, No Measurement on Current-Injection Electrodes, Rotate 

Measurements), providing good or reasonable EIT capability for five different algorithms 

evaluated here in a difference EIT framework:  1. One step Gauss-Newton reconstruction 

(Tikhonov prior), 2. One step Gauss-Newton reconstruction (NOSER prior), 3. One step Gauss-

Newton reconstruction (Laplace filter prior), 4. One step Gauss-Newton reconstruction 

(automatic hyperparameter selection), and 5. Total Variation reconstruction. 

In an effort to further improve the EIT capability, tailored baseline conductivities were assessed 

and compared to the baseline uniform conductivity. It was discovered that for some applications 

a tailored distribution needs to be smooth and that sudden changes in the conductivity gradients 

should be avoided. Two smooth distributions were assessed: one with higher baseline 

conductivity near the center of the measurement domain (named Quadratic), and another with 

reduced baseline conductivity near the center (named Inverse Quadratic). Simulations confirmed 

that the changes to the conductivity distribution had a substantial influence on the voltage 

distribution and the current-flow patterns between current-injection electrodes. Within the 

parameter space explored in this study, however, the benefits in terms of improved EIT 

performance were limited, especially for conditions in which the EIT measurements had been 



 

 

‘optimized’ by the choice of stimulation and measurement patterns, as well as the choice of 

algorithm and the use of fine EIT forward and inverse meshes. 

The EIT parameter space is very large, making a comprehensive assessment of the benefit of 

tailored baseline distributions challenging. Within the limited scope of this study, benefits from a 

tailored distribution were only observed for two scenarios: 1. Using reconstruction algorithm 3 

(One step Gauss-Newton reconstruction (Laplace filter prior)), for which the Quadratic 

distribution was discovered to provide a better separation of two centrally located hot spots, as 

compared to a baseline uniform conductivity. 2. Using algorithm 5 (TV Reconstruction), for 

which magnitudes of the two hot spots near the center were slightly better captured for the 

Inverse Quadratic distribution. 
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