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ABSTRACT:

For 2D-temperature monitoring applications, a variant of EIT (Electrical Impedance
Tomography) is evaluated computationally in this work. Literature examples of poor sensor
performance in the center of the 2D domains away from the side electrodes motivated this study
which seeks to overcome some of the previously noted shortcomings. In particular, the use of
‘sensing skins’ with novel tailored baseline conductivities were examined using the EIDORS
package for EIT. It was found that the best approach for detecting a hot spot depends on several
factors such as the current injection (stimulation) patterns, the measurement patterns, and the
reconstruction algorithms. For a well-performing combination of these factors, tailored baseline
conductivities were assessed and compared to the baseline uniform conductivity. It was
discovered that for some EIT applications, a tailored distribution needs to be smooth and that
sudden changes in the conductivity gradients should be avoided. Still, the benefits in terms of
improved EIT performance were small for conditions for which the EIT measurements had been
‘optimized’ for the uniform baseline case. Within the limited scope of this study, only two
specific cases showed benefits from tailored distributions. For one case, a smooth tailored
distribution with increased baseline conductivity in the center provided a better separation of two
centrally located hot spots. For another case, a smooth tailored distribution with reduced
conductivity in the center provided better estimates of the magnitudes of two hot spots near the
center of the sensing skin.

INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS:

Across various industrial disciplines, there are numerous applications which have a strong need
to monitor internal temperatures of large machineries and assemblies, sometimes with complex
(i.e., not flat) internal structures. As a particular example, battery-based grid storage solutions are
very expensive, and any battery cell failure must be detected early so that a catastrophic
cascading thermal-runaway situation can be avoided [1]. Brute-force installation of
thermocouples to monitor 2D-temperature fields in spaces between large battery packs, however,
may lead to an excessive amount of wiring. For example, if a 2 cm spatial resolution is required
for a square surface of 1 m x 1 m, approximately 2500 thermocouples would be required, with an
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associated 5000 individual wires. If the same 1 m? area could be monitored with electrodes
attached along the four edges, only 200 wires would be required if the same 2 cm spacing is
applied. With this motivation, a variant of EIT (Electrical Impedance Tomography) is considered
in this work, sometimes called Electrical Resistance tomography (ERT) [2]. The detection
principle uses a ‘temperature sensing skin’, for which the local electrical conductivity goes down
with a local increase of temperature (i.e., a hot spot). This change is detected indirectly by
monitoring the changes in voltage potential at discrete locations (i.e., electrodes) along the edges
of the 2D surface being monitored, with the voltage being a result of current injection into the
electrodes following predetermined stimulation patterns. While the results of Rashetnia et al. [2]
indicated potential of this 2D temperature monitoring application of EIT, the publication
included examples of poor sensor performance in the center of the 2D domain. Said performance
motivated this study, which seeks to overcome some of the previously noted shortcomings. In
particular, the use of novel ‘sensing skins’ with tailored baseline conductivities are examined
here.

This work was performed computationally using the EIDORS package for EIT, executed in
MATLAB. It was found that the best approach for detecting a hot spot depends on several
factors. In particular, the magnitude of the relative reduction in local conductivity matters
greatly, suggesting that EIT is most promising for combinations of large temperature changes
and sensing skins with high temperature coefficient of resistance. Additionally, three factors
have a great influence on the result: the current injection (stimulation) patterns, the measurement
patterns, and the reconstruction algorithms. For a well-performing combination of these factors,
tailored baseline conductivities were assessed and compared to the baseline uniform
conductivity. The study covered many combinations of the factors above with various hot-spot
distributions and baseline conductivity distributions. It was discovered that for some EIT
conditions reconstruction artifacts can occur if the tailored conductivity distribution has sudden
changes in the conductivity gradients. Hence, sudden changes in the conductivity gradients
should be avoided by the use of smooth distributions with gradually changing conductivity
gradients. Two different smooth distributions were assessed: one with higher baseline
conductivity near the center of the measurement domain, and another with reduced baseline
conductivity near the center. Simulations confirmed that the changes to the conductivity
distribution had a substantial influence on the voltage distribution and the current-flow patterns
between current-injection electrodes. The benefits in terms of improved EIT performance,
however, were small for conditions in which the EIT measurements had been ‘optimized’ by the
choice of stimulation and measurement patterns, as well as the algorithm and the use of fine EIT
meshes.

Within the limited scope of this study, benefits from a tailored distribution were only observed
for two cases. One case used a common EIT algorithm (One step Gauss-Newton reconstruction),
for which a smooth tailored distribution with increased baseline conductivity in the center
provided a better separation of two centrally located hot spots, as compared to a baseline uniform
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conductivity. Another case used a TV (Total Variation) Reconstruction algorithm, and in this
case the magnitudes of two hot spots near the center of the sensing skin were slightly better
captured for a smooth tailored distribution with reduced conductivity in the center.

Overall, it can be concluded that EIT has strong potential for 2D temperature measurements.
Future work should be devoted to the systematic determination of how the optimal combination
of stimulation patterns, measurement patterns, and reconstruction algorithms change with the
specific application. Such efforts should be prioritized over the use of tailored baseline
distributions, which seem to provide relatively limited benefits.

DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT AND
METHODOLOGY:

This work was performed computationally in its entirety using the EIDORS package for EIT [3],
executed in MATLAB R2022b. For convenience, the application examples shown here were
developed based on the EIDORS tutorials published online by Adler [4]. Any referenced
MATLAB scripts can be retrieved from either [3] or [4]. The EIDORS package includes
algorithms for automated mesh generation, automated generation of different current stimulation
patterns, automated generation of different electrode voltage measurement patterns, as well as
multiple built-in reconstruction algorithms for solving the inverse problem.

New MATLAB code, however, had to be developed for the generation of tailored baseline
conductivity (k) distributions. This was done conveniently by tailoring the function calls to the
build-in MATLAB script elem_select.m. Below is an example for the smooth baseline
distribution with elevated conductivity in the center of a circular domain:

% Conductivity Modification Quadratic

scale_fcn = inline('(1.5-1*(x.”2+y.”2))"','x"','y"',"'z");

img.elem_data = elem_select(img.fwd_model, scale fcn);

The above distribution and others used in this study are shown graphically in Fig. 1. To
superimpose ‘hot spots’ with locally reduced conductivity on these tailored distributions, a
different function call of the built-in MATLAB script elem_select.m was performed.

% Add a hot spot with 50% conductivity, slightly above the center of the domain.
local_rel_cond_red = 0.50;

select_fcn = inline('(x-0.18).72+(y-0.32).72<0.1628"2",'x"','y"',"'z");
img.elem_data object = elem_select(img.fwd model, select fcn);

img.elem_data = img.elem_data - img.elem_data .* img.elem_data_object *
local_rel_cond_red;
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Figure 1 Conductivity vs. radius for the examined baseline distributions.

For an example with three hot spots with a local relative reduction of conductivity of 50% (Ax =
-50%), this would then render conductivity distributions like those shown in Fig. 2.

a) Uniform b) Quadratic c¢) Inverse Quadratic

Figure 2 Conductivity distributions with three hot spots with 50% local reduction in

conductivity (Ax = -50%) for three different baseline distributions. Plotted scale =0 —
2 for all three cases.

However, for most electrical conductors a change of local conductivity on the order of a few
percent is a more realistic scenario [5]. Figure 3 shows such a scenario with Ak = -5% in the hot
spots. In this case, the local change of conductivity in the hot spot is substantially lower than the
total spread of baseline conductivity for the Quadratic and Inverse Quadratic cases.



LABORATORY DIRECTED

RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

a) Uniform b) Quadratic c¢) Inverse Quadratic

Figure 3 Conductivity distributions with three hot spots with Ak = -5% for three different
baseline distributions. Plotted scale = 0 — 2 for all three cases.

EIT can be broadly categorized by the use of either absolute or difference methodologies, as
discussed by Smyl [6]. Various numerical methods exist for image reconstruction in EIT. In
absolute EIT, the conductivity distribution is reconstructed based on a single set of voltage
measurements. Absolute EIT typically requires iterations to solve the nonlinear EIT problem. In
difference EIT, the change in the conductivity between two states is reconstructed from voltage
measurements that correspond to each of the two states. In this study, focus is given to the use of
difference EIT since it provided better EIT performance. In addition, for temperature monitoring
it can be argued that difference EIT is a natural choice since most applications are expected to
facilitate reference measurements for which the 2D temperature field is uniform (e.g., before
system start-up). For the results presented below, relatively fine meshes were used for both the
forward and inverse problems. The forward meshes shown in Figs. 2 and 3 were generated with
the Netgen Mesher in EIDORS and have 2940 nodes, 5718 elements, and include 32 electrodes.

RESULTS AND DISCUSSION:

The combination of stimulation patterns and measurement patterns can influence the EIT
performance greatly. As a starting point, the EIT performance is examined for the baseline
uniform conductivity distribution and for three hot spots with a local reduction of conductivity of
5 % (Ax = -5%). Five different reconstruction algorithms were used, following the EIDORS
example by Adler in MATLAB script tutorial120a.m [7]. These five algorithms are listed in the
caption of Fig. 4 and are used in the following figures.

The results show that the stimulation and measurement patterns and methodologies have a strong
influence on the detection of hot spots with a 5% reduction of conductivity. By a visual
comparison column by column in Fig. 4, the largest effects are found for algorithm 1) One step
Gauss-Newton reconstruction (Tikhonov prior) and algorithm 3) One step Gauss-Newton
reconstruction (Laplace filter prior), which both show great performance improvements for some
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of the altered stimulation and measurement patterns. The nomenclature used here for the
stimulation and measurement patterns reflects the definitions in the EIDORS package.
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H: Mono Stimulation, Mono Measurement, Measurement on Current-Injection Electrodes, No Rotation of
Measurements, Without Noise.
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I: Mono Stimulation, Mono Measurement, Measurement on Current-Injection Electrodes, Rotate
Measurements, Without Noise.

Figure 4 Effect of stimulation and measurement patterns (A-I) on the performance of five
different reconstruction algorithms (from left to right): 1) One step Gauss-Newton
reconstruction (Tikhonov prior), 2) One step Gauss-Newton reconstruction (NOSER
prior), 3) One step Gauss-Newton reconstruction (Laplace filter prior), 4) One step
Gauss-Newton reconstruction (with automatic hyperparameter selection), 5) Total
Variation reconstruction. Ak = -5% and no simulation of measurement noise.

The top performing algorithms are 2) One step Gauss-Newton reconstruction (NOSER prior) and
5) Total Variation reconstruction. For these two, there are several stimulation and measurement
patterns that provide near equally strong performance. The choice of stimulation and
measurement patterns, however, must also consider susceptivity to noise. Hence, the simulations
were modified to add measurement noise equivalent to a signal-to-noise ratio (SNR) of 48 dB
and then repeated. The results are shown in Fig. 5.

The response to noise is overwhelming strong for cases H and I, indicating that those
combinations of stimulations and measurement patterns are impractical. The effect of noise is
also strong for case A. Hence, for further studies with hot-spot scenarios like this example, cases
B, C, D, E, F, and G should be considered. Going forward, case F will be used since the
performance is most even across the five algorithms.

L** **u -
A: Adjacent Stimulation, Adjacent Measurement, No Measurement on Current-Injection Electrodes, Rotate
Measurements, With Noise.
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F: Adjacent Stimulation, Mono Measurement, No Measurement on Current-Injection Electrodes, Rotate
Measurements, With Noise.
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G: Opposite Stimulation, Mono Measurement, No Measurement on Current-Injection Electrodes, Rotate

Measurements, With Noise.

H: Mono Stimulation, Mono Measurement, Measurement on Current-Injection Electrodes, No Rotatlon 0f
Measurements, With Noise.

I: Mono Stimulation, Mono Measurement, Measurement on Current-Injection Electrodes, Rotate
Measurements, With Noise.

Figure 5 Same as Fig. 4 but with random noise equivalent to a SNR of 48 dB added to the
measured values. (Note, this is a simulation of noise since no actual experimental

measurements were performed.) Ak = -5%.
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In the following, case F will be used to evaluate how the EIT performance responds to changes
of the baseline conductivity, as shown in Fig. 3. Again, we are evaluating three hot spots with a
local reduction of conductivity of 5%, as shown for the three baseline distributions above.
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Figure 6 Effect of tailored baseline distributions for Case F with Ak =-5% and no simulation of
measurement noise.

Without measurement noise, a change of the baseline distribution from uniform to either the
Quadratic or Inverse Quadratic distribution does not provide much benefit for the two best
performing algorithms 2 and 5. In fact, the non-uniform background distributions induce a
moderate level of artifacts, especially for algorithm 5 (TV Reconstruction). The only small
benefit of a tailored baseline distribution is seen for the Inverse Quadratic distribution for which
the magnitudes of the two hot spots near the center are slightly better captured for algorithm 5.
Figure 7 shows that these observations do not change with the addition of measurement noise
since case F is relatively robust against noise.
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' -0.05
-0.1
Figure 7 Effect of tailored baseline distributions for Case F with Ak = -5% and with simulation
of random measurement noise equivalent to SNR = 48 dB.

Inverse Quadratic

Next, the three distributions were evaluated for a scenario with a much stronger reduction of the
local conductivity Ak = -50%, as shown in Fig. 2. The results are plotted in Fig. 8. As discussed
above, the stimulation and measurement pattern Case F was selected for its good performance
with and without measurement noise for all five algorithms when the local reduction of
conductivity was 5%. In this case with a much stronger reduction of Ak = -50%, it appears like
the stimulation and measurement pattern Case F is no longer the best choice for all algorithms. In
particular, algorithm 5 (TV reconstruction) shows artifacts along the lower edge. When the
tailored baseline distributions were applied, the number of artifacts grew drastically for
algorithm 5, especially for the Inverse Quadratic distribution. Under these conditions, the only
real benefit from a tailored distribution was observed for algorithm 3 (One step Gauss-Newton
reconstruction (Laplace filter prior)), for which the Quadratic distribution allowed a better
separation of the two centrally located hot spots.
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Figure 8 Effect of tailored baseline distributions for Case F with Ak =-50% and no simulation
of measurement noise.

During the workflow of this study, many other combinations of mesh refinement, number of
electrodes, stimulation and measurement patterns, and algorithms were examined. For some of
the cruder models (which also require much shorter computational time) benefits of tailored
baseline distributions were observed for certain combinations of hot spots. Hence, the use of the
tailored distribution should not be discounted since it may provide sufficient benefits for specific
circumstances. On the other hand, it may be challenging to generate ‘sensing skin’ for which the
conductivity varies non-linearly with distance from the center. If that is the case, the use of
linearly varying conductivity might be considered, as illustrated in Fig. 1. For the conditions of
Figs. 6 & 7 with Ax = -5%, the difference between the EIT images for Linear and Quadratic was
found be very small (not shown here). The same was true for the Inverse Linear and Inverse
Quadratic distributions.
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However, for some of the tested applications of absolute EIT, a substantial benefit of the

smoother quadratic distribution was observed. Figure 9 shows an example for the Linear and

Quadratic distributions.
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Figure 9 Comparison of Linear and Quadratic baseline distributions for Absolute EIT with Ax =
-50% and without simulation of measurement noise.

This example of absolute EIT followed the approach used to analyze tank phantom data acquired
with 32 electrodes as contributed by Newell and explained by Adler [8]. This included the
treatment of the electrode size and resistance. Figure 9 shows that the main difference is the
strong reduction of artifacts for the Quadratic distribution, especially near the center. It can be
noted from Fig. 1 that both linear distributions have conductivity gradients that change abruptly
in the center of the domain, and this example of absolute EIT is clearly sensitive to such abrupt
changes. Hence, for some EIT conditions, a smooth baseline conductivity distribution is
preferred.

ANTICIPATED OUTCOMES AND IMPACTS:

Despite being a study of limited scope, the generated results clearly demonstrate that difference
EIT has a strong potential to enable 2D-temperature measurements and hot-spot detection in
settings in which brute-force thermocouple installation are impractical (i.e., large-scale
geometries). The original motivation for this study was to use tailored conductivity distributions
to improve the accuracy of the EIT technique for hot-spot detection near the center of the 2D
field, far away from the side-mounted electrodes. While it was demonstrated that tailored
conductivity distributions can provide some benefits for specific scenarios, it also became clear
that other factors are more important and should be given greater attention. These factors include
the choice of inverse reconstruction algorithms. In the course of this work, various combinations
of ‘standard’ choices for stimulation and measurement patterns and algorithms were examined.
Hence, there are potentially substantial benefits that could be gained by developing and using
new custom stimulation and measurement patterns, with the ‘optimal’ combination most likely
dependent on the particular application and associated requirement for measurement accuracy.
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It is suggested that future work should systematically quantify and document the effects of the
numerous choices that are available for EIT temperature imaging, showing the trade-offs
between experimental complexity, computational requirements, and measurement accuracy.
Such knowledge is required for informed decisions of how to best implement temperature
monitoring and hot-spot detection of large internal surfaces for which brute-force thermocouple
installations are impractical.

It is anticipated that this SAND report will form the basis for a journal publication on this subject
of EIT applications.

CONCLUSION:

It was found that the best approach for detecting a hot spot using EIT with a sensing skin
depends on several factors. In particular, the magnitude of the relative reduction in local
conductivity matters greatly, partly because it influences the choice of the most appropriate
algorithm. For hot-spot detection using a sensing skin with a typical temperature coefficient of
resistivity, the local reduction of the local conductivity may be limited to a few percent.
Systematic studies of hot-spot detection with an assumed 5% reduction of local conductivity
revealed that the ability to detect one or several hot spots was greatly influenced by three factors:
1. The current injection (stimulation) patterns, 2. The measurement patterns, and 3. The
reconstruction algorithms. For a scenario with a 5% local reduction of conductivity, Case F was
selected as the best choice of stimulation and measurements patterns (using Adjacent
Stimulation, Mono Measurement, No Measurement on Current-Injection Electrodes, Rotate
Measurements), providing good or reasonable EIT capability for five different algorithms
evaluated here in a difference EIT framework: 1. One step Gauss-Newton reconstruction
(Tikhonov prior), 2. One step Gauss-Newton reconstruction (NOSER prior), 3. One step Gauss-
Newton reconstruction (Laplace filter prior), 4. One step Gauss-Newton reconstruction
(automatic hyperparameter selection), and 5. Total Variation reconstruction.

In an effort to further improve the EIT capability, tailored baseline conductivities were assessed
and compared to the baseline uniform conductivity. It was discovered that for some applications
a tailored distribution needs to be smooth and that sudden changes in the conductivity gradients
should be avoided. Two smooth distributions were assessed: one with higher baseline
conductivity near the center of the measurement domain (named Quadratic), and another with
reduced baseline conductivity near the center (named Inverse Quadratic). Simulations confirmed
that the changes to the conductivity distribution had a substantial influence on the voltage
distribution and the current-flow patterns between current-injection electrodes. Within the
parameter space explored in this study, however, the benefits in terms of improved EIT
performance were limited, especially for conditions in which the EIT measurements had been
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‘optimized’ by the choice of stimulation and measurement patterns, as well as the choice of
algorithm and the use of fine EIT forward and inverse meshes.

The EIT parameter space is very large, making a comprehensive assessment of the benefit of
tailored baseline distributions challenging. Within the limited scope of this study, benefits from a
tailored distribution were only observed for two scenarios: 1. Using reconstruction algorithm 3
(One step Gauss-Newton reconstruction (Laplace filter prior)), for which the Quadratic
distribution was discovered to provide a better separation of two centrally located hot spots, as
compared to a baseline uniform conductivity. 2. Using algorithm 5 (TV Reconstruction), for
which magnitudes of the two hot spots near the center were slightly better captured for the
Inverse Quadratic distribution.
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