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Metal Nanoparticles have Received Great Attention for use in
2 Numerous Applications

*Coinage metal nanoparticles (NP = Au®, Ag®, and Cu®) have been extensively researched for a wide range of application such as |

biosensors, optical, solar conversion, lubricants, catalysts, and additive manufacturing [1-2].

*They possess a diverse range of optical, electrical, thermal, antimicrobial, catalytic, magnetic properties that allow them to be |

deployed across multiple fields.

*In particular, the exceptional electrical properties silver (Ag) and gold (Au) nanoparticles (NPs) have made them the primary

choice in electrical applications, but their high cost has led to the search for a more cost-effective alternative.
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Copper is a Viable Alternative to Silver and Gold in Electronic

3 [ [ ]
Applications
. .o . Disadvantages of
Useful in Additive Manufacturing processes: Advantages of Copper? Co er%
* Aecrosol/ink-jet printing, roll-to-roll, etc. * Exceptional electrical and thermal conductor . Intr_pp_insic sens.itivity o
* Electronic components: resistors, transistors, * Cheaper option compared to other metals, such as gold oxidation under
and capacitors and silver atmospheric conditions
* Cu=0.18 USD <Ag =23.48 USD <Au= 1962.55 USD e Susceptible to corrosion
per troy ounce
* Cuis 130x cheaper than Ag and 11,000x cheaper than
Au!
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4 Surface Protection Through the Use of Green Surfactants

*Several attempts and concepts have been deployed to increase the oxidation resistance of Cu NPs by the addition of various compounds to
serve as surfactants.

*Alkylamines (with various lengths), polyols, alkanethiols, allylamine, polyallylamine, and polyvinylpyrrolidone (PVP) have been used in
previous research as surfactants for Cu NPs.

*Amine-based ligands such as oleylamine, hexadecylamine, benzotriazole, etc. have high affinity for Cu (111) surfaces and have been shown to |
provide exceptional oxidation resistance.
*Ligand—NP surface interaction can affect growth rates, morphology, and colloidal stability.

*Glycols preferable because of use as reducing agent, microwave activity, environmentally friendly.
CHs

OH u
Ho N CHs(CH,)14CHoNH, C

HO/\/ O\/\OH Hexadecylamine HsC CHs;
0 0 (surfactant) Copper (I) Mesityl (precursor)
R N N
HO 0 OH Glycol |
Polyols (solvent)
) Glycol HDA
SQ: How do glycols and amines affect the production and Cutie Cu(Mes)
protection of Cu-NPs? 35 mL 35 mL
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Precursor
Cu(Mes)
* Easily
decomposable
*  Environmentally
friendly

CuCl + Mg(Mes)Br

THF
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*  Microwave
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Figure 1. TEM images of Cu NPs synthesized with (a) EG, (b) DEG, and (c¢) TEG.

x Glycol-Cu-NPs exhibit irregular shapes and large size
distributions NPs.

x As the glycol length increases, the particle size and deviation
also increase.
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Understanding the Role of the Glycol Reactive Sites/Lengths + HDA
’ on Cu-NPs

“«—— Glycol

HDA
Cu{Mes)

35 mL

Cu (111)

Cu (200)

Cu (220)
(311)

Cu (222)

O Cu

u TEG/HDA

Cu DEG/HDA

Intensity (a.u.)

Cu EG/HDA
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2 Theta (20)

OH
HO/\/ HO/\/O\\/\\OH HG%D“”“O’%’D%DH
Ethylene glycol Diethylene glycol Tetraethylene glycol
(EG) (DEG) (TEG)

(d) Cu/HDA:25+2nm

(a) EG/HDA:10+3 nm (b) DEG/HDA: 305
. : nm

v Glycol/HDA-Cu-NPs yielded monodispersed
and spherical particles with small size
distribution.

(¢©) TEG/HDA: 14 +2

v Amines bind to a specific facet of the Cu-NPs
that enable the growth of spherical
nanoparticles with or without glycol presence.

v NPs synthesized with only HDA present also
| yielded spherical Cu-NPs with small size.

R0 b
CH;(CH,),,CH,NH,
Hexadecylamine (HDA)

Figure 2. TEM images of Cu NPs synthesized with (a) EG/HDA, (b) DEG/HDA, (¢c) TEG/HDA,
and (d) Cu/HDA
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FTIR & TGA of As Synthesized Cu NPs w/wo HDA

—
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Figure 3. (a) FTIR spectra of Cu NPs synthesized with EG, DEG, PG, and TEG.
(b) FTIR spectra of Cu NPs synthesized with EG+HDA, DEG+HDA, PG+HDA,

and with TEG+HDA.
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Figure 4. TGA spectra of Cu-NPs synthesized with only

{ - Cu EG/HDA
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% Mass
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Cu EG 22.72
Cu DEG 25.59
Cu TEG 17.20 I

Cu 0.5/12.9
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Cu 18.46/36.94
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glycol (a) and Cu-NPs synthesized with glycol and HDA (b).
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Normalized Intensity

Cu-NP in 100% RH Environment for 14 Days
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v" PXRD indicates that the combination of the glycol and HDA, o 40
gives the Cu-NPs much higher resistance to oxidation in high & . .
- ®) — Cu EG/HDA
humidity. 5 30 —— Cu DEG/HDA
«  Glycols have exceptional coating performance of Cu-NPs, but  © ety L3 MY
their miscibility in water could lead to poor oxidation 20
protection. 10
* HDA on the other hand is extremely hydrophobic which can
prove beneficial in preventing water from reaching the Cu-NP 0 . . . . T
surface. 0 20 40 60 80 100 120 140

Time (Hours)
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% Periodic DFT for Cu (111) surface, DEG, HDA, and H,O Interactions

DEG has a consistent binding energy (BE) with the Cu (111) surface at both
concentrations.

For the HDA, the BE is stronger at higher concentrations (-1.27 eV) and weaker
at lower concentrations.

In solutions where both HDA and DEG molecules are present, initial binding

will be between the Cu(111) surface and the HDA up to ~0.1 #/nm?, and then
subsequent DEG binding.

This supports the results from TEM, FTIR, and oxidation studies indicating that
for Glycol/HDA-Cu-NPs, binding of HDA first, followed by subsequent 10A
binding of the glycol occurs.

Table 1: Binding energy (eV) between the surfactant (HDA or DEG) and the Cu(111) surface

Surfactant Concentration (#/nm?) ;n:u (1)

R

0.1 -0.727 g L
DEG IT’ 1A
0.2 -0.715 Figure 5. DFT structural models for (111) Cu surface with
either one or two DEG and HDA molecules. Colors: copper
0.1 -1.273 (royal blue), carbon (grey), oxygen (red), hydrogen (white),

nitrogen (light blue).
0.2 -0.534 gen (lig /
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Periodic DFT Explains Synergistic Surfactant Oxidation Performance

I of Cu-NPs

With any surfactant present, a clear increase in BE is observed when the H,O molecules
need to pass through the surfactant to access the surface, an effect which was more clear
on the Cu(111) surfaces with higher surfactant concentration.

For example for the Cu(111) surface with 0.2 HDA/nm? there was a increase in binding
energy by ~0.2 eV, when the water molecule passes the surfactant molecule (~15 A from
the surface).

While this only represents an initial investigation into the HDA/DEG terminated Cu(111)
surface, it does demonstrate that there is some interaction between the HDA/DEG that is
protective of bare Cu surfaces in the presence of water.

Overall, the water molecules bound more strongly to the bare Cu(111) surface than to the
surface with the surfactant present, with energy penalties between 0.03-0.36 eV.

Table 2: Binding energy (eV) between the surfactant (HDA/DEG) and the Cu(111) surface and in the
presence of water.

(#/nm?) H,0 to Cu (111)+Surfactant

Surfactant

-1.25
DEG
0.2 -1.51
0.1 -1.30
0.2 -1.06

Binding Energy (eV)

|
06 - | |
|

Bare Cu(111) Surface

DEG HDA

—o— 0.1 #nm’> —v— 0.1 #nm?
—0— 0.2#nm’ —A— 0.2 #nm”’

2

T T T T

5 10 15 20 25 30
Distance from Cu(111) Surface (A)

Figure 6. Binding energy (eV) of water with a Cu(111)
with either 0.1 #nm? or 0.2 #nm’ surfactant
molecules bound to the surface.
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Normalized Intensity

Normalized Intensity

Cu-NP in 10 ppm H,S/50% RH Environment for 14 Days
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Transmittance

Transmittance

13 FTIR of Cu-NPs after H,S Exposure
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Glycol-Cu-NPs show strong
peaks near 600 cm-!, which are
associated with Cu-O bonding
(denoted by red box).

Their increase in intensity over
time supports oxidation of the Cu
NP surface.

This peak behavior isn’t seen in
polyol/HDA particles.




v"A novel Cu-NP synthesis recipe via a microwave-assisted polyol method at was developed.

v'This recipe was also modified to synthesize oxidation-resistant Cu nanoparticles via the addition of HDA
during the synthesis procedure.

14 Conclusion
]

v'FTIR & TGA show the surface chemistry of the Cu-NPs indicating both species being present.

v'The synergistic effects between the coating performance of the polyol and the hydrophobic properties of HDA
leads to exceptional overall oxidation resistance in harsh environments.

v"While O, adsorption on (111) oriented fcc Cu surface is thermodynamically favorable, amines have been
shown to have an exceptional affinity to the same (111) surfaces.

v'Overall, cost effective, oxidation-resistant copper nanoparticles were able to be quickly synthesized and |

Center 1800: Material, Physical and Chemical Sciences
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15 Future Work

Goal: Current Status:

* Printable and conductive ink with * Able to acrosoljet print Cu NP inks

homogenous distribution » Currently optimizing ink performance to be

* Easily dispersed in solution comparable to bulk Cu

* Able to be sintered * Best performing ink is 54x bulk Cu

Center 1800: Material, Physical and Chemical Sciences
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Microwave Synthetic Route for Cu NP Production

Benefits of microwave heating:
Direct interaction with materials
Increased reaction rate
Milder reaction conditions
Greater chemical yield
Rapid synthesis

Uniform heating

e’ L
r“ﬁgm /f“

Microwave Heating Conventional Heating

Procedure:
Add 1 g of Cu(Mes) to vial

l.

2
3.
4

Add 3 g of hexadecylamine to vial, opt.

Add 20 mL of polyol solvent

Select “Cu NP” program on CEM Discover microwave

POLYOL

HDA
Cu(Mes)

35 mL

Center 1800: Material, Physical and Chemical Sciences
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FTIR of Pure Glycols
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Figure A3. TGA of ethylene glycol,
diethylene glycol, propylene glycol,
tetraethylene glycol, and |
hexadecylamine.
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FTIR of Glycol vs. Glycol/HAD After 14 Days in H,S
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Figure A4. FTIR comparison of polyol vs polyol/HDA after 14 days in 10 ppm
H,5/50% relative humidity environment
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2 I FTIR of Pure EG & Pure HDA Before & After H,S Exposure
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Figure A5. FTIR spectra of (a) pure ethylene glycol and (b) pure hexadecylamine before and after exposure to 10 ppm H,S5/50%

RH.
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