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2 ¥ FY22 Sandia Portfolio of ASC AML Projects

Physics Sparse Trusted Data

Constr ML  Data ML ML Co-Design ey Workflow

Physics-Informed Machine-Learning Material Models
for Solid Mechanics*

Credibility in Scientific Machine Learning: Data
Verification and Model Qualification*

ATDM- Genetic programming to inform damage models in

AML engineering applications

Physics-Aware Machine Learned Device Radiation
Models for Robust ND Design and Analysis Tools

Projects
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Causal Models for NT manufacturing defects (NEW)
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Model Parallelism for Deep Learning: Scaling for Data
Integration*

CSSE Critical Al/ML Infrastructure for Next Generation
= Architectures & Applications

Learning a Random Walk from Observations on the
Loihi Neuromorphic Testbed*
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ML Models of Boundary Layer Turbulence

P&EM _

Machine Learned Constitutive Models for Solid
Mechanics

Operational Efficiency of SNL HPC Facilities*
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FOUS { Development of Al/ML Techniques that Improve the
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3 | Physics-Informed Machine-Learning Material Models for Solid Mechanics

Sharlotte Kramer

Problem

> Traditional constitutive models incorporate first-principles and
obey physics constraints, but have model-form errors too
large for ND

> Purely data-driven models require large training sets, lack
robustness, and are not generalizable

o Experimental data is emerging, but is sparse and is multi-
fidelity (unusable for traditional and too sparse for data-driven)

Technical Approach
> Use ML to correct model-form error in traditional modeling

> Trained on fusion of multi-fidelity experimental data —
maintains physical constraints, requires less data, includes
uncertainty.

- Exemplars: Polymer foams and Additive Manufacturing
metals

Deployment:

> Incorporation into SIERRA LAME material library through
partner P&EM projects

Key Partnerships: Amir Farimani (Carnegie Mellon

october 2021 JNjve rs|ty) 2022 AMLI PROJECTS - RON OLDFIELD, SNL
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4 ‘ FY21 Accomplishments

Developed approaches to embed physics into machine-learned material modeling,
documenting progress with external journal manuscripts submitted* or in preparation**

Hybrid Model for Foam
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AM Metal Data Augmentation via GANs
(CMU Collaboration)**

Generate synthetic AM
tensile specimens for
synthetic data
generation using MST
and GANs

Inverse Method via PINNs**

Calibrate material
models using
surface

displacements and
total force, like that
available from full-

field experiments Sierra -FEM PINN
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5 FY22 Plan

Utilize both experimental and synthetic data to advance the PIML approaches to material modeling

Multi-Fidelity Data Fusion NODE + TBNN
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from RVE simulations to polymer foams
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~ (CMU Collaboration)
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Credibility for Scientific Machine Learning:
6 | Training Data Verification and Model Qualification

l n Pl: Ahmad Rushdi and Erin Acquesta

Project focus: Develop evidence-based credibility for scientific machine learning used in Representation
high consequence decision making environments.
Approach: Leverage CompSim and traditional ML credibility workflows into a tailored SciML | |
framework.

Exemplar: To improve Sandia’s stockpile surveillance analysis capabilities, the team uses
signature waveforms from components using non-destructive functioning and identify the
most-discriminative input features, in order to assess the quality of a training dataset. By .
further decomposing uncertainty into its different components, the team will guide Verifiatin
computational/sampling resources towards reducing the treatable parts of uncertainty. |
Deployment: Targeted integration into Dakota and other ASC tools.

Partnership: ASC V&V

Notional time-series
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Credibility for Scientific Machine Learning:
7 | Training Data Verification and Model Qualification

Pl: Ahmad Rushdi and Erin Acquesta

FY21 Presentations

JPL QUAD

* Adapting Verification and Validation Principles to a Credibility Process, presented by Erin Acquesta
Sandia MLDL Workshop 2021

* Adapting Verification and Validation Principles to a Credibility Process, presented by Erin Acquesta

* Efficient DNN Architectures for Time Series Classification., presented by Ahmad Rushdi

* Exploring the consequences and lessons from Underspecification in ML models., presented by Bill Rider

FY21 Accomplishments
* Determining the source(s) of data required for assessing the credibility of the training data:
 Phenomena ldentification and Ranking Table (PIRT)
« [Simulation Data] Predictive Capability Maturity Model (PCMM)
» [Experimental Data] Experiment Planning for Integrating Credibility and CompSim (EPICC), and
» [Real-world Data] Datasheets for Datasets
» Shifted Priority:
* We identified the need to explore a broader landscape to identify a more generalizable approach related to
Credibility for SciML.
* This resulted in our socialization of opportunities and gaps through the presentations documented above.

* Documentation of evidences needed for component quality assessment to be delivered FY22
October 2021 2022 AMLI Projects - Ron Oldfield, SNL
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Credibility for Scientific Machine Learning:
8 | Training Data Verification and Model Qualification

Pl: Ahmad Rushdi and Erin Acquesta

FY22 Plans: [L2 Milestone Proposed] Develop a preliminary framework to support the
planning phase of a formal credibility process for scientific machine learning (SciML). To
achieve that, we leverage principles from Sandia-pioneered Verification and Validation, and
Uncertainty Quantification (V&V/UQ) methods that were successfully deployed to Computational
Simulation (CompSim).

Approach: Leverage V&V/UQ principles from both CompSim and traditional ML:

1. Current standardized methods from CompSim that will be leveraged:
« the Phenomena ldentification and Ranking Table (PIRT),
» the Predictive Capability Maturity Model (PCMM), and
» the Experiment Planning for Integrating Credibility and CompSim (EPICC)

2. Existing ML methods leveraged for trust that will be considered:
« Datasheets for Datasets & Model Cards for Model Reporting
« Explainability (e.g., feature importance),
* Robustness under stress tests (e.g., flagging out of distribution), and
» Confidence scores (e.g., quantifying epistemic/aleatoric predictive uncertainty).

Primary Exemplar: Component quality assessment.
Exceeds Expectations: Turbulence (under review).

October 2021 2022 AMLI Projects - Ron Oldfield, SNL
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9 ‘ Genetic programming to inform damage models in engineering applications

. John Emery
s
Pi itates

iDrobIem

- Damage mechanisms that lead to failure in engineering alloys
are well studied experimentally, but we lack accurate damage

models
Technical Approach ey 1 T e
> Use genetic programming with symbolic regression (GPSR) to . . . — ]
prOdUCe interpretab|e analytical expressions for governing Experimental and simulated microstructural training data
mechanics and physics
> Improves predictive accuracy while retaining appropriate physical constraints
> Synthesize large microstructure-scale experimental and simulation-generated /O\
data sets. .' Jol %
> Advance the representation of physical processes leading to BIN . @k@@ v 4
fracture and failure beyond the several-decades old models (12-Cy) o)
currently in use. 1
b= 3o i o [t
Deployment: 27 d-e 2m+ 1 7y, |
> Analytical expressions for damage will be deployed within
SIERRA LAME Symbolic regression for analytical forms of damage evolution
Key Partnerships: Prof. Jacob Hochhalter gUniv. Utah) and \

October 2021Dr_ Geoff Bomarito (NASA LaRC\ 2022 AMLI PROJECTS - RON OLDFIELD, SNL ;T;E i



10 ‘ FY21 Accomplishments

Q4: Demonstrate the efficacy of genetic programming with symbolic regression (GPSR)

within the context of existing damage models and assumptions (and document).

Why? Model credibility.

Bingo result for yield surface for general void-volume
fraction matches Gurson:

2
(Ueq> +2fcosh(:wm)1f20
Oy 20

Training data: 400 points

Generations: 32,000 generations
Hyperparameters:

* Mathematical operators: +, -, *, /, cosh()
* Crossover probability: 0.8

Mutation probability: 0.2

Equation stack size: 20

Population size: 1280
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" ¥ FY 22 Plans

Develop GPSR damage models for several variations of relaxed constraining
assumptions and interpret the results

> Development and testing of an interpretable boosting method for use within GPSR.

> Preliminary implementation of a combined UQ-GPSR framework resulting in a nondeterministic
yield surface.

Develop of model comparison test harness
> Implement a GPSR failure model in a FE code, using LAME if feasible

> Automate calibration and testing of GPSR damage models for a canonical ductile failure
problem

October 2021 2022 AMLI Projects - Ron Oldfield, SNL Z A
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12

Maturing Physics-Aware Machine Learned Device Radiation

Models into Robust ND Design and Analysis Tools

Team: Paul Kuberry, Ting Mei, Eric Keiter, Pavel Bochev, Biliana Paskaleva, Joshua Hanson

Problem

National
Laboratories

Software Ecosystem
(mostly C++)

Reduce compact model development/deployment time,
which typically lags behind the initial ND design stages

Approach

Xyce + pyoina11

October 2021

|><><><><

= Xyce PyMl_

Pz, u(r)

=

Machine Learning
Software Ecosystem

“715% of ML developers and
data scientists use Python”

- State of the Developer Nation
(Slashdata.co 2020)

https://s3-eu-west-1.amazonaws.com/vm-blog/uploads/2020/04/DE18-SoN-Digital-.pdf

Partnerships

Deployment ‘
Github.com in Xyce repository
Spack recipe
spack install xyce+pymi |

CEE Project
/projects/gmls_xyce
SAND Report detailing use
Tutorial demonstrating installation
Partner to integrate feedback |

Integrated tightly with the Xyce team
PIRAMID REHEDS-LDRD, Radiation Aware REHEDS-LDJ
Physics and Engineering models(PEM)

compact model design for SAVANTES, aging & lifetime

Tom Buchheit (1356) and Asha Balijepalli (8741), part of i

Polynomial fit \
GMLS approximant Z\
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Maturing Physics-Aware Machine Learned Device Radiation
Models into Robust ND Design and Analysis Tools

13

ATDM 4.1 Evaluation of software design strategies for platform-independent model interpreters along with implementation that is callable from within Xyce. After determining the best
software path forward (likely Python), will establish the ability to build Xyce and add hooks for calls to ML routines including: Generalized Moving Least Squares and neural networks

pePOMES QIR HBRSREIRM of ML models for normal environment in Xyce with a focus on the value added from increased regularity and physics compliance.

Deliverables

Released Xyce-PyMi software as part of Xyce 7.3 with accompanying news note.

Created video tutorial “Xyce Python Model Interpreter (Xyce-PyMi) for enabling ML advancements in production
circuit simulation software” for Sandia MLDL conference. Link

Published SAND report "An embedded Python model interpreter for Xyce (Xyce-PyMi)". Link

Joshua Hanson gave a talk "A Numerical Compact

Photocurrent Model and its Implementation via
Xyce-PyMi" at Sandia MLDL conference. Link Example

Operational Amplifier with BJTs replaced by GMLS

Accomplishments —
«  Produced Spack recipes for Xyce and Trilinos recipes, m /\ . : Gﬂﬁé"f:ie'
refactoring specifications, variants, and conflicts, and W
enabling building / installation of Xyce-PyMi with all 3"
TPLs with a single command. = N 3_0_:. *
« Collaboration with SAVANTES group on an o o0 \
FY22 Level 2 milestone relating to aging and lifetime. e e ot 08|
» Developed compression technique combining spline B 08
knot locations with GMLS (less memory, less flops). "o o5 01 ot o0z o2

October 2021

Time (Secs)

* Runs on data generated from synthetic MMBT2222, Fairchild, NPN



https://wiki.sandia.gov/download/attachments/708545687/07_19_21_1610_MLDL_Presentation_Kuberry.mp4?api=v2
https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/Xyce-PyMi-Guide.pdf
https://wiki.sandia.gov/download/attachments/708545687/07_19_21_1630_FY21_MLDL_Presentation_Joshua_Hanson.mp4?api=v2

1 Maturing Physics-Aware Machine Learned Device Radiation Models into

Robust ND Design and Analysis Tools [
Future Plans ‘
Milestone 4.3 [FY22 Q3] — Scaling study for memory footprint and computational
performance.

Milestone 4.4 [FY22 Q4] — Demonstration of ML models for radiation environment in Xyce. I

The goal of this project is to increase the TRL of ML research ideas internal (LDRDs) and external to Saf
and to make these advances accessible in production circuit simulation software.

* Work with Andy Huang’s REHED-LDRD “Physics-Informed, Rapid and Automated Machilne-learning for
compact model Development (PIRAMID)”

« Work with Biliana Paskaleva’s new REHEDS-LDRD “Reuse to Reduce: a unified full-featured to low-co
development for accelerated design of electrical ND systems in combined radiation environments”

* Work with SAVANTES group relating to aging and lifetime of electrical components

« Seek collaboration with Eric Keiter and Jason Verley’s ASC-ADE projects

« Refactor, where necessary, the Xyce-PyMi software after scaling study for memory and speed. ‘

October 2021 2022 AMLI Projects - Ron Oldfield, SNL ol %



15 | Causal Models for NT manufacturing defects (NEW IN FY22)

Pl: Jaideep Ray and Sarah Ackerman

Aim: Develop an interpretable k-way classifier to identify the strongest predictors of component
failure from a set of potential predictors created from all data collected during a manufacturing
process as well as post manufacturing test data. The classifier will also provide an estimate of
the completeness of the dataset. The method will be tested with MC4300 neutron tube (NT)
manufacturing and subsequent test dataset.

The proposal targets an AMLI Stockpile driver (anticipatory stockpile decision making, with a
focus on root-cause analysis using production and surveillance data). It adheres to AMLI
research opportunity 4.2 (improve our ability to employ machine learning with sparse data).

FY22 Milestones and Deliverables

Investigate cause of failure in neutron tube manufacturing. [ATDM-3]
o FY22/Q1 — data exploration: Exploratory data analysis viz., correlation and clustering studies, as well as
visualization via t-SNE plots

> Go/No-go decision: Do the normal/abnormal neutron tubes cluster differently in the feature-space (as seen in t-SNE plots)? If not, a
causal model may not be possible.

o FY22/Q2 — classifier construction: Formulation and construction of first L ,-constrained logistic regression;
tests of classifier performance. Identification of modeling issues due to any imbalance found in the
training data

> Go/no-go decision: Can we construct a classifier at all? If not, stop project - the data does not have the relevant information.

o FY22/Q3 — data augmentation and classifier enhancement: Investigation of minority-class oversampling
as a means of improving the training data. Estimation of improvement of the logistic regression due to
synthetic data

ocober2021 o FY22/Q4 — estimation of feature-set sufficiency:"Reformulation of the logistic regression as a GLMM, and i\
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CSSE

October 2021

Model Parallelism for Deep Learning: Scaling for Data Integration

Eric C. Cyr and Gary Saavedra

Q

Problem

o Data sets generated in computational science
are typically spatially distributed (too large to fit
on a single compute node)

> Toolsets for deep learning (e.g., PyTorch) are
not compatible with distributed-memory
parallelism

Technical Approach

> Develop a PyTorch module for embedding
spatial and layer parallelism into neural network
training and inference

- Exemplar: 3D CT scan image segmentation

Deployment:

> Used for stockpile assessment and “simulate as
built” computational approaches

Key Partnerships:
o Cyr ASCR Early Career Research Project
> J. B. Schroder — University of New Mexico
> R. Hewett — Virginia Tech

BRAID -
DistDL

Proposed parallel decomposition for a CT scan.
This image shows a 4 processor decomposition of
a (2D) CT scan of a webcam. Note that there is a
narrow band of overlap, or “halo region,”
between the domains.

Tor

Average time (seconds)

10°

2022 AMLI PROJECTS - RON OLDFIELD, SNL

Spatial size is 1283, with 128 layers
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171 Deep Learning and Spatial Decomposition

Original 2D slices 3D decomposition

Spatial decomposition can lead to improvements in both accuracy
and speed

October 2021 2022 AMLI Projects - RofigliRéstlution Medical Image Analysis with Spatial Partitioning. Hou et al. 2019~

\




18 I How spatial decomposition works: Convolutions
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19 § Model Parallelism: Scalability of Classification

Spatial size is 1283, with 128 layers.

Classification of CT Scan’s
> Does a CT scan correspond to a failed part? )
> What is the category of failure?

Network Architecture O] 2
> Similar to image classification, using Deep ResNet § 1° , i
architectures = 1
- Spatial decomposition works similar to the explicit £ ‘a., '
PDE time evolution S , b=
o :
<3>: () "o,

—— Serial/Forward

Serial/Backward

--#-- Parallel/Forward (Speedup=40.3x)
-e:- Parallel/Backward (Speedup=56.5x)

10°

1 2 4 8 16 32 64
Num processors

Future Work:

> GPU Implementation

o Combine spatial parallelism with layer-parallelism
(TorchBraid) to allow very deep networks

-
October 2021 2022 AMLI Projects - Ron Oldfield, SNL D Ist D L
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20 ‘ Model Parallelism for Deep Learning: Scaling for Data Integration

{ﬁ l Eric C. Cyr and Gary Saavedra

FY22 Milestones and Deliverables

CSSE

Provide an assessment of memory usage for applying DistDL to customer CT scans.

FY22 Q1

> Verification of the capability for training (On smaller data sets, comparable to existing serial
capability)

> Exploration of the capability for smaller numbers of channels (data reduction by reducing
network size)

Develop and analyze a more memory and computation efficient algorithm using data
reduction ideas FY22 Q4

> ldentify possible options for memory-efficient algorithms or data reduction.

> Develop approximate training methodologies including image sketching and image
reduction/compression techniques to reduce the memory footprint for CT scan images.

o Use statistical image analysis and information theory to quantify the effect of image
reduction/compression of CT scans.

October 2021 2022 AMLI PROJECTS - RON OLDFIELD, SNL
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21 ‘ Critical AI/ML Infrastructure for Next Generation Architectures & Applications

| Clay Hughes and Suma Cardwell

A
“).’ "

Project focus/goals:

> Unified mapping infrastructure will enable ASC Al/ML applications

to be mapped to next-generation architectures

o ATHENA (Analytical Tool to Evaluate Heterogeneous
Neuromorphic Architectures) will quickly evaluate performance

Mapping Tool

FUGU
Neuron Graph

ARIAA Dialect

Graph
Representation

metrics of heterogeneous neuromorphic architectures ANN

Mapping
> Solved as graph monomorphism problem
(dataflow and SNN)

> GEMM/SpMM input graphs
ATHENA

> Mapping on SONOS-based analog
accelerator are complete

> Leveraged for a new start CIS LDRD
(FY22)

Key Partnerships: ARRIA (ASCR), Fugu
(ASC) Infineon Memorv Soliitions an

October 2021

ATHENA

SST

| Dataflow HW |

+,%,/
FU
Link

Analog HW

MM
Tile
Link

SNN HW

LIF
Neuron
Synapse

Optimized : Design I.-Ear;ixerre g:’;;mnfttr'izz Tech
Graph and Constraints MAESTRO (GaTech) files I
- Data Flow
< J/
Configurable Hardware Modules
( Conventional | ‘ Neuromorphic Digital ) Neuromorphic Analog
Digital ReRAM based NN

Intel Loihi/SpiNNaker | l ‘
‘ Hardware ‘ ‘ Heterogeneous 1
Accelerators )

Many-core

Scaled Systems

2 AMLI Projects -

Ron Oldfield, SNL



22 1 FY21 Mapping Milestones & Accomplishments

Milestone 2.1

> Subgraph monomorphism using modified VF3 algorithm shown to work for a variety of inputs as
a standalone application (SAND2021-3357PE, SAND2021-8164PE)

o Initial mapping APIl complete
> Copyright filed for "CDFG Extraction Tool for LLVM*

Milestone 2.2
o Hardware description API (describes the potential computation)
> Application description API (describes the actual computation)

o Components and scripts available in a fork of SST; application graph generation tool was not
made publicly available in Q3 due to copyright filing

Milestone 2.3
o Dataflow -- GEMM and SpMM generation and mapping complete
> SNN -- Converted Fugu algorithms (max and max_flow) to VF3 format

> Graph monomorphism algorithms work well when graphs are sparse but solve time appears to
increase with density

October 2021 2022 AMLI Projects - Ron Oldfield, SNL Z A
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23

October 2021

FY21 ATHENA Milestones & Accomplishments

Milestone 2.2
> Docker environment set up for Athena. Docker container validated and tested.

> Athena supports the analog accelerator (SONOS FG based) for mapping and performance estimation.

Milestone 2.3

- Completed mapping for the analog accelerator and are extending Athena to spiking neural networks.
Working on Mosaic energy estimates using Athena (Close to submission). This will extend Athena for
spiking neural networks.

> Activation layer information extraction code incorporated not tied into performance estimates yet.

> Presented our work to the ARIAA team. MLIR/LLVM interface planned in the future . Mark Plagge helping

support ARIAA/GT MARVEL tool interface with Athena.

Publications & Presentations

o “ATHENA: A High Efficiency Codesign Tool for Novel Accelerators”, Mark Plagge, Suma Cardwell and
Clayton Hughes, Abstract accepted to ModSim’21 for short talk and poster.

> “Achieving Extreme Heterogeneity: CoDesign using Neuromorphic Processors”, Position paper at ASCR

Workshop on Reimagining Codesign, Cardwell et al. 2021

> “Truly heterogeneous HPC: Co-design to achieve what science needs from HPC” at Smoky Mountain
Computational Sciences and Engineering Conference, Cardwell et al.

> "CoDesign of Heterogeneous Neuromorphic Architectures: From HPC to the edge”, CIS ERB Review,
Suma Cardwell March 30th, 2021

> “CoDesign to map algorithms to diverse range of advanced architectures and hardware”, Suma Cardwell,

April 7th, Sandia Al-Enhanced Co-Design for Next Generation Microelectronics: Innovating Innovation
WorkShop 2021 2022 AMLI Projects - Ron Oldfield, SNL
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24 ‘ Critical AI/ML Infrastructure for Next Generation Architectures & Applications

 CSSE_
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FY22 Milestones and Deliverables
Milestone 2.1 [FY22 Q2] - Initial analog crossbar model in SST.

Milestone 2.2 [FY22 Q3] — Report analyzing effectiveness of ATHENA for design space
exploration of analog and spiking accelerators using multiple devices, including non-CMOS,
and architectural constraints. Demonstrate ATHENA-SST integration using hardware and
memory-mapping generated from ATHENA in cycle-accurate simulation. Integration of
energy model for analog crossbar in SST.

Milestone 2.3 [FY22 Q4] — Report detailing full capabilities of ATHENA, including the
addition of support for neuromorphic architectures. Report detailing capabilities of analog
crossbar component in SST.

Stretch Goal: Use CrossSim to compute accuracy without detailed mapping information
(assume a crossbar per-layer). SWaP evaluation for heterogeneous node architecture
(dataflow, analog, and spiking).

Once complete, the infrastructure will enable design-space exploration of mission-relevant
HPC and ML blended architectures, exploring the effects of compute partitioning and its
impact on the memory subsystem.
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Project focus/goals:

> Learning Random Walks

> Use neural random walk algorithm as data to learn the parameters of generation — an
inverse problem of importance to radiation transport, plasma physics, and molecular
dynamics simulations.

o Assess Loihi Random Samples

o The neural random walks samples have potential to be used in both the learning
application above as well as in several ASC scientific computing problems. Assessing the
viability of these walks is a critical data verification task.

Technical Approach:

o Samples from the Ornstein-Uhlenbeck (OU) equation (right) were
generated on Loihi using the neuromorphic random walk algorithm. These
are approximate samples as additional error is introduced through both
the algorithm and Loihi.

> We used three popular convolutional neural nets to learn the OU
parameters. The trained networks could predict the parameters of
generation within the training range regardless of whether test data was
generated conventionally or on Loihi.

> Loihi samples are compared to the expected distribution of the OU
equation using relative entropy. Identical measurements are performed on
conventionally generated data. We find that Loihi samples, on average,
are comparable to conventionally generated samples.

Impact:

> Neuromorphic energy efficiency and parallelism has the potential to
revolutionize Monte Carlo based methods. This project has strengthened
our trust in next-generation large-scale systems by demonstrating
neuromorphic samples are already comparable to traditional samples,

Learning Random Walks from Observations on Loihi

Assess Scientific
Viability of Samples

Relative Entropy vs Simulation Parameters
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Gather Sample
Observations

We may sample paths of an SDE
on Loihi by gathering
observations from the
neuromorphic random walk
algorithm. These samples are
used to solve an inverse problem,
identifying the parameters of
generation. These neuromorphic
samples are also

Core team:
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26 § FY21 Deliverables and Accomplishments

Deliverables:

- White paper report. Status: in progress.

> Details on DTMC approximation of OU process for use in neuromorphic
RW algorithm (Q3 milestone).

> Descriptions of data generation and CNNs used in learning (Q3
milestone).

> Discussion on recovery of stochastic parameters through trained CNN (Q
milestone).

> Discussion on relative entropy measures and statistical analysis of Loihi
samples (Q4 milestone).

- Discussion on the amount of data (walkers/trajectories) needed for Relative Entropy vs Simulation Parameters
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prediction and analysis (Q4 milestone). .
Accomplishments: £
> Learning to Identify Stochastic Processes from Data - — " F
Trajectories, Submitted to International Conference on e e R R ;
Machine Learning and Applications (ICMLA 2021) < 200 g i i
o Assessing a Neuromorphic Platform for use in Scientific 5 i Mhi i B |
Stochastic Sampling, Submitted to International Conference 2 60

on Rebooting Computing (ICRC 2021) L 400
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> Neuromorphic Architectures: Efficient and Parallel Post- 37,
Moore Scientific Computing Potential, Minisymposium g 150 : :
proposal submitted to SIAM Parallel Proccessing 2022 I R R O
> Accepted speaker invitations from Kathleen Hamilton (ORNL), Jim Plank 2 507 skl ik it s o348 & :
(Tennessee), and Mihai Petrovici (Heidelberg). 0 "M L‘—-””hl“””“‘ﬂ"h | |
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Prnject focus/goals:
> Expand neuromorphic physics impact by developing and assessing a new
capablhty linear collisions among like particles.

© Collisions are a necessary component of more complicated physics problems solvable through
Monte Carlo methods. We develop and analyze thus capability for neuromorphic platforms,
targeting an eventual impact with MISES SPARTA, and LAMMPS.

Technical Approach:

> Our approach is to deploy a grid-based machine learning algorithm to
learn the distribution of particles after a linear collision.
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The learned algorithm will have an input of M particles on a particular curomorp anac alk Algo
grid point and will then sample the distribution of collisions M times,
returning any changes in the particles due to collisions.

> We will consult heavily with Siva Rajamanickam, who has used a grid- ,
based ML method for a physics application, and with Nathan Roberts, @ @ - e @ -
who has used ML to learn the moments of a non-linear collision operator.

Impact* - ® “_

> This project will grow our neuromorphic physics code base by allowing us
to do more complicated radiation transport problems and simple low-
density molecular dynamics problems. @ ¥ o -

> We will collaborate and consult with Siva and Nathan’s LDRDs. This -
project also furthers ASC-BML work by developing new RW
neuromotrphic methods.
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Step 3 is currently unsolved for the neuromorphic random walk
algorithm. We propose learning the collision distribution, then
sampling from that distribution and updating particles between
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