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FY22 Sandia Portfolio of ASC AML Projects
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Projects Physics 
Constr ML

Sparse 
Data ML

Trusted 
ML Co-Design Data 

Env Workflow

Physics-Informed Machine-Learning Material Models 
for Solid Mechanics*

Credibility in Scientific Machine Learning: Data 
Verification and Model Qualification*

Genetic programming to inform damage models in 
engineering applications

Physics-Aware Machine Learned Device Radiation 
Models for Robust ND Design and Analysis Tools

Causal Models for NT manufacturing defects (NEW)

Model Parallelism for Deep Learning: Scaling for Data 
Integration*

Critical AI/ML Infrastructure for Next Generation 
Architectures & Applications

Learning a Random Walk from Observations on the 
Loihi Neuromorphic Testbed*

ML Models of Boundary Layer Turbulence

Machine Learned Constitutive Models for Solid 
Mechanics

Development of AI/ML Techniques that Improve the 
Operational Efficiency of SNL HPC Facilities*
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Physics-Informed Machine-Learning Material Models for Solid Mechanics 
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 Problem
◦ Traditional constitutive models incorporate first-principles and 
obey physics constraints, but have model-form errors too 
large for ND

◦ Purely data-driven models require large training sets, lack 
robustness, and are not generalizable

◦ Experimental data is emerging, but is sparse and is multi-
fidelity (unusable for traditional and too sparse for data-driven)

 Technical Approach
◦ Use ML to correct model-form error in traditional modeling
◦ Trained on fusion of multi-fidelity experimental data – 
maintains physical constraints, requires less data, includes 
uncertainty. 

◦ Exemplars: Polymer foams and Additive Manufacturing 
metals

 Deployment: 
◦ Incorporation into SIERRA LAMÉ material library through 
partner P&EM projects

 Key Partnerships: Amir Farimani (Carnegie Mellon 
University)

Sharlotte Kramer

Example of the Traditional + ML-
discrepancy Model Approach: 

Traditional elastic-plastic model plus 
data-driven discrepancy model with 
uncertainty is closer to multi-fidelity 

data. 
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FY21 Accomplishments4

Inverse Method via PINNs** AM Metal Data Augmentation via GANs
(CMU Collaboration)**

Hybrid Model for Foams* NODE + TBNN** 

Developed approaches to embed physics into machine-learned material modeling,
documenting progress with external journal manuscripts submitted* or in preparation**

Synthetic stress-strain data 
from RVE simulations

Traditional + ML 
discrepancy performs best

PINNSierra -FEM

Calibrate material 
models using 

surface 
displacements and 

total force, like that 
available from full-
field experiments

Model time-dependent behavior with 
improved stability and accuracy with 

more training samples

SyntheticReal Al10SiMg

Generate synthetic AM 
tensile specimens for 

synthetic data 
generation using MST 

and GANs

Porous RVE 
with 

dissipation 
cycles
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FY22 Plan5

Inverse Method via PINNs AM Metal Material Modeling 
(CMU Collaboration)

Multi-Fidelity Data Fusion NODE + TBNN 

Physics-driven 
model

Computational 
model

Experimental 
data

Confidence in 
Ground Truth

Utilize both experimental and synthetic data to advance the PIML approaches to material modeling 

Experimental Foam Data

PINNs 
(NN for Displacements and 
Energy Minimization Loss)

Model 
Calibration

• Traditional 
Models

• New ML 
Models

Synthetic stress-strain data 
from RVE simulations

Apply NODE + TBNN 
to polymer foams

Synthetic stress-strain data 
from RVE simulations

Develop CNN-LSTM 
model for the 

learning the time-
dependency 
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Credibility for Scientific Machine Learning: 
Training Data Verification and Model Qualification 6
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Credibility assessment of different classifiersNotional time-series 
measurement

Frequency-domain 
representation Aleatoric 

Uncertainty
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Uncertainty

Classifier’s uncertainty decomposition
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PI: Ahmad Rushdi and Erin Acquesta

Project focus: Develop  evidence-based  credibility  for  scientific  machine  learning  used  in 
high consequence decision making environments.
Approach: Leverage CompSim and traditional ML credibility workflows into a tailored SciML 
framework.
Exemplar: To improve Sandia’s stockpile surveillance analysis capabilities, the team uses 
signature waveforms from components using non-destructive functioning and identify the 
most-discriminative input features, in order to assess the quality of a training dataset. By 
further decomposing uncertainty into its different components, the team will guide 
computational/sampling resources towards reducing the treatable parts of uncertainty.
Deployment: Targeted integration into Dakota and other ASC tools.
Partnership: ASC V&V 

October 2021 2022 AMLI Projects – Ron Oldfield, SNL



Credibility for Scientific Machine Learning: 
Training Data Verification and Model Qualification 7

FY21 Presentations
JPL QUAD
• Adapting Verification and Validation Principles to a Credibility Process, presented by Erin Acquesta
Sandia MLDL Workshop 2021
• Adapting Verification and Validation Principles to a Credibility Process, presented by Erin Acquesta
• Efficient DNN Architectures for Time Series Classification., presented by Ahmad Rushdi
• Exploring the consequences and lessons from Underspecification in ML models., presented by Bill Rider

FY21 Accomplishments
• Determining the source(s) of data required for assessing the credibility of the training data:

• Phenomena Identification and Ranking Table (PIRT) 
• [Simulation Data] Predictive Capability Maturity Model (PCMM)
• [Experimental Data] Experiment Planning for Integrating Credibility and CompSim (EPICC), and
• [Real-world Data] Datasheets for Datasets

• Shifted Priority: 
• We identified the need to explore a broader landscape to identify a more generalizable approach related to 

Credibility for SciML. 
• This resulted in our socialization of opportunities and gaps through the presentations documented above. 
• Documentation of evidences needed for component quality assessment to be delivered FY22

PI: Ahmad Rushdi and Erin Acquesta

October 2021 2022 AMLI Projects – Ron Oldfield, SNL



Credibility for Scientific Machine Learning: 
Training Data Verification and Model Qualification 8

FY22 Plans: [L2 Milestone Proposed] Develop a preliminary framework to support the 
planning phase of a formal credibility process for scientific machine learning (SciML). To 
achieve that, we leverage principles from Sandia-pioneered Verification and Validation, and 
Uncertainty Quantification (V&V/UQ) methods that were successfully deployed to Computational 
Simulation (CompSim). 

Approach: Leverage V&V/UQ principles from both CompSim and traditional ML:
1. Current standardized methods from CompSim that will be leveraged:

• the Phenomena Identification and Ranking Table (PIRT), 
• the Predictive Capability Maturity Model (PCMM), and 
• the Experiment Planning for Integrating Credibility and CompSim (EPICC)

2. Existing ML methods leveraged for trust that will be considered:
• Datasheets for Datasets & Model Cards for Model Reporting
• Explainability (e.g., feature importance),
• Robustness under stress tests (e.g., flagging out of distribution), and
• Confidence scores (e.g., quantifying epistemic/aleatoric predictive uncertainty).

Primary Exemplar: Component quality assessment.
Exceeds Expectations: Turbulence (under review).

PI: Ahmad Rushdi and Erin Acquesta

October 2021 2022 AMLI Projects – Ron Oldfield, SNL



Genetic programming to inform damage models in engineering applications
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 Problem
◦ Damage mechanisms that lead to failure in engineering alloys 
are well studied experimentally, but we lack accurate damage 
models

 Technical Approach
◦ Use genetic programming with symbolic regression (GPSR) to 
produce interpretable analytical expressions for governing 
mechanics and physics
◦ Improves predictive accuracy while retaining appropriate physical constraints 
◦ Synthesize large microstructure-scale experimental and simulation-generated 

data sets.

◦ Advance the representation of physical processes leading to 
fracture and failure beyond the several-decades old models 
currently in use. 

 Deployment: 
◦ Analytical expressions for damage will be deployed within 
SIERRA LAMÉ

 Key Partnerships: Prof. Jacob Hochhalter (Univ. Utah) and 
Dr. Geoff Bomarito (NASA LaRC)

John Emery

EBSD

EDS

Experimental and simulated microstructural training data

Symbolic regression for analytical forms of damage evolution
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FY21 Accomplishments10

 Q4: Demonstrate the efficacy of genetic programming with symbolic regression (GPSR) 
within the context of existing damage models and assumptions (and document). 

 Why? Model credibility.

October 2021 2022 AMLI PROJECTS – RON OLDFIELD, SNL

Training data: 400 points
Generations: 32,000 generations
Hyperparameters: 
• Mathematical operators: +, -, *, /, cosh()
• Crossover probability: 0.8
• Mutation probability: 0.2
• Equation stack size: 20
• Population size: 1280

Bingo result for yield surface for general void-volume 
fraction matches Gurson:

GPSR model 
equivalent to 
Gurson model



FY 22 Plans11

 Develop GPSR damage models for several variations of relaxed constraining 
assumptions and interpret the results
◦ Development and testing of an interpretable boosting method for use within GPSR.
◦ Preliminary implementation of a combined UQ-GPSR framework resulting in a nondeterministic 
yield surface.

 Develop of model comparison test harness
◦ Implement a GPSR failure model in a FE code, using LAME if feasible
◦ Automate calibration and testing of GPSR damage models for a canonical ductile failure 
problem

October 2021 2022 AMLI Projects – Ron Oldfield, SNL



Maturing Physics-Aware Machine Learned Device Radiation 
Models into Robust ND Design and Analysis Tools 

National 
Laboratories 

Software Ecosystem
(mostly C++)

https://s3-eu-west-1.amazonaws.com/vm-blog/uploads/2020/04/DE18-SoN-Digital-.pdf

Machine Learning 
Software Ecosystem
“75% of ML developers and 
data scientists use Python”
    - State of the Developer Nation      
      (Slashdata.co 2020) 

Problem

Approach

Xyce-PyMi

Deployment

Partnerships

• Github.com in Xyce repository
• Spack recipe 

spack install xyce+pymi
• CEE Project

/projects/gmls_xyce
• SAND Report detailing use
• Tutorial demonstrating installation
• Partner to integrate feedback 

• Integrated tightly with the Xyce team
• PIRAMID REHEDS-LDRD, Radiation Aware REHEDS-LDRD
• Physics and Engineering models(PEM)
• Tom Buchheit (1356) and Asha Balijepalli (8741), part of 

compact model design for SAVANTES, aging & lifetime

Exact
Polynomial fit
GMLS approximant

Team: Paul Kuberry, Ting Mei, Eric Keiter, Pavel Bochev, Biliana Paskaleva, Joshua Hanson

Reduce compact model development/deployment time, 
which typically lags behind the initial ND design stages

October 2021
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https://www.google.com/imgres?imgurl=https%3A%2F%2Fwww.asimovinstitute.org%2Fwp-content%2Fuploads%2F2016%2F09%2Fcnn.png&imgrefurl=https%3A%2F%2Fwww.asimovinstitute.org%2Fneural-network-zoo%2F&tbnid=IxHDl54iCmB1xM&vet=12ahUKEwjkwP-lrtrqAhWZGM0KHZPKAjAQMygPegUIARDfAQ..i&docid=kBJJXWcZ9qBJ9M&w=936&h=576&q=Neural%20network%20images&client=firefox-b-1-e&ved=2ahUKEwjkwP-lrtrqAhWZGM0KHZPKAjAQMygPegUIARDfAQ
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FBi-cubic-spline-interpolation_fig1_280062913&psig=AOvVaw2pM35sXdHsS8L6K_HMXuS5&ust=1595284161094000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCIi0gOCu2uoCFQAAAAAdAAAAABAD


Example

**************

* netlist  for Operational Amplifier

**************

VDD     1   0  DC   2.5

R1 1 4 1e4

R2 1 5 1e4

R3 6 0 5e3

C1 4 0 5e-12

C2 5 0 5e-12

YGENEXT pyQ1 4 7 6

+ SPARAMS={NAME=MODULENAME,DATAFILE 

           VALUE=../models/gmls_bjt_2N2222.py,../data/2N2222_alan.01.dat}

RQ1 7 2 50

YGENEXT pyQ2 5 8  6

+ SPARAMS={NAME=MODULENAME,DATAFILE 

           VALUE=../models/gmls_bjt_2N2222.py,../data/2N2222_alan.01.dat}

RQ2 8 3 50

Em_plus 2 0 VALUE={1+50e-3*sin(2*pi*10*time)}

Em_minus 3 0 VALUE={1-50e-3*sin(2*pi*10*time)}

Operational Amplifier with BJTs replaced by GMLS

* Runs on data generated from synthetic MMBT2222, Fairchild, NPN

Maturing Physics-Aware Machine Learned Device Radiation 
Models into Robust ND Design and Analysis Tools 

Deliverables
• Released Xyce-PyMi software as part of Xyce 7.3 with accompanying news note.
• Created video tutorial “Xyce Python Model Interpreter (Xyce-PyMi) for enabling ML advancements in production 

circuit simulation software” for Sandia MLDL conference. Link
• Published SAND report "An embedded Python model interpreter for Xyce (Xyce-PyMi)". Link
• Joshua Hanson gave a talk "A Numerical Compact 

Photocurrent Model and its Implementation via 
Xyce-PyMi" at Sandia MLDL conference. Link

Accomplishments
• Produced Spack recipes for Xyce and Trilinos recipes, 

refactoring specifications, variants, and conflicts, and 
enabling building / installation of Xyce-PyMi with all 
TPLs with a single command.

• Collaboration with SAVANTES group on an 
FY22 Level 2 milestone relating to aging and lifetime.

• Developed compression technique combining spline 
knot locations with GMLS (less memory, less flops).

ATDM 4.1 Evaluation of software design strategies for platform-independent model interpreters along with implementation that is callable from within Xyce.  After determining the best 
software path forward (likely Python), will establish the ability to build Xyce and add hooks for calls to ML routines including: Generalized Moving Least Squares and neural networks 
represented in Tensorflow.ATDM 4.2 Demonstration of ML models for normal environment in Xyce with a focus on the value added from increased regularity and physics compliance.

October 2021
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https://wiki.sandia.gov/download/attachments/708545687/07_19_21_1610_MLDL_Presentation_Kuberry.mp4?api=v2
https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/Xyce-PyMi-Guide.pdf
https://wiki.sandia.gov/download/attachments/708545687/07_19_21_1630_FY21_MLDL_Presentation_Joshua_Hanson.mp4?api=v2


The goal of this project is to increase the TRL of ML research ideas internal (LDRDs) and external to Sandia
and to make these advances accessible in production circuit simulation software.

• Work with Andy Huang’s REHED-LDRD “Physics-Informed, Rapid and Automated MachIne-learning for 
compact model Development (PIRAMID)” 

• Work with Biliana Paskaleva’s new REHEDS-LDRD “Reuse to Reduce: a unified full-featured to low-cost model
development for accelerated design of electrical ND systems in combined radiation environments”

• Work with SAVANTES group relating to aging and lifetime of electrical components
• Seek collaboration with Eric Keiter and Jason Verley’s ASC-ADE projects
• Refactor, where necessary, the Xyce-PyMi software after scaling study for memory and speed.

Maturing Physics-Aware Machine Learned Device Radiation Models into 
Robust ND Design and Analysis Tools 

Future Plans
Milestone 4.3 [FY22 Q3] – Scaling study for memory footprint and computational 
performance.
Milestone 4.4 [FY22 Q4] – Demonstration of ML models for radiation environment in Xyce.

October 2021 2022 AMLI Projects – Ron Oldfield, SNL
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Causal Models for NT manufacturing defects (NEW IN FY22)

October 2021 2022 AMLI Projects – Ron Oldfield, SNL
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 Aim: Develop an interpretable k-way classifier to identify the strongest predictors of component 
failure from a set of potential predictors created from all data collected during a manufacturing 
process as well as post manufacturing test data. The classifier will also provide an estimate of 
the completeness of the dataset. The method will be tested with MC4300 neutron tube (NT) 
manufacturing and subsequent test dataset.
 The proposal targets an AMLI Stockpile driver (anticipatory stockpile decision making, with a 
focus on root-cause analysis using production and surveillance data). It adheres to AMLI 
research opportunity 4.2 (improve our ability to employ machine learning with sparse data).
 FY22 Milestones and Deliverables
  Investigate cause of failure in neutron tube manufacturing. [ATDM-3]
◦ FY22/Q1 – data exploration: Exploratory data analysis viz., correlation and clustering studies, as well as 
visualization via t-SNE plots
◦ Go/No-go decision: Do the normal/abnormal neutron tubes cluster differently in the feature-space (as seen in t-SNE plots)? If not, a 

causal model may not be possible.
◦ FY22/Q2 – classifier construction: Formulation and construction of first L1-constrained logistic regression; 
tests of classifier performance. Identification of modeling issues due to any imbalance found in the 
training data
◦ Go/no-go decision: Can we construct a classifier at all? If not, stop project - the data does not have the relevant information.

◦ FY22/Q3 – data augmentation and classifier enhancement: Investigation of minority-class oversampling 
as a means of improving the training data. Estimation of improvement of the logistic regression due to 
synthetic data

◦ FY22/Q4 – estimation of feature-set sufficiency: Reformulation of the logistic regression as a GLMM, and 
estimation of the magnitude of “random effects”

PI: Jaideep Ray and Sarah Ackerman 



Model Parallelism for Deep Learning: Scaling for Data Integration
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 Problem
◦ Data sets generated in computational science 
are typically spatially distributed (too large to fit 
on a single compute node)

◦ Toolsets for deep learning (e.g., PyTorch) are 
not compatible with distributed-memory 
parallelism

 Technical Approach
◦ Develop a PyTorch module for embedding 
spatial and layer parallelism into neural network 
training and inference

◦ Exemplar: 3D CT scan image segmentation

 Deployment: 
◦ Used for stockpile assessment and “simulate as 
built” computational approaches

 Key Partnerships: 
◦ Cyr ASCR Early Career Research Project
◦ J. B. Schroder – University of New Mexico
◦ R. Hewett – Virginia Tech

Eric C. Cyr and Gary Saavedra
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Proposed parallel decomposition for a CT scan. 
This image shows a 4 processor decomposition of 
a (2D) CT scan of a webcam. Note that there is a 
narrow band of overlap, or “halo region,” 
between the domains. 

Results presented at the SIAM CSE conference show 200x speedup over 
serial approaches when using both spatial and layer parallelism.



Deep Learning and Spatial Decomposition17

Spatial decomposition can lead to improvements in both accuracy 
and speed

Original 2D slices 3D decomposition

High Resolution Medical Image Analysis with Spatial Partitioning. Hou et al. 2019October 2021 2022 AMLI Projects – Ron Oldfield, SNL



How spatial decomposition works: Convolutions18

October 2021 2022 AMLI Projects – Ron Oldfield, SNL



Model Parallelism: Scalability of Classification19

Classification of CT Scan’s
◦ Does a CT scan correspond to a failed part?
◦ What is the category of failure?
Network Architecture
◦ Similar to image classification, using Deep ResNet 
architectures 

◦ Spatial decomposition works similar to the explicit 
PDE time evolution

Future Work:
◦ GPU Implementation
◦ Combine spatial parallelism with layer-parallelism 
(TorchBraid) to allow very deep networks

October 2021 2022 AMLI Projects – Ron Oldfield, SNL



Model Parallelism for Deep Learning: Scaling for Data Integration
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 FY22 Milestones and Deliverables 
 Provide an assessment of memory usage for applying DistDL to customer CT scans. 
FY22 Q1
◦ Verification of the capability for training (On smaller data sets, comparable to existing serial 
capability)

◦ Exploration of the capability for smaller numbers of channels (data reduction by reducing 
network size)

 Develop and analyze a more memory and computation efficient algorithm using data 
reduction ideas FY22 Q4
◦ Identify possible options for memory-efficient algorithms or data reduction.
◦ Develop approximate training methodologies including image sketching and image 
reduction/compression techniques to reduce the memory footprint for CT scan images. 

◦ Use statistical image analysis and information theory to quantify the effect of image 
reduction/compression of CT scans.

Eric C. Cyr and Gary Saavedra
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Critical AI/ML Infrastructure for Next Generation Architectures & Applications21

 Project focus/goals:
◦ Unified mapping infrastructure will enable ASC AI/ML applications 
to be mapped to next-generation architectures

◦ ATHENA (Analytical Tool to Evaluate Heterogeneous 
Neuromorphic Architectures) will quickly evaluate performance 
metrics of heterogeneous neuromorphic architectures

Mapping Tool

ATHENA
 Mapping
◦ Solved as graph monomorphism problem 
(dataflow and SNN)

◦ GEMM/SpMM input graphs
ATHENA
◦ Mapping on SONOS-based analog 
accelerator are complete

◦ Leveraged for a new start CIS LDRD 
(FY22)

Key Partnerships: ARRIA (ASCR), Fugu 
(ASC), Infineon Memory Solutions, and 
Georgia Tech

Clay Hughes and Suma Cardwell

October 2021 2022 AMLI Projects – Ron Oldfield, SNL



FY21 Mapping Milestones & Accomplishments22

 Milestone 2.1
◦ Subgraph monomorphism using modified VF3 algorithm shown to work for a variety of inputs as 
a standalone application (SAND2021-3357PE, SAND2021-8164PE)

◦ Initial mapping API complete
◦ Copyright filed for "CDFG Extraction Tool for LLVM“

 Milestone 2.2
◦ Hardware description API (describes the potential computation)
◦ Application description API (describes the actual computation)
◦ Components and scripts available in a fork of SST; application graph generation tool was not 
made publicly available in Q3 due to copyright filing

 Milestone 2.3
◦ Dataflow -- GEMM and SpMM generation and mapping complete 
◦ SNN -- Converted Fugu algorithms (max and max_flow) to VF3 format
◦ Graph monomorphism algorithms work well when graphs are sparse but solve time appears to 
increase with density

October 2021 2022 AMLI Projects – Ron Oldfield, SNL



FY21 ATHENA Milestones & Accomplishments23

 Milestone 2.2
◦ Docker environment set up for Athena. Docker container validated and tested.
◦ Athena supports the analog accelerator (SONOS FG based) for mapping and performance estimation.

 Milestone 2.3
◦ Completed mapping for the analog accelerator and are extending Athena to spiking neural networks. 
Working on Mosaic energy estimates using Athena (Close to submission). This will extend Athena for 
spiking neural networks.

◦ Activation layer information extraction code incorporated not tied into performance estimates yet.
◦ Presented our work to the ARIAA team. MLIR/LLVM interface planned in the future . Mark Plagge helping 
support ARIAA/GT MARVEL tool interface with Athena.

  Publications & Presentations
◦ “ATHENA: A High Efficiency Codesign Tool for Novel Accelerators”, Mark Plagge, Suma Cardwell and 
Clayton Hughes, Abstract accepted to ModSim’21 for short talk and poster. 

◦ “Achieving Extreme Heterogeneity: CoDesign using Neuromorphic Processors”, Position paper at ASCR 
Workshop on Reimagining Codesign, Cardwell et al. 2021

◦ “Truly heterogeneous HPC: Co-design to achieve what science needs from HPC” at Smoky Mountain 
Computational Sciences and Engineering Conference, Cardwell et al.

◦ "CoDesign of Heterogeneous Neuromorphic Architectures: From HPC to the edge“, CIS ERB Review, 
Suma Cardwell March 30th, 2021

◦ “CoDesign to map algorithms to diverse range of advanced architectures and hardware”, Suma Cardwell, 
April 7th, Sandia AI-Enhanced Co-Design for Next Generation Microelectronics: Innovating Innovation 
Workshop 2021

◦ “Codesign for Next Generation Architectures and Applications”, Suma Cardwell Georgia Tech /SNL 
Microelectronics Workshop, Aug 2021
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 FY22 Milestones and Deliverables
 Milestone 2.1 [FY22 Q2] – Initial analog crossbar model in SST. 

 Milestone 2.2 [FY22 Q3] – Report analyzing effectiveness of ATHENA for design space 
exploration of analog and spiking accelerators using multiple devices, including non-CMOS, 
and architectural constraints. Demonstrate ATHENA-SST integration using hardware and 
memory-mapping generated from ATHENA in cycle-accurate simulation. Integration of 
energy model for analog crossbar in SST.

 Milestone 2.3 [FY22 Q4] – Report detailing full capabilities of ATHENA, including the 
addition of support for neuromorphic architectures. Report detailing capabilities of analog 
crossbar component in SST.

 Stretch Goal: Use CrossSim to compute accuracy without detailed mapping information 
(assume a crossbar per-layer).  SWaP evaluation for heterogeneous node architecture 
(dataflow, analog, and spiking). 

 Once complete, the infrastructure will enable design-space exploration of mission-relevant 
HPC and ML blended architectures, exploring the effects of compute partitioning and its 
impact on the memory subsystem.



Learning Random Walks from Observations on Loihi25

Project focus/goals:
◦ Learning Random Walks

◦ Use neural random walk algorithm as data to learn the parameters of generation – an 
inverse problem of importance to radiation transport, plasma physics, and molecular 
dynamics simulations.

◦ Assess Loihi Random Samples
◦ The neural random walks samples have potential to be used in both the learning 

application above as well as in several ASC scientific computing problems. Assessing the 
viability of these walks is a critical data verification task.

Technical Approach:
◦ Samples from the Ornstein-Uhlenbeck (OU) equation (right) were 
generated on Loihi using the neuromorphic random walk algorithm. These 
are approximate samples as additional error is introduced through both 
the algorithm and Loihi.

◦ We used three popular convolutional neural nets to learn the OU 
parameters. The trained networks could predict the parameters of 
generation within the training range regardless of whether test data was 
generated conventionally or on Loihi. 

◦ Loihi samples are compared to the expected distribution of the OU 
equation using relative entropy. Identical measurements are performed on 
conventionally generated data. We find that Loihi samples, on average, 
are comparable to conventionally generated samples.

Impact: 
◦ Neuromorphic energy efficiency and parallelism has the potential to 
revolutionize Monte Carlo based methods. This project has strengthened 
our trust in next-generation large-scale systems by demonstrating 
neuromorphic samples are already comparable to traditional samples, 
despite reduced probability bit precision.

◦ This project further developed our neuromorphic physics capability, aiding 
our long term goal of developing a neuromorphic DSMC code base.

Updated: 09/01/2021

Implement on Loihi

Gather Sample
Observations

We may sample paths of an SDE 
on Loihi by gathering 
observations from the 
neuromorphic random walk 
algorithm. These samples are 
used to solve an inverse problem, 
identifying the parameters of 
generation.  These neuromorphic 
samples are also verified for their 
use in scientific computing.  

Assess Scientific 
Viability of Samples

Core team:    D. Smith   W. Severa  R. Lehoucq  B. Aimone
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FY21 Deliverables and Accomplishments26

Deliverables:
◦ White paper report. Status: in progress.

◦ Details on DTMC approximation of OU process for use in neuromorphic 
RW algorithm (Q3 milestone).

◦ Descriptions of data generation and CNNs used in learning (Q3 
milestone).

◦ Discussion on recovery of stochastic parameters through trained CNN (Q3 
milestone).

◦ Discussion on relative entropy measures and statistical analysis of Loihi 
samples  (Q4 milestone).

◦ Discussion on the amount of data (walkers/trajectories) needed for 
prediction and analysis (Q4 milestone).

Accomplishments:
◦ Learning to Identify Stochastic Processes from Data 

Trajectories, Submitted to International Conference on 
Machine Learning and Applications (ICMLA 2021)

◦ Assessing a Neuromorphic Platform for use in Scientific 
Stochastic Sampling, Submitted to International Conference 
on Rebooting Computing (ICRC 2021)

◦ Neuromorphic Architectures: Efficient and Parallel Post-
Moore Scientific Computing Potential, Minisymposium 
proposal submitted to SIAM Parallel Proccessing 2022
◦ Accepted speaker invitations from Kathleen Hamilton (ORNL), Jim Plank 

(Tennessee), and Mihai Petrovici (Heidelberg).
◦ Invited talk, Berry College Mathematics Seminar SeriesOctober 2021 2022 AMLI Projects – Ron Oldfield, SNL
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FY22 Plans27

Step 3 is currently unsolved for the neuromorphic random walk 
algorithm. We propose learning the collision distribution, then 
sampling from that distribution and updating particles between 
time steps.

2Neuromorphic Random Walk Algorithm

1

3
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