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Measurements of the neutron energy spectrum emitted from high |
temperature shock driven implosions are inconsistent with a m
Maxwellian plasma model

* The primary DT and DD neutron energy spectrum generated in laser direct drive inertial |
confinement fusion implosions were measured using a suite of neutron time of flight (nTOF)
detectors on the OMEGA 60 laser

* Measurements of the primary DD neutron energy spectrum are inconsistent with a
Maxwellian plasma model for the high-temperature, more-kinetic-like experiments

« Vlasov-Fokker—Planck (VFP) simulations reproduce the trend observed in the primary DD
neutron energy spectrum measurements and suggest the presence of a bimodal ion velocity
distribution in the high-temperature experiments |

These results indicate that inferring a thermal plasma ion temperature from primary I
neutron energy spectrum measurements is not possible for kinetic plasmas |

1. B. Appelbe, et al., GO07.00008, this conference I



The neutron energy spectrum emitted from a single
temperature Maxwellian plasma is well understood
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1. H. Brysk, Plasma Physics 15 (7), (1973).
2. L. Ballabio, Nuclear Fusion 38 (11), (1998).




The neutron energy spectrum emitted from a single
temperature Maxwellian plasma is well understood
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The neutron energy spectrum emitted from a single
temperature Maxwellian plasma is well understood
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For a single temperature Maxwellian plasma a unique relationship |
exists between the Gamow energy shift and the plasma temperature @!
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A Maxwellian plasma with a distribution of ion temperatures in
space and time can reduce the Gamow shift for a given spectral
temperature
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Measurements that fall outside of the Maxwellian fluid regime would

provide direct evidence of a non-Maxwellian distribution I

1. B. Appelbe, et al., GO07.00008, this conference
2. A. Crilly, et al., in preparation I



A set of experiments were performed to test the Maxwellian
plasma neutron energy spectrum model
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The laser power, shell thickness, and gas pressure
were varied to achieve different conditions |




The 3dnToF detector suite was used to measure the primary DT
and DD neutron energy spectrum along multiple lines of sight

Example 3dnToF data
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The plasma apparent ion temperature, bulk velocity, and

Gamow shift was inferred from these measurements

1. O. M. Mannion et al., Nucl. Instrum. Methods Phys.
Res., Sect. A 964, 163774 (2020).
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Measurements of the Gamow shift agree with the Maxwellian
fluid theory for low temperature implosions but show
discrepancies for high temperature implosions

60 T B o e e 4 60 L e e B B
DD r
O —;
%40:- . %40:- s
x| X |
":30_- . ";30_- Y 5
W | W
< 20} - <20} -
10:— Maxwellian Fluid — 10:— Maxwellian Fluid -
[ Regime i [ Regime
M B EEU I B e e )]
0 5 10 15 20 0 5 10 15 20
Ts (keV) Ts (keV)

The anomalous DD data points suggest the presence of a non-

Maxwellian ion velocity distribution in these kinetic implosions




The multi-ion Vlasov-Fokker-Planck (VFP) code iFP' was used |
to study the anomalous high temperature implosion results @!

* iFP calculations were initiated half way 05— ' ]
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hydrodynamic profiles from a radiation 0.4l — Sio: b
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The long mean free paths leads to a smoothing out of the implosions shock front

11 1. W. T. Taitano, Physics of Plasmas 25 (5) (2018).



The diffuse shock front leads to a bimodal ion velocity
distribution at peak neutron production in the IFP simulations
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The bimodal ion velocity distribution produces a narrower neutron energy spectrum

1. B. Appelbe, et al., GO07.00008, this conference I
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The IFP simulations reproduce the trend observed in the high
temperature DD primary neutron spectra data
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The iFP bimodal ion velocity distribution predictions are

consistent with the high temperature DD measurements I



Measurements of the neutron energy spectrum emitted from high |
temperature shock driven implosions are inconsistent with a m
Maxwellian plasma model

* The primary DT and DD neutron energy spectrum generated in laser direct drive inertial |
confinement fusion implosions were measured using a suite of neutron time of flight (nTOF)
detectors on the OMEGA 60 laser

* Measurements of the primary DD neutron energy spectrum are inconsistent with a
Maxwellian plasma model for the high-temperature, more-kinetic-like experiments

« Vlasov-Fokker—Planck (VFP) simulations reproduce the trend observed in the primary DD
neutron energy spectrum measurements and suggest the presence of a bimodal ion velocity
distribution in the high-temperature experiments |

These results indicate that inferring a thermal plasma ion temperature from primary I
neutron energy spectrum measurements is not possible for kinetic plasmas |

14 1. B. Appelbe, et al., GO07.00008, this conference I
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Measurements of the Gamow shift agree with the Maxwellian
fluid theory for low temperature implosions but show
discrepancies for high temperature implosions
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The iFP bimodal ion velocity distribution predictions are

consistent wit the high temperature DD measurements




