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Abstract—Modern distribution networks are undergoing sev-
eral technical challenges, such as voltage fluctuations, because
of high penetration of distributed energy resources (DERs). This
paper proposes a deep reinforcement learning (DRL)-based Volt-
VAR co-optimization technique for reducing voltage fluctuations
as well as power loss under high penetration of DERs. In addition,
the proposed approach minimizes the operational cost of the
grid. A stochastic policy optimization based soft actor critic
(SAC) agent is proposed to configure the optimal set-points of the
reactive power outputs of the inverters. The performance of the
proposed model is verified on the modified IEEE 34- and 123-bus
systems and compared with a base case scenario with no reactive
supply by inverters, and a local droop control approach. The
results demonstrate that the proposed framework outperforms
the conventional droop control method in improving the voltage
profile, minimizing the network power loss, and reducing grid
operational cost.

Index Terms—Distribution grids, deep reinforcement learning,
soft actor critic, Volt-VAR optimization.

I. INTRODUCTION

With high penetration of distributed energy resources
(DERs), modern distribution networks are experiencing differ-
ent challenges such as large voltage fluctuations and increased
power losses [1]. Moreover, uncertain generations from DERs
and the wider range of generation fluctuations make it more
challenging to operate the grid within the acceptable range
of voltages. Volt/VAR optimization (VVO) is an efficient
tool for system operators to address the challenges associated
with the increasing penetration of intermittent resources. The
main objective of VVO tools is to coordinate among different
reactive power resources, such as smart inverters (SIs), and
control their reactive power injection/absorption, to achieve a
smooth voltage profile . Using the PV generation forecasts and
according to the load profile, VVO can schedule the resources
to keep the feeder’s voltage profile within a permissible range
under any possible loading and PV generation scenario. While
maintaining the voltages in nominal level, the VVO framework
can also minimize network power losses in the feeder [2].

In the literature, VVO techniques are generally categorized
into three classes: a) numerical optimization, b) Heuristic
optimization, and c) learning-based methods. The most widely
used numerical optimization techniques are mixed-integer
non-linear programming (MINLP) [3], mixed-integer linear
programming (MILP) [4], and dynamic programming (DP)
[5] that have been established based on optimal power flow

analysis. These methods include various continuous variables
and integer that might make them tedious for real-time ex-
ecution. Some of the most widely used heuristic approaches
for VVO are genetic algorithm (GA) [6], particle swarm opti-
mization (PSO) [7], and teaching learning-algorithm (TLA)
[8]. They have been employed explicitly for solving non-
convex optimization problems with non-linear model of the
distribution system. Although, these methods are fitted for
complex scenarios, they can become impractical if number
of decision variables increase. Moreover, whenever any new
scenarios are encountered in the system, these optimization
models are required to solve again, and also they cannot adopt
properly with any drastic changes in the time-dependent loads
and DERS in the network.

Learning-driven techniques have been implemented to ad-
dress the limitations of aforementioned optimization ap-
proaches since they can handle uncertainties by extracting
knowledge from historical data. Moreover, learning-driven
models don’t require to be solved whenever new scenar-
ios is encountered because they can utilize their knowledge
gained from previous experiences. Deep reinforcement learn-
ing (DRL) is one of the most suitable data-driven approaches
with data exploration capabilities in non-linear high dimen-
sional spaces using deep neural networks (DNNs) [9]. The
authors in [10] applied a DRL technique to regulate voltage
set-points of generators for controlling the voltage within
the allowed range with a variety of line and load outages.
The authors in [11] used deep deterministic policy gradient
(DDPG) agent-based DRL approach to coordinate between
different SIs to control the voltage profile of the grid. An
attention enabled multi agent DRL (MADRL) is employed for
the coordination among different PV inverters and static var
compensators (SVCs) to control their optimal reactive power
set-points to regulate the voltage profile of distribution system
(DS) [12]. A consensus-based MADRL method is proposed
to control the operational schedules of the utility devices like
capacitor banks, and on-load tap changers (OLTCs) to regulate
the voltage of DS [13]. The only objective of these DRL
methods is to control the voltage profile of the network. This
paper proposes a DRL-based framework for co-optimization
of voltage regulation in the feeders and minimization of look-
ahead operational cost of the distribution grid.

The main contributions of this paper are as below:



• It proposes a sample efficient DRL algorithm called soft
actor critic (SAC) with continuous actions to learn a
stochastic VVO policy. The proposed algorithm avoids
potential instability and complexity associated with previ-
ous off-policy maximum entropy algorithm based soft Q
learning. In high-dimension action space while off-policy
based other DRL algorithms struggles, the proposed SAC
algorithm can perform well.

• The proposed SAC agent coordinates among PV and bat-
tery energy storage (BES) inverters with their continuous
reactive power outputs, and controls the active power
charging/discharging the BESs based on the load demand.

• By optimal scheduling of intra-hour of smart inverter out-
puts, the proposed approach improves the voltage profile
and reduces the power loss of the distribution system.
Moreover, it reduces the operational cost of distribution
grids as the second objective.

• The proposed VVO framework is formulated to adjust
the inverters settings according to their allowed range
of power factor changes, e.g., 0.9 leading/lagging. This
constraint ensures that the efficiency of the inverters are
kept within the specified limits of the manufacturers, and
reduces the inverters’ loss due to reactive power supply.

The rest of the paper is ordered as follows. Section II
explains the framework. Section III justifies the performance
of the model. Section IV provides concluding remarks.

II. THE PROPOSED VOLT-VAR CO-OPTIMIZATION
FRAMEWORK

A. Soft Actor Critic (SAC) Algorithm

SAC is an off-policy reinforcement learning (RL) algorithm
that optimizes a stochastic policy to maximize the long term
entropy as well as expected lifetime rewards. It simultaneously
learns a policy as well as two Q-functions, Qtarget1 , Qtarget2
, and applies the minimum of these two Q-values to build the
targets in Bellman error functions as follows,

y(r, s, d) = r+γ(1−d)(min1,2Qtarget,i(s, a)−αlogπθ(a|s))
(1)

where, d represents the done signal, α is a trade-off coef-
ficient. and r denotes reward. In each state, the policy acts to
maximize the expected future return together with expected
future entropy i.e., it should optimize state value function,
V π(s) which expand into

V π(s) = Ea∼π[Qπ(s, a)− αlogπ(a|s)] (2)

To optimize the policy, we have incorporated reparameteri-
zation trick, in which a sample is taken from the control
actions as a(t) ∼ πθ(.|s) that is rendered by calculating
a deterministic state function, independent noise, and policy
parameters. We are incorporating squashed Gaussian policy,
which indicates that samples obtained as

aθ(s, ε) = tanh(µθ(s) + σθ(s)ε) (3)

where ε ∼ N(0, I), µ indicates the mean values of actions for
a given state, σ represents the standard deviation. Although in

deterministic policy based algorithms e.g., DDPG, and TD3, a
random noise is added to next-state actions for smoothing of
the target policy, in SAC based algorithm; no additional noise
is required to add. Because SAC learns on stochastic policy
and therefore the noise come from stochasticity is sufficient
to obtain optimum control actions.

Algorithm 1: Proposed SAC Algorithm
Input: States from the environment (Voltages, Ploss)
Output: Actions to the environment (Qpv , QBES , PBES)
Initialize policy parameters, θ and Q-function parameters
Φ1 and Φ2

Initialize replay buffer D
Set the target networks parameters equals primary
parameters as Φtarget,1 ← Φ1, Φ′target,2 ← Φ2 and
for episodes 1, 2, 3, · · · , N do

Initialize the power flow and take the initial states, S0

from the environment
for time-slot t = 1, 2, 3, 5, · · · , T do

Derive the control actions using a(t) ∼ πθ(.|s)
Execute the control actions to the environment
Get the rewards using (4)
Update the state,S′, store the transition in replay
memory, D.
Randomly sample a batch of N transitions from, D
calculate the target Q functions using (1)
Using gradient descent upate the Q function as
∆θi

1
|B|

∑
(s,a,r,s′,d)εB(QΦtargeti

(s, a)− y(r, s′, d))2

for i = 1, 2 the gradient ascent update the policy as
∆θ

1
|B|

∑
sεB(QΦi

(s, aθ(s))− α log πθ(aθ(s)|s)−
y(r, s′, d))2 for i = 1, 2
Update the target network as
Φtargeti ← βΦtargeti + (1− β)Φi for i = 1, 2

end for
if no voltage violations, or reward converges and
reached to the maximum iteration then

BREAK
end if

end for

B. Implementation of SAC

The SAC agent coordinates among DERs to provide fast
and effective actions. The agent gets its reward based on the
actions taken for a particular state of the environment. The
details of the learning process is shown in Algorithm 1. The
definitions of states, actions, and rewards are listed below:
• The states, s, are defined as a vector of measurements

that represents environment conditions. In the proposed
VVO model, we have considered voltage of each nodes
and power loss of the network as state input.

• Based on the system state, the agent takes an action. The
action space represents the control actions taken by an
agent that is structured with several control variables. The
proposed method uses reactive powers of PV inverters



and BESs as well as active powers of BESs as actions of
the agent.

• The reward function is a critical part for the evaluation of
action-value, representing the effects of control actions to
the environment states. We have considered both power
loss, voltage fluctuation, and operational cost objectives
in our reward functions which is shown in (4)

R(t) = −ηP × (Ploss(t)− P0) + ηv − ηop × Cop (4)

where R(t) is the reward at time t; Ploss(t) denotes the
network power loss at time t based on the actions taken
by the agents; P0 represents the loss for any default action
taken at time t0. ηp , ηv , and ηop are the incentive
factors for mitigating power loss, voltage fluctuations,
and operational cost respectively. The value of ηp and ηop
are chosen as 3 and 1 respectively while Table I shows
variation of ηv under different voltage conditions. Cop
indicates the operational cost that is calculated by (5).

TABLE I
INCENTIVE FACTORS AT DIFFERENT VOLTAGES

Conditions No V max V min ηv

1 < 1.05 > 0.95 +20
2 < 1.05 > 0.9 but < 0.95 −5
3 < 1.05 < 0.9 −10
4 > 1.05 but < 1.1 < 0.95 −5
5 > 1.1 < 0.95 −10
6 > 1.05 < 0.95 −20

III. CASE STUDY

The performance of the proposed intelligent agent is val-
idated on the modified IEEE 34- and IEEE 123-node test
feeders. The load and PV profiles are taken from a real-world
dataset with a PV installation site at Henderson, Nevada, USA
[14]. The load and PV profiles for both IEEE 34 and 123-bus
systems are shown in Fig. 1 and Fig. 2 respectively. In the
IEEE 34-bus test system, nine aggregated PV inverters with
a total maximum generation of 52% of the total demand and
four aggregated BESs inverters with a total maximum capacity
of 37% of the total PV generation are installed on the primary
feeder. In the 123-bus test case, seven aggregated PV inverters
with a maximum generation of 42% of the total demand and
four aggrgeated BESs inverters with a total capacity of 41% of
the total PV generation are installed on the feeder. The details
about the sizes and locations of both distribution systems are
summarized in Table III, and Table IV. The inverter reactive
powers are controlled so that they can operate at a power factor
greater than or equal to 0.9 p.u.

A. Agent Training and Learning Process

To learn the optimal policy for delivering the best control
action, the agent has been trained for 500 episodes. The actor-
network learns the policy to get the optimal actions while the
critic network learns the Q-values. These two networks are the
fully connected neural networks (FCNN) that include the input
layer, hidden layers, and output layer. Table V shows details
about the DNN hyperparameters. At the starting phases of

Fig. 1. The PV and load profiles of 34 bus system

Fig. 2. The PV and load profiles for 123 bus system

the training process, the agent randomly explores the decision
space of the environment, and it eventually converges and
obtains the optimal actions to minimize voltage fluctuations
and power losses of the network. The cumulative reward in
each episode is enumerated by summing the rewards from
each time slot before the training process progress to the next
episode. Initially, the rewards are low because, during these
phases, the agent doesn’t have previous knowledge about how
to regulate the voltage. As the learning continues, the agent
learns from the previous experiences. Therefore, the rewards
increase and the agent converges after a certain number of
episodes and gets the maximum rewards as shown in Fig. 3.

TABLE II
MODIFIED IEEE TEST FEEDERS PARAMETERS

Parameters 34-node test case 123-node test case
No of PVs 9 7

No of batteries 4 4
PV penetrations 52% of peak load 42% of peak load

Battery penetrations 37% of PV rating 41% of PV rating
Maximum demand 1700 kW 3650 kW

TABLE III
SIZE AND LOCATION OF SIS FOR THE MODIFIED 34-BUS TEST SYSTEM

DERs Location Max active power(KW) Phase
PV 1 890 300 3
PV 2 844 300 3
PV 3 860 40 3
PV 4 848 40 3
PV 5 830 16 1
PV 6 mid 822.1 100 1
PV 7 mid 806.2 18 1
PV 8 mid 836.3.1 26 1
PV 9 mid 860.3.1 66 1
BES1 890 125 3
BES2 mid 840.2.3 10 1
BES3 844 125 3
BES4 mid 836.1.2 50 1

B. VVO Performance

1) Voltage Regulation (VR): One of the objectives of the
proposed approach is to minimize voltage fluctuation prob-



TABLE IV
SIZE AND LOCATION OF SIS FOR THE MODIFIED 123-BUS TEST SYSTEM

DERs Location Max active power(KW) Phase
PV 1 48 500 3
PV 2 47 360 3
PV 3 76.1.2 100 1
PV 4 76.1.3 260 1
PV 5 65.3.1 100 1
PV 6 2.2 100 1
PV 7 7.1 105 1
BES1 48 250 3
BES2 47 150 3
BES3 76.1.2 100 1
BES4 35.1.2 130 1

TABLE V
DRL PARAMETERS SETTING

Parameters Values
Hidden layers (actor network) 2
Hidden layers (critic network) 2

Activation function (output layer) tanh
Activation function (hidden layers) ReLU

No. of neurons in hidden layers 25, 25
Learning rate (actor) 10−3

Learning rate (critic) 10−3

Discount factor 0.99
Optimizer Adam

Fig. 3. Average scores in the training process

lems in distribution grids. The proposed DRL agent coordi-
nates among the BES and PV inverters for optimal control
of reactive power set-points and the active power charg-
ing/discharging of the BESs. During the morning hours till
early afternoon, the BESs are charged to avoid the over-voltage
since the PV generation usually exceeds the demand during
this period. Beginning from early afternoon till the end of
the scheduling period, the batteries are scheduled to discharge
their energy to meet the overload in order to avoid under-
voltage scenarios. Fig. 4 and Fig. 6 illustrate the minimum
voltages of the network over the entire scheduling period
for both IEEE 34-bus and 123-bus test cases respectively.
Fig. 4 shows that in the base case, where the agent doesn’t
take any action, the minimum voltage of the network falls
below the 0.93 p.u level. According to ANSI limits , this is a
violation of standard voltage level [0.95-1.05 p.u.]. However,
the proposed DRL agent can regulate the minimum voltage
across the network close to the nominal value of 1.0 p.u.
Fig. 5 depicts the voltage variations in each node at time
2.00 PM using different scheduling and control methods.
It can be observed, in the base case scenario, the voltage
fluctuation is high as there is no reactive power control in the
system. Although local droop control method can adjust the
voltages over a limited range, their capability in improving the

voltage profile along the feeder is not completely utilized due
to lack of sufficient coordination. The proposed SAC agent-
based approach demonstrates better performance in regulating
the feeder voltages compared to other approaches as it can
effectively coordinate among the participating inverters for
reactive power supply. The scalability of the proposed method
is validated on a modified IEEE 123-bus test case. In this test
case also, the proposed VVO framework outperforms other
approaches in respect of improving the voltage profile as
shown in Fig. 6.

Fig. 4. Minimum voltage for the modified IEEE 34-bus test case

Fig. 5. Node voltages the modified IEEE 34-bus system at 2.00PM
2) Power Loss Minimization: The proposed agent is also

designed to reduce power losses simultaneously with voltage
fluctuation minimization by controlling active and reactive
power of BESs and reactive power of PV inverters. Fig. 7
and Fig. 8 represent the power losses for both IEEE 34- and
IEEE 123-bus test cases for all three scenarios. These two
figures demonstrate that compared to local droop control, DRL
agent based VVO approach has less power loss that justifies
the performance of the proposed method. This is because the
proposed DRL agent can effectively control the output power
injection/absorption by the DER inverters.

C. Operational Cost Minimization
Minimization of operational cost is another objective in our

co-optimization scheme that is formulated using (5),

OC(t) =

24∑
t=1

Ndg∑
i=1

αdgiP
t
dgi +

24∑
t=1

Nsub∑
n=1

CtsubnP
t
subn (5)

Fig. 6. Minimum voltage for the modified IEEE 123-bus test case



Fig. 7. Total power loss for the modified IEEE 34-bus test case

Fig. 8. Total power loss for the modified IEEE 123-bus test case

where P tdgi is real power of the ith DG and P tsubn denotes
active power of the nth sub-station at time, t. The total
operational cost for the IEEE 34-bus and 123-bus test cases
during the entire scheduling period is shown in Fig. 9 and
Fig. 10 respectively. We have compared the performance of
the proposed DRL agent with the base case and droop control
method. The figures demonstrate that the proposed framework
converges at the lowest operational cost for the network
compared to the other approaches, which verifies its ability
of co-optimizing different grid services along with VVO.

IV. CONCLUSION

This paper has proposed an off-policy maximum entropy,
actor-critic method called soft-actor critic (SAC) for VVO co-
optimization in distribution grid with inverter-based resources.
The agent interacts with the environment and adaptively
chooses the optimal active/reactive schedules of BESs inverters
and reactive power schedules of PV inverters to regulate grid
voltages and reduce power losses in the network. Moreover,

Fig. 9. Operational cost for the modified IEEE 34-bus test case

Fig. 10. Operational cost for the modified IEEE 123-bus test case

the framework minimizes the grid operational cost and the
added inverter power losses. The inverters reactive powers
were limited by the maximum range of allowed power factor
in lagging/leading mode, i.e., 0.9. In high-dimensional action
space, while other off-policy-based algorithms such as DDPG,
are highly sensitive to hyperparameters and need more tuning
for the convergence, the proposed SAC agent was less sensitive
to the choice of hyperparameters with higher convergence rate.
The performance of the proposed framework was compared
with the base case scenario without any VVO, and with a local
droop control of the inverters using two modified distribution
feeders, the IEEE 34- and 123-bus systems. The simulation
results validated the superior performance of the proposed
method compared to the other optimization approaches, in
terms of improving the voltage profiles, reducing the network
power losses and minimizing the operational cost.
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