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Abstract
Universal access to electricity is an essential part of sub-Saharan Africa’s path to development.
With the United Nations setting Goal 7 of its sustainable development goals to be universal access
to clean, reliable and affordable electricity, substantial research efforts have been made to optimize
electricity supply based on projected demand in sub-Saharan African (SSA) countries. Our study
reviews the literature on electricity demand, with a specific focus on latent demand (i.e., electricity
demand that would exist if the necessary techno-economic conditions were met) in SSA. We found
that out of 57 electricity demand papers reviewed, only 3 (5%) incorporated latent demand in their
electricity demand projections. Furthermore, majority of the literature on electricity consumption
and demand estimation in SSA use econometric models to identify determinants of electricity
consumption and project future demand. We find that population density, urbanization,
household income, electricity price, market value of crops and availability of natural resources to
be significant determinants of electricity consumption in SSA. We conclude the review by
proposing a methodology, and providing an initial proof of concept, for more accurately projecting
latent demand in sub-Saharan Africa. Incorporating latent demand in electrification models would
help inform energy sector stakeholders (e.g., investors and policymakers) about which sectors and
geographic locations hold potential for wealth creation via electricity access.

1. Background & motivation

With a rapidly growing population and increasing rate of urbanization, the region of sub-Saharan Africa (SSA)
will need to expand access to affordable and reliable electricity to achieve sustainable development. Some stud-
ies have highlighted that sustainable development goals (SDGs) are inter-linked citing that access to clean,
reliable and affordable energy (SDG 7) will be crucial to attaining other SDGs, such as improved healthcare
(SDG 3), quality education (SDG 4), sustainable cities (SDG 11) and overall human development (McCollum
et al 2018). As a result, researchers have developed many geospatial electrification models (GEMs) to determine
least-cost pathways towards attaining universal access (i.e., 100% access) to electricity in SSA. For example,
Korkovelos et al (2019) developed an open-source GEM to help policymakers in Malawi to identify last-mile
communities (i.e., communities that would receive access to electricity last) and the least-cost electricity supply
option for them. Another study, Moner-Girona et al (2019), used a least-cost electrification model to deter-
mine rural areas in Kenya where the potential for deploying renewable decentralized energy systems was being
underestimated or unaccounted for in the Rural Electrification Masterplan of Kenya. Many other models have
been developed to guide energy policymakers in SSA in planning for universal access (Kemausuor et al 2014,
Ohiare 2015, Mentis et al 2017, Moner-Girona et al 2019, Lee et al 2019, Nock et al 2020). A key in the success
of these electricity planning models is proper estimation of future electricity demand.

While these least-cost GEMs are essential for informing development pathways to achieve affordable
access to electricity, their outcomes are heavily dependent on input assumptions regarding future electric-
ity demand. This is because GEMs are designed to identify least-cost or otherwise optimal strategies to serve
the demand profiles that the user has identified. To project electricity demand, researchers have traditionally
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used tiered frameworks (Mentis et al 2017, Korkovelos et al 2019), regression-based models (Gabreyohannes
2010, Adom et al Bekoe 2012) or made assumptions about demand growth based on GDP and population
growth rates (Kemausuor et al 2014). Importantly, relatively few models or analyses explicitly consider or
account for latent electricity demand. Interestingly, in a recent review of optimization models used for rural
electrification research, latent demand for electricity was not addressed in any of the publications reviewed
(Akbas et al 2022).

In economics literature, latent demand is described as demand for a product or service that cannot be
satisfied by any existing product or service due to resource constraints (Richardson and Crompton 1988,
Zax 1997, Freel et al 2012, Clifton and Moura 2017). In the electrification literature, latent electricity demand
is often defined as the demand for electricity that would be present if accessible infrastructure and adequate
techno-economic conditions to supply electricity were available (Fabini et al 2014, Afful-Dadzie et al 2017,
Falchetta et al 2020, Poblete-Cazenave and Pachauri 2021). In this paper we focus on the electricity-based
definition of latent demand. Latent demand is inherently difficult to quantify because there is uncertainty
about how consumers will respond to enhanced electricity access (Poblete-Cazenave and Pachauri 2021). For
example, even when the power grid is expanded it is unclear whether the local population will be able to afford
the electrical appliances.

Furthermore, there are dynamic interactions between access and demand that are difficult to predict and
may evolve over time. For example, electricity access may support economic development or wealth creation,
which in turn may further increase demand. Enhancing methodologies for estimating latent demand would
help grid utility companies improve their cost recovery due to better estimation of demand and associated
revenue streams. It would also enable minigrid companies to develop more accurate estimates of revenue
streams, thus enhancing their chances of creating economically viable business models to aid electrification
in rural regions that are not connected to the grid and therefore potentially have very high latent demand.
Given that demand is the key input for supply-side electricity planning models that are used to inform energy
sector stakeholders, accurate estimates of latent demand would enable these stakeholders to better prioritize
infrastructure investments and plan development more efficiently. For example, Afful-Dadzie et al (2017) used
a mixed-integer linear program to show the economic impact of unserved demand in over a 20 years time hori-
zon (i.e., 2016 to 2035). The authors found that increasing budget allocation for energy access from 1.25% to
1.5% of Ghana’s GDP would reduce the opportunity cost of unserved demand by US$123 million over those
20 years. Here the authors define latent demand (i.e., unserved demand) as the ‘loss of economic activity’ due
to a lack of electricity supply (Afful-Dadzie et al 2017). A major takeaway from this study was that annual
savings (up to 1.75% of GDP) by the Government of Ghana could provide the necessary budget to attain 95%
electricity access in the country.

Quantifying latent electricity demand is a two-fold challenge. First there is the need to estimate demand
under the assumption that sufficient reliable and affordable electricity supply is available to serve all electricity
demand in the region (residential, commercial, industrial, agricultural etc). Second, assuming there is suffi-
cient supply to meet the projected demand there is a risk that the system may have been over or under built
when the actual demand is realized. Overestimating demand results in energy systems being oversized, and
governments not being able to recover their costs. Load overestimation in the design of photovoltaic (PV)
minigrids systems results in an additional capital cost of $2 to $6 per daily kilowatt-hour of demand overes-
timated (Louie and Dauenhauer 2016). As such, the cost borne by minigrid end-users who tend to be lower
income populations is prohibitive. The African Minigrid Developers Association (AMDA) highlighted that
low consumption of electricity supplied by minigrids has eroded the bankability of many minigrid business
models (AMDA 2020). On the other hand, underestimating demand results in low reliability of electricity
supply (Louie and Dauenhauer 2016), difficulty achieving the universal access target, and unrealized revenue
streams (Afful-Dadzie et al 2017). Thus, even if some end-users are provided with a reliable and affordable
supply of electricity, underbuilding the electricity system could result in an unreliable power system for some
users during periods where demand exceeds available supply. In short, underestimation of latent demand can
be self-fulfilling as power systems are designed to serve predicted demand levels. If latent demand is underesti-
mated or not considered in system planning, it will likely be left unserved in the future. Hence, better demand
estimation methods (i.e., those that consider latent demand) will be vital to increasing electricity access in SSA.

Improving methodologies for estimating latent demand and incorporating the resultant estimates into sys-
tem planning models can increase electricity access and generate economic growth in a cost-efficient manner.
Hence, the goal of this paper is to lay out a framework for estimating current, and projecting future, latent electric-
ity demand in SSA countries. In this paper, we begin by reviewing the existing latent demand literature. Then,
we delve into the various factors that affect electricity consumption as well as general electricity consumption
trends for newly electrified populations in SSA. We conclude by laying out the general framework for methods
that can be used to quantify latent demand and discuss avenues for future work.
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2. Methods

Our review encompasses a total of 56 papers on demand estimation and prediction in SSA. In conducting this
literature review we identified relevant papers using a combination of web databases and key word searches.
The Google Scholar and Web of Science databases were the primary sources for the review process. To identify
the relevant studies, we used key words and phrases including ‘determinants of electricity consumption in
SSA’, ‘demand prediction’, ‘demand forecasting’, ‘latent demand estimation’, ‘electricity usage patterns’, and
‘electricity consumption patterns for newly connected users’. In the review process, we focused on english-
speaking journal articles, and included all papers published between January 1, 2000 and October 10, 2021.
This wide time frame maximizes the coverage. We also included additional papers based on the identified
studies’ reference lists. While there were several qualitative and quantitative papers on electricity in SSA, we
identified 56 papers that discussed or studied demand estimation techniques and electricity consumption in
SSA. Our goal is to highlight how different demand estimation techniques impact electrification planning
and analyses in SSA. Thus, in our review of latent demand papers, we excluded papers that use electrification
tiers or a tiered characterization of demand, due to limits in their estimation technique technical detail and
flexibility. We also chose to not review literature related the supply-side of electricity access, meaning that
capacity planning models in SSA are typically excluded from our review.

A key factor is demand estimation is determining drivers of electricity consumption within different sec-
tors of the economy. A common technique used to investigate determinants of electricity consumption to
identify key determinants of electricity demand is autoregressive distributed lag (ARDL) models. ARDL mod-
els are time-series regression models used to estimate a time-variant dependent variable with time-variant
explanatory variables. Specifically, an ARDL model seeks to predict present values of the dependent variable
using past values of the dependent variable as well as present and past values of the explanatory variables. The
past values of the dependent variable (i.e., the lagged values of the dependent variable) are used to charac-
terize the ‘sluggish’ response of the dependent variable to changes in the explanatory variables (Bentzen and
Engsted 2001). Our review on determinants of electricity consumption included 48 studies that used ARDL
models in SSA, which we discuss in the next section. While such ARDL models may not be able to explicitly
predict electricity load over a time horizon, they show the correlation between various variables and electricity
consumption, which may be helpful for understanding consumption patterns among electricity customers
in SSA.

3. Results

3.1. Findings from literature on latent demand
Due to the lack of electricity consumption and demographic data publicly available in SSA, accurately esti-
mating and projecting future demand for electricity in the sub-continent is extremely challenging. Hence,
researchers have developed various regression-based models to predict demand for electricity in SSA. How-
ever, these regression or econometric approaches often fail to capture how electricity consumption may be
impacted by changes in available infrastructure or other factors. Nonetheless, in this section, we review the
extant literature on demand forecasting in general to show the relative lack of studies estimating latent demand
and to provide context for a proposed method to quantify latent demand. In our review, we classified existing
literature on electricity demand and consumption estimation into three categories, studies that use survey data
to predict electricity demand with regression, studies that use meter data to train regression models to esti-
mate/predict demand, and studies that use deterministic models (i.e., perfect forecasting) to quantify demand.
Table shows the classification of these methods of quantifying electricity demand.

First, researchers have carried out surveys among households in SSA to predict demand using demographic
characteristics and appliance usage patterns. These research papers pointed out that surveys for predicting elec-
tricity demand need to take more accurate inventories of appliances. They also revealed that existing electricity
customers are unable to realistically predict the appliances they would purchase in the short-term (Hartvigsson
and Ahlgren 2018). Finally, using a combination of regression approaches may help energy sector supply-side
stakeholders better understand and predict their customer base’s usage patterns.

One study sought to determine the accuracy of energy-use surveys in predicting consumption among
rural minigrid customers (Blodgett et al 2017). For their analysis, they compared survey-predicted electric-
ity consumption to actual measured consumption of customers in Kenya. The survey predictions resulted
in an average customer consumption error of 426 Wh per day per customer on an average customer con-
sumption of 113 Wh per day. Their study demonstrates that customers systematically underestimated their
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Table 1. Approaches to estimating and predicting electricity demand/consumption in SSA. Here we find that a majority of studies
(95%) exclude latent demand from their analysis.

Demand type Method References
Number of

studies

Survey-data-driven
regression models

(Blodgett et al 2017), (Hartvigsson and
Ahlgren 2018)

2

Meter-data-driven
approaches (regression
& longitudinal)

(Obok Opok et al 2008), (Tchuidjan et al
2014), (Louie and Dauenhauer 2016), (Tartibu
2018), (Allee et al 2021)

2

Estimate/prediction assumes perfect
ability to forecast (latent demand excluded)

Autoregressive (ARDL)
& other econometric
models on electricity
consumption

(Pihl 2000), (Abebaw 2007),
(Ziramba 2008), (Amusa et al 2009),
(Gabreyohannes 2010), (Neelsen and Peters
2011), (Sillah 2011), (Adom et al 2012),
(Adom et al 2012), (Wesseh and Zoumara
2012), (Ubani 2013), (Remigios 2014), (Adom
2015), (Bekele et al 2015), (Iyke 2015), (Jones
et al 2015), (Danmaraya and Hassan 2016),
(Inglesi-Lotz and Pouris 2016), (Johnson
2016), (Keho 2016), (Sama and Tah 2016),
(Sekantsi et al 2016), (Bah and Azam 2017),
(Khobai et al 2017), (Kwakwa 2018), (Sekantsi
and Timuno 2017), (Elfaki et al 2018), (Ateba
et al 2018), (Kwakwa 2018), (Sarkodie and
Adom 2018), (Adjei Kwakwa and
Adusah-Poku 2019), (Kimutai et al 2019),
(Samu et al 2019), (Taale and Kyeremeh 2019),
(Ali et al 2020), (Bonkaney 2020), (Jawneh and
Manneh 2020), (Onisanwa and Adaji 2020),
(Tesfamichael et al 2020), (Twerefou and
Abeney 2020), (Adusah-Poku et al 2021),
(Bohlmann and Inglesi-Lotz 2021), (Gafa and
Egbendewe 2021), (Guefano et al 2021),
(Merlin and Chen 2021)

48

Deterministic
approaches (i.e.,
assuming perfect
forecast)

(Ofetotse et al 2021) 1

Latent demand included Deterministic
approaches (i.e.,
assuming perfect
forecast)

(Fabini et al 2014), (Afful-Dadzie et al 2017),
(Falchetta et al 2020)

3

electricity consumption and failed to accurately state the duration and times of usage of their appliances
(Blodgett et al 2017).

Another study found that surveys focused on eliciting an accurate inventory of current and future appli-
ances from customers produced more accurate predictions than surveys utilizing demographic information
as indicators of demand (Hartvigsson and Ahlgren 2018). They quantified the accuracy of their survey results
by comparing daily load profiles from meter data to load profiles predicted using appliance ownership data.
Hence, future household surveys need to focus on collecting an accurate inventory of appliances in the house-
hold. Given the error associated with survey-based predictions of electricity demand, researchers have studied
survey approaches to load estimation for minigrid developers in SSA (Williams et al 2019). They conclude
that using a random-forest regression in tandem with a Least Absolute Shrinkage and Selection Operator
(LASSO) model would enable developers to identify their high-end customers, determine the most rele-
vant determinant of electricity consumption, and more accurately predict electricity demand. More data
on appliances in non-residential settings need to be collected to more robustly predict overall demand for
electricity.

Although the studies discussed above (Blodgett et al 2017, Hartvigsson and Ahlgren 2018) used electric
appliances ownership data to predict electricity demand, we determined that electric appliances should not
serve as a driver quantifying latent demand for a few reasons. First, although these appliances help predict
residential demand for electricity, the accuracy of responses to surveys with appliance inventories varies widely
and would consequently skew the results of latent demand estimation (Williams et al 2019). Second, the broad
range of types of appliances used in the SSA household would require each of these appliances to be identified
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Figure 1. Spatial distribution of electricity consumption or demand studies in SSA. Based on our review, there is a lack of
demand studies in parts of West and Central Africa. It is important to note that we focused on studies that attempted to estimate
country-level demand, and therefore that collectively investigated electricity demand across the entire subcontinent were not
included. Additional data sourced from Louw et al (2008), Solarin and Shahbaz (2013), Niger MTF Household Survey (2018),
Mulenga et al (2019), Hongyun and Radwan (2021).

as a predictor in a regression model, which may require use of more complex models such as the LASSO model.
Third, given that the studies that use the ARDL model show correlation between appliances as determinants of
consumption and electricity demand, one cannot infer causality from them. Hence, there is causal uncertainty
pertaining to appliances as predictors of electricity demand.

The second approach to estimating demand uses historical and current meter data to forecast electricity
demand. Three different demand prediction models were investigated in one study to determine which model
predicted with the least amount of error (Allee et al 2021). They used three different machine learning models,
namely an ordinary least squares model, a random forest model and a LASSO model, to predict electricity
demand for minigrid customers in Tanzania. The best of the three models (i.e., the LASSO model) predicted
daily customer-level load profiles with a median absolute error of 66%, the lowest error margin of the demand
forecasting models explored in our review.

Another challenge in quantifying latent demand for electricity in SSA that needs to be considered is the
dynamic interaction between demand and access, which may evolve over time. Access to electricity may cause
wealth creation (from increased productivity), which may in turn, increase demand for electricity (Poblete-
Cazenave and Pachauri 2021). As such, it is essential for researchers to also study how demand for electricity
may have evolved for newly connected customers in SSA. Given the relative lack of publicly available data on
electricity in SSA, we only found one study that investigated how demand evolved over time for newly con-
nected customers. According to the longitudinal study electricity demand is declining for newly connected
customers in Kenya (Fobi et al 2018). Using monthly electricity bills of 136 000 utility customers in Kenya,
Fobi et al (2018) showed that the median newly connected customer tends to rapidly increase consumption
until about a year of connection, after which consumption plateaus and eventually starts to decline. Further-
more, they found that electricity consumption among customers that were connected after 2009 tended to peak
much sooner than customers that were connected before 2009. This shows that more recently connected cus-
tomers consume less electricity than earlier customers even after these earlier customers’ consumption levels
off. Specifically, the median 2009 customer consumed about twice the electricity of the median 2014 or 2015
customer. Furthermore, the authors found that this trend applies to both rural and urban customers, with
urban customers generally consuming 50% more electricity than their rural counterparts. Hence, the increase
in number of new rural customers in Kenya due to its national electrification plan could ultimately lead to
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an overall decrease in electricity consumption growth over time because of the increasing proportion of rural
electricity customers with relatively less purchasing ability/income than their urban counterparts. Although
neither Allee et al (2021) nor Fobi et al (2018) predicted latent demand for electricity, their results show that
a latent demand prediction model would need to consider decreasing electricity consumption from new rural
customers, and the LASSO model should be studied more since it has the lowest mean absolute error of all the
demand prediction models in this review.

The existing literature specifically on predicting latent demand for electricity using a deterministic
approach (i.e., assuming perfect forecast) in SSA is limited. In this review, we only found three studies that
developed methods for quantifying and predicting latent demand for electricity. Fabini et al (2014) developed
a predictive model for mapping latent residential demand for electricity, which they call induced demand using
data from the Kenya Integrated Household Survey, Demographic and Health Survey (DHS), Society for Inter-
national Development and Kenya National Bureau of Statistics (SID-KNBS), the researchers used a k-nearest
neighbor regression model to cluster households according to ownership or use of various appliances, fuels,
building materials and other resources. They estimated demand under two scenarios: (1) current levels of elec-
tricity access and (2) expanded access to areas without electricity. In their methodology, they used the difference
between the total ownership metric (i.e., appliances currently owned by residents and those that residents are
projected to purchase) and the current ownership metric to quantify the latent demand for electricity. Their
study found that latent demand was highest in unelectrified areas of Kenya in closest proximity with either the
transmission network or an existing/planned minigrid. In essence, this application of their model implicitly
quantified latent demand for electricity in Kenya.

Another study, Afful-Dadzie et al (2017), used a mixed-integer linear program to show the economic impact
of unserved demand in over a 20 years time horizon (i.e., 2016 to 2035). In their paper, Afful-Dadzie et al (2017)
stress that the literature on latent demand is limited, and that no techniques have been established for estimat-
ing latent demand for electricity. As such, assuming that electricity supply taxes in Ghana were designed to
sufficiently correct market failure (i.e., compensate individuals with unserved demand), they estimated latent
demand by running a regression on electricity supply taxes over a ten-year time horizon.

The last study we found that included latent demand, Falchetta (2021), developed the multi-sectoral latent
electricity demand (M-LED) platform to enable planners explicitly quantify latent demand with high spatial
resolution as well as from non-residential sectors. To our knowledge, their study is the first to attempt quantify-
ing latent demand from commercial and industrial (C & I), agricultural, school, and healthcare sectors. Using
a variety of data sources from Kenya, the authors used the remote areas multi-energy systems load Profiles
model (Lombardi et al 2019) to create stochastic energy demand profiles for the aforementioned sectors, in
addition to the residential sector. To incorporate heterogeneity in residential demand profiles, the researchers
developed ten archetypical types of residential consumers based on appliance ownership and usage patterns.
Aggregating the predicted load profiles from each of the sectors, researchers can use their model to develop
more accurate least-cost electrification plans.

Based on our review, we conclude that the number of electricity demand or consumption studies across
the SSA subcontinent varies widely from country to country, with a large gap in countries spanning the Sahara
desert region. Figure 1 indicates that a relatively large number of studies are related to Kenya and South Africa,
while no studies were identified for others such as Burundi and Sierra Leone. Hence, future work in demand
prediction or estimation should use ‘demand-study-poor’ countries as case studies to assist these countries
on their path towards universal electrification. Equally important is the need for governments and research
institutes in these countries to incentivize data collection and storage to facilitate researchers’ efforts to forecast
electricity demand.

3.2. Identifying drivers of electricity consumption and latent demand
To quantify latent demand, it is essential to determine the factors that drive both latent demand and electricity
consumption. From our literature search we have found that majority of studies on determinants of electricity
consumption used an ARDL model to predict electricity consumption in a country. According to the literature
reviewed, some of the key determinants of electricity consumption include population, gross domestic product
(GDP), education, employment and use of diesel as an energy source. We summarize these findings in table 2.

Given that a higher population density results in more economic, social and other productive activities
(such as education and healthcare), population density was identified as a main driver of both latent demand
and electricity consumption in SSA (Amusa et al 2009, Adom et al Bekoe 2012, Ubani 2013, Falchetta 2021).
Regarding latent demand, a study of latent demand for electricity in Kenya determined that population density
(defined as people per square kilometer) was a significant driver of latent demand in the residential, healthcare
and commercial sectors (Falchetta 2021). They used MWh per square kilometer (MWh m−2) as their met-
ric for latent demand for electricity. As a result, their finding aligns with the general intuition that areas with
higher populations would generally require access to more services, such as hospitals, that require electricity
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Table 2. Summary of drivers of electricity demand and their respective data sources.

Electricity demand drivers Source(s) Data

Education Shahbaz et al (2019) MTF household survey;
MLED Github
repository

Electricity price Luhangala et al (2022),
Al-Bajjali and
Shamayleh (2018), Loi
and Ng (2018), Ye
(2018), Latif (2015),
Inglesi-Lotz (2014)

Kenya open data
initiative, other national
sources

Employment rate Ubani (2013), Narayan
and Smyth (2005)

MTF household survey,
(Shirley et al 2019)

Export diversification Shahbaz et al (2019),
Observatory of
Economic Complexity
(2019)

Observatory of
economic complexity,
other national sources

Socio-economic drivers

Household
income/average income

Narayan and Smyth
(2005), Ubani (2013),
Loi and Ng (2018),
Williams et al (2019)

MTF survey, DHS
StatCompiler

Industrial output Ubani (2013) No data found
Population den-
sity/population/household
size

Falchetta (2021),
Al-Bajjali and
Shamayleh (2018), Loi
and Ng (2018)

World bank, UN,
gridded population
dataset

Real GDP (as economic
output) or GDP per
capita (as income)

Al-Bajjali and
Shamayleh (2018),
Ubani (2013), Narayan
and Smyth (2005),
Shahbaz et al (2019)

World bank data catalog

Urbanization Falchetta et al (2020) Global electrification
platform

Natural-resource-related drivers

Average
residential/commercial
water consumption

Al-Bajjali and
Shamayleh (2018)

Rwanda HH survey
includes access to water

Market value of crops A2EI Report (2019), E4I
Report (2020), Falchetta
et al (2020)

Kenya open data
Initiative

Resource availability
(extractable natural
resources, cropland, etc)

Falchetta et al (2020) MAPSpam, Kenya open
data Initiative

Infrastructure-related drivers

Accessibility (road
accessibility and
proximity to market)

HarvestChoice & IFPRI
(2016), A2EI Report
(2019), Falchetta et al
(2020), IFPRI (2020)

Global electrification
platform, harvard
dataverse

Electrification rate
(including existing
demand in healthcare
facilities)

Maina et al (2019),
Falchetta et al (2019),
Falchetta (2021)

MLED Github
repository

Public facilities Snow et al (2019) Snow et al (2019)
Prevalence of diesel
systems

E4I Report (2020), A2EI
Report (2019), Williams
et al (2019)

Integrated household
survey, MTF household
survey

consumption (Narayan and Smyth 2005, Amusa et al 2009, Adom and Bekoe 2011, Ubani 2013, Al-Bajjali and
Shamayleh 2018, Loi and Ng 2018). Given that urbanization was classified geographically by population den-
sity in their study, they found that urbanization was a driver of latent demand in Kenya. Studies, such as Ubani
(2013) and Al-Bajjali and Shamayleh (2018), used ARDL models with causality direction tests that showed
that not only was there a statistically significant correlation between population and electricity consumption
(in kWh) but there was a unidirectional causality from population density to electricity consumption.

Given the focus on socioeconomic development in SSA, the relationship between electricity consump-
tion and economic output has been studied at length in the extant literature. GDP is the most commonly used
metric for economic output in the literature. Although a plethora of studies have shown a positive relationship
between GDP and electricity consumption, the direction of causality between the two variables remains unclear
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Table 3. Summary of price elasticity of electricity in extant literature from a select group of countries.

Country Price elasticity Source

United States −0.1 Burke and Abayasekara 2018
Singapore [−0.05, −0.37] Loi and Ng 2018

Canada [−0.1, −0.096] Latif 2015
South Africa −1.35 Anderson 2004
South Africa [−0.95, −1] Inglesi-Lotz 2014
South Africa −0.89 Ye et al 2018

(Narayan and Smyth 2005, Ubani 2013, Al-Bajjali and Shamayleh 2018, Shahbaz et al 2019). Latif (2015) iden-
tified four hypotheses about the relationship between GDP and electricity consumption. First, the neutrality
hypothesis posits that there is no relationship between the two variables. Second, the conservation hypothesis
suggests that a unidirectional causal relationship exists from GDP to electricity consumption. Hence, electric-
ity conservation programs would not affect economic output per this hypothesis. Third, the growth hypothesis
states that increased consumption of electricity increases GDP. Fourth, the feedback hypothesis suggests that a
bidirectional causal relationship exists between GDP and electricity consumption (i.e., the two variables jointly
cause each other at the same time). Hence, although a statistically significant correlation exists between GDP
and electricity consumption (in kWh), the uncertainty in the direction of causality prevents GDP from being
deemed as a driver of demand. Future work should investigate alternative indicators of economic activity at a
high spatial resolution and determine their relationship with electricity consumption.

Extant literature on electricity consumption identified electricity price as a significant driver of demand.
Researchers have typically found an intuitive negative relationship between electricity price and consumption.
Regression-based methods that were used to predict electricity consumption based on price and other factors
also determined the price elasticity of demand for electricity (Inglesi-Lotz 2014, Latif 2015, Loi and Ng 2018, Ye
et al 2018, Al-Bajjali and Shamayleh 2018). These sources found that demand for electricity is relatively price
inelastic. Given that many households in SSA have use alternative fuels to power activities, such as kerosene
lanterns, we hypothesize that electricity would be relatively more price elastic than in other developed nations
(Luhangala et al 2022). The reasoning behind this hypothesis is that these alternative fuels may act as substitutes
for electricity in these households, making consumers relatively more sensitive to electricity prices. Table 3
summarizes the price elasticity of electricity that has been identified by various studies across some select
countries. It is important to note that the Burke and Abayasekara (2018) study summaries the findings of a
number of different studies that identified electricity price elasticities for the United States, whereas the other
studies are single analyses for a given country. The literature summarized in table 3 appears to support our
hypothesis since South Africa has a greater magnitude of elasticity than those of the United States, Canada and
Singapore, however more research is needed to be conclusive.

Income is another predictor of electricity consumption investigated widely in the existing body of literature.
Across both developed and developing countries, researchers found that there is a positive correlation between
average income and electricity consumption (Narayan and Smyth 2005, Ubani 2013, Loi and Ng 2018). The
positive relationship between income and electricity stems from wealthier individuals purchasing more appli-
ances for usage in their households. While studies such as Loi and Ng (2018) used income at the household
level as a predictor, other studies like Ubani (2013) used GDP per capita as a metric for income. Although
both metrics of income resulted in the same trend and revealed that electricity is income elastic across devel-
oped and developing countries, household level income may be a more accurate predictor of consumption.
The aggregate nature (i.e., low resolution and multi-sectoral) of GDP per capita prevents regression models
from properly depicting the relationship between household income and electricity consumption. As a result,
future work should use more granular income data for predicting latent demand, such as disposable income
per household, instead of using GDP per capita. Furthermore, Williams et al (2019) recommend that surveys
developed to estimate electricity demand should consider using other customer attributes, such as mode of
transportation, as proxies for income to reduce the biases and errors that may result from having household
heads elicit their income.

In our review, we also identified that employment rate was a driver of both latent demand and electric-
ity consumption. A study showed that in parts of northern Kenya where population was relatively denser,
low employment rates resulted in lower levels of latent demand for electricity in the commercial and micro-
enterprise sectors (Falchetta 2021). Furthermore, another study identified that there was a statistically signif-
icant relationship between employment rate and electricity consumption in Nigeria (Ubani 2013). However,
given that neither analysis controlled for income at the household-level, it is unclear whether there is an income
effect that plays a role in the relationship between employment rate and electricity consumption. Analysis
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Figure 2. Hypothesis of the relationship between education and electricity consumption similar to that of the Kuznets curve in
environmental policy theory. We avoid using units to quantify either education or electricity consumption since the goal of this
visualization was to illustrate the concept being conveyed in our hypothesis.

from Narayan and Smyth (2005) showed a neutral relationship between employment and electricity consump-
tion. Additionally, in their review of drivers of electricity consumption, Jones et al (2015) found that of the
two papers that investigated employment as a predictor of electricity consumption, neither study found the
relationship to be statistically significant.

Education is a predictor of electricity consumption that has not been researched as extensively as other
predictors such as income and price. One study showed that the education sector was a substantial source of
latent demand for electricity because of its unserved energy service requirements in both rural and urban parts
of Kenya (Falchetta 2021). Alternatively, regression analysis from Shahbaz et al (2019) showed that education
was negatively correlated with electricity consumption in the United States. They argued that individuals with
higher levels of education in the United States were more conversant with energy efficient appliances and the
need for energy conservation and thus all else equal, consumed less electricity than their counterparts with
lower levels of education. In line with the Kuznets curve in environmental policy, we hypothesize that higher
levels of education may lead to higher consumption rates until a certain level of education is attained by the
population in a region. Figure 2 illustrates this hypothesis conceptually using a curve similar to the Kuznets
curve described in (2015). Given that our hypothesis suggests that consumption would only decline and not
return to its initial level, our curve differs somewhat from the Kuznets curve in that it is not a smooth parabola
which has its final value equal to its initial value.

A review of electricity consumption literature indicated that the relationship between education and elec-
tricity consumption was unclear in the literature with two sources finding a positive relationship, one source
finding a negative correlation, and two sources finding no correlation (Jones et al 2015). As such, future work
would need to use data sources such as the Integrated Household Surveys of countries in SSA, which contain
education levels in the survey questions, to determine the relationship between the two variables.

We also identified that availability of natural resources and agricultural factors like market accessibility
and the market value of crops cultivated in an area are drivers of latent demand in SSA. Regarding the avail-
ability of natural resources, countries that are endowed with extractable minerals require electricity to power
their refining factories. As a matter of fact, some SSA countries have historically invested in building electricity
generation capacity to power the refining of such minerals (Adusah-Poku and Takeuchi 2019). Studies have
shown that the agricultural sector (from irrigation to post-harvest activities) hold great potential for produc-
tive uses of electricity in SSA ((Banerjee et al 2017), (Borgstein et al 2020), (Van-Hein Sackey 2021)). As such,
the availability of arable land as a resource would serve as an indicator of latent demand for electricity. Since
most countries in SSA primarily sell their agricultural produce with little or no processing, the market value of
the crop cultivated and accessibility to a market serve as drivers of latent demand (E4I, 2020, Falchetta 2021).
Using the market value of crops as a predictor of latent demand would provide further insight into the impact
that productive uses of electricity in agriculture have on electricity system planning. The E4I report showed
that some diesel systems used for post-harvest processing could be replaced with electric systems, which is a
potential source of latent demand (E4I 2020). However, this report also pointed out that for such a substitu-
tion to occur, electric post-harvest processing systems would need to improve their overall output in terms of
quantity of food processed per hour. This is specifically true in the case of grain mills, since the electric milling
machine studied relied on solar power, its intermittent nature required customers to mill grain at culturally
unconventional times which was undesirable. Aside from these reports, literature on the relationship between
these agricultural drivers and electricity consumption is limited.
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Because diesel and electricity are potential substitutes for many services, the prevalence of diesels sys-
tems may be a driver latent electricity demand provided that electric appliances can either outperform their
diesel counterparts or reduce costs. Studies, such as Williams et al (2019), identified the use of diesel as an
energy source in households as a strong predictor of electricity consumption. Our reasoning is that energy
consumption in households with such diesel systems can be representative of the household’s latent demand
given their potential to switch from diesel to electric systems. Al-Bajjali and Shamayleh (2018) also identi-
fied average water consumption (among households and businesses) as a statistically significant predictor
of electricity consumption in Jordan. The relevance of their finding lies in the fact that Jordan is the second
most water-scarce country (UNICEF 2017). More data on water consumption in varying contexts (urban and
rural) would need to be collected in SSA countries to determine whether the validity of water consumption
as a predictor extends to SSA. It is possible that the statistical significance of average water consumption as a
predictor depends on the quality of water infrastructure in the country, and thus, its suitability as a predictor
of electricity consumption could vary widely from country to country.

Since governments in SSA have been creating national plans for development and economic growth, we
considered that industrial and macro-level economic activities, specifically export diversification and industrial
output, may be potential drivers for latent demand. One study identified export diversification as a driver of
energy demand in the United States on a national level (Shahbaz et al 2019). Export diversification, for the con-
text of the paper, was defined as the increase in the number of different types of exportable products (Shahbaz
et al 2019). Their regression-based study identified a negative relationship between export diversification and
energy demand due to the manufacture of more energy efficient products. Future work may seek to investigate
the potential effect of economies in SSA investing more in manufacturing and natural resource processing on
electricity consumption. Although endowed with an abundance of natural resources, countries in SSA tend to
export these natural resources more than they process them. As such, leadership in some countries (such as
Rwanda and Nigeria) have stated a need to invest in building infrastructure to process these natural resources.
An ARDL study of electricity consumption in Nigeria found industrial output to be a statistically significant
driver of demand for electricity (Ubani 2013). Similar to GDP, utilizing national industrial output as a pre-
dictor would not contribute to a geographically granular latent demand estimation model (i.e., for a cluster
of businesses or manufacturing plants in a given area for each country). Table 2 summarizes the drivers of
electricity consumption found in the literature and their respective data sources.

3.3. Potential barriers for satisfying latent demand
In an ideal latent demand forecasting scenario (i.e., a model is developed to accurately forecast latent demand
in SSA) there would still be some barriers that would hinder customers from accessing electricity to serve their
entire demand. First, the lack of published grid expansion plans from state-owned utility companies in SSA
threatens the commercial viability of off-grid systems. Suppose, for example, that latent demand was perfectly
projected in a geographical location and that the planners determined that an off-grid system was the least-cost
supply option. In this case the financial risk for off grid investments would be increased by a lack of a publicly
available grid expansion plan. Without awareness of the grid expansion plan, minigrid developers would be at
risk of future grid encroachment displacing their customers, and therefore, causing financial loss. Thus, even
with perfectly forecasted demand models, investments in infrastructure needed to serve latent demand may
be hindered by lack of transparency and the financial risk each developer is willing to take on.

Second, the lack of policy regulating interaction between the grid utility and minigrid developers as well
as lack of financial incentives such as feed-in tariffs or cost-reflective tariffs for off-grid systems would impede
the deployment of off-grid energy systems in SSA. The importance of preventing grid encroachment from
increasing the financial risk of investing in off-grid systems due to competition cannot be overstated. This is
because even if latent demand models were improved and integrated into electricity planning models, current
policy and regulatory frameworks often limit the commercial viability of off-grid systems, creating a barrier
to universal electricity access.

Lastly, due to the poor grid reliability in many SSA countries there is a lack of trust in the capability
of the electric utility to supply consistent power, leading many households and industries have invested in
off-grid systems for backup power generation (Taneja 2014). As a result, the ultimate consumption of elec-
tricity from microgrids or national grid connections may still be lower than the demand levels estimated by
improved forecasting models. Thus, it is imperative that SSA countries rebuild trust in the local communities
and industries.

3.4. Data availability for quantifying latent demand
The lack of data availability for electricity access research in SSA is a potent limiting factor in forecasting latent
demand. Given the initial focus by the international community on ensuring residential access to electricity, a
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myriad of household surveys is available, such as the Integrated Household Survey and the Multi-tier Track-
ing Framework (MTF) Household Survey (World Bank 2019). These surveys contain relevant demographic
information about residential electricity customers in SSA, inventories of appliances, and socioeconomic infor-
mation. While the availability of data from these surveys can be helpful for projecting latent demand, there is
a lack of meter data showing electricity consumption over time for these residential customers. Utility com-
panies in SSA deem meter data to be proprietary information, and as such, tend to be unwilling to publish
such data. However, once the utility companies have anonymized the meter data and taken other steps to
protect the privacy of the customers, they could share the data via public data platforms such as Zindi or
openAfrica.

Furthermore, with the exception of countries like Kenya and South Africa, we did not find any data pub-
licly available about electricity consumption for non-residential purposes in other countries in SSA. Beyond the
percentage of existing demand from each sector that can be found on national websites, it is challenging to find
high-resolution data to spatially locate geographic areas with various forms of non-residential demand (i.e.,
education, healthcare, commercial, industrial, etc). As such, simplifying assumptions would need to be made
in order to estimate latent demand from these sectors, such as those made in Falchetta (2021) for the agriculture
sector in Kenya. For example, given that the cropland extent dataset was at a higher resolution than the rainfed
area dataset from MapSPAM, Falchetta et al assumed a homogenous distribution of cropland for each crop in
each pixel in the downscaling process. The availability of high-resolution data would facilitate research efforts
to study productive uses of electricity in SSA. Increased use of smart meters by electricity customers would
enable utility companies and minigrid developers to collect data on consumption and determine consump-
tions patterns that may influence future decision-making. Especially in the case of industrial customers who
are resorting to small-scale solar PV systems and diesel generators as backup sources for the grid, utility com-
panies can determine the opportunity cost of poor grid reliability, observe usage patterns and plan accordingly
(Taneja 2018).

Nonetheless, some data sources for residential demand, agricultural activity and cropland data and eco-
nomic growth were identified and are summarized in table 2. The Kenya Open Data Initiative is a repository
containing granular data from various sectors in Kenya, including healthcare, education, and local govern-
ment. The website also contains socioeconomic data on metrics such as the poverty gap. The MTF household
survey organized by the World Bank contains a plethora of demographic information as well as some appliance
inventory for households in many countries in SSA. National statistics, such as GDP, urbanization and pop-
ulation can also be found on the World Bank Data Catalog. The Global Electrification Platform (GEP) serves
as both a tool and data source for least cost electrification in SSA. GEP uses a geospatial electrification model
known as the Open-Source Spatial Electrification Toolkit (OnSSET) to determine the least-cost pathway to
universal electrification in SSA countries by 2030. As such, the website hosting the tool contains datasets for
each country that provide a wide range of spatial data (such as distance from high voltage or medium voltage
transmission lines, global horizontal irradiance, wind speed, proximity to a hydropower plant and planned
grid network among others) at a high resolution. MapSPAM is a data source containing datasets pertaining to
agriculture globally. The MapSPAM datasets are generated from the SPAM model which uses a cross-entropy
approach to determine disaggregated crop distribution worldwide.

It is important to note that data availability varies greatly across the sub-continent. Whereas nations such as
Kenya have relatively more data available from various sectors, other countries have little data publicly available.
Hence, any model that aims to project latent demand for electricity in SSA would need to make a host of
simplifying assumptions to estimate demand in certain countries.

4. Recommended methods for quantifying latent demand and future work

A more explicit approach to estimating current and projecting future latent demand for electricity in SSA is a
crucial tool for determining the commercial viability of energy system deployment. While one study developed
an implicit approach to map induced demand for residential electricity, they neglect to indicate the magnitude
of latent demand across different sectors that would exist in their future scenario (Fabini et al 2014). While there
is a relative abundance of ARDL models being used to predict electricity consumption (table ), there is a need
to develop more that are driven by consumption data. The drivers of electricity consumption identified in these
ARDL studies can be used to inform data collection for a robust latent demand projection model. The M-LED
platform developed by Falchetta (2021) could be used as a starting point for modeling latent demand in SSA.
Their methodology uses a variety of data sources from each sector, such as population clusters, distribution of
wealth, potential schools to be constructed, existing cropland and irrigation requirements and road density. An
advantage of using the M-LED platform is that Falchetta (2021) states all the data sources used in their analysis
and have made the data publicly available. Given that they (i.e., the researchers) collected their own data directly
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or indirectly for certain sectors, their database provides a wealth of information for other researchers. Fabini
et al 2014 used these data to create stochastic load profiles at a cluster resolution using a set of assumptions.
A cluster is defined as a group of households, which may range from as few as two households to as many
as tens of thousands of households. The current version of the M-LED platform uses the remote areas multi-
energy systems load profiles model to process appliance-based classification of households into minute-specific
load profiles for a 365 day period. M-LED considers the impacts of climate variability in Kenya by modeling
cooling appliance loads based on seasonal temperature patterns. A field campaign was carried out to survey
households, schools and healthcare facilities to validate these model results. For the agriculture and enterprise
sectors, Falchetta (2021) performed technoeconomic analysis and literature sources (in the absence of adequate
data) to estimate latent demand for electricity. Future work could use climate integrated assessment models
to predict general weather patterns (within the context of climate change) in the near future to improve the
accuracy of the latent demand forecasting.

Due to the relative availability of data in Kenya, we would recommend that Kenya be used as the first case
study for any model developed to estimate latent demand. Replicating results from Falchetta (2021) would lend
perspective to the type of data that needs to be collected for data-poor countries, and model assumptions that
may need reconsideration. When modeling latent electricity demand in a data-poor country, using a frame-
work based on the methods of Ponce de Leon Barido et al (2017) may prove practical. The authors scaled the
data from multiple sources (to ensure that each variable was within the same order of magnitude) and used the
scaled data to create two indices for each ward (the smallest administrative division) in Kenya. The first index is
for natural capital, which consists of soil quality and potential, cropland availability and number of waterbod-
ies in proximity. The second index is for infrastructure capital, which consists of population density, availability
of first- and second-tier roads, presence of electricity infrastructure and access to education, trade, healthcare
and financial services. The authors then generate a composite micro-enterprise development index, which is
the summation of these two indices. Although the goal of their analysis was to determine opportunities for
wealth creation in Kenya post-electrification, a similar approach can be used to make first pass estimates of
latent demand in data-poor countries.

To develop this framework, future work could replicate the analysis for Kenya found in Ponce de Leon
Barido et al (2017) and compare the results with those replicated from Falchetta (2021). After this replica-
tion of Ponce de Leon Barido et al (2017), one can then create a training dataset containing the components
of natural and infrastructure capital, the demand drivers identified in table 2, and latent demand from the
M-LED platform. The training dataset could then be used to train a LASSO regression model to predict latent
demand for electricity in Kenya. The LASSO model is a regression model that determines the most significant
predictors of a dependent variable in addition to predicting the dependent variable itself. Having collected
appropriate data for other data-poor countries, one can then apply the LASSO model to predict latent demand
in such countries throughout SSA. Finally, using some of the geospatial datasets mentioned previously (such
as MapSPAM), one can geospatially determine latent demand in SSA. Such an analysis would provide stake-
holders with broad insights into the geographic areas with high potential for new energy system deployment to
serve latent demand, even in data-poor countries. To acknowledge the dynamic interaction between access and
latent demand (i.e., access resulting in increased demand), future work should consider incorporating access
to electricity over time as a lagged predictor of latent demand. Figure 3 summarizes our proposed approach to
quantifying latent demand in SSA countries.

5. Application of proposed framework

Here we present an application of the first steps of our proposed framework to Kenya to demonstrate the
training dataset phase of the data-rich country for predicting latent demand for electricity in SSA. The initial
steps of our proposed framework are as follows: (1) collect the necessary input data, (2) determine sector
specific latent demand using a deterministic model, and (3) map the spatial distribution of latent demand
at a sub-national level, (4) run the trained regression analysis model. Using a deterministic latent demand
model, M-LED (Falchetta et al 2020), and the necessary input data (e.g., population and sector data) shown in
figure 3, we estimated latent demand across residential, education, commercial, health and agricultural sectors
in Kenya (Fabini et al 2014, Afful-Dadzie et al 2017, Falchetta et al 2020, Poblete-Cazenave and Pachauri 2021).
We then feed this into the regression model (LASSO). The value of this analysis is being able to highlight how
stakeholders can address latent demand in different sectors, and where to target their investments for electric
system expansion (e.g., grid extension or mini-grid investments may vary by sector).

5.1. Latent demand by sector
The latent demand in a country will vary by sector. These variations can stem from different population densi-
ties in areas surrounding those sectors, and expected end-use appliances. In figure 4, we show the annual latent
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Figure 3. The steps for quantifying latent demand. An initial latent demand dataset would need to be created to train a LASSO
regression latent demand model for a relatively data-rich country in SSA, which would determine the most significant predictors
of latent demand. Researchers can then collect data on these drivers of latent demand to further train the model to predict latent
demand in these data-poor countries.

Figure 4. Annual latent demand for Kenya by sector. Here we see that the education and residential sectors have the highest
amounts of annual latent demand.

demand estimates from the deterministic model (M-LED) for the residential, education, commercial, health-
care, and agricultural sectors. When investigating the overall sector-wise latent demand in Kenya, we find that
highest amounts of latent demand occur in the residential (221 GWh) and commercial (113 GWh) sectors (see
figure 4). In the residential and commercial sectors, latent demand is mainly driven by increasing demand for
high-end household appliances (i.e., air conditioners) and higher populations in urban parts of the country.
The latent demand in the education sector is primarily due to the rising need for education infrastructure to
serve Kenya’s rural populations, and the demand for high-end appliances for tertiary institutions.

While certain sectors can have high amounts of total latent demand, we find large spatial variability across
the country (see figure 5). In investigating the spatial distribution of latent demand by sector, we find that the
highest regional levels of latent demand in the education, health, crop processing and irrigation sectors are
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Figure 5. The spatial distribution of annual latent demand in Kenya for the (a) residential, (b) commercial, (c) education,
(d) health, (e) irrigation, and (f) crop processing sectors. We find that the residential (a) and commercial (b) sectors had the
single locations with the maximum amounts of latent demand in Kenya. The health (b) and education (a) sectors had their
highest latent demand from western Kenya, while the agricultural sector (i.e., crop processing (c) and irrigation (d)) had the
lowest amount of latent demand. Note that the units for (a)–(d) are in MWh km−2, while (e) and (f) are in kWh km−2.

located in the western part of Kenya. The western part of Kenya is known to have a peri-urban population,
with a relative abundance of cropland and higher population density (World Resources Institute 2001, Jayne
and Muyanga 2012). As such, we infer from our results that population density and abundance of cropland
are significant predictors of latent demand within the education, health and agriculture (i.e., crop processing
and irrigation) sectors. Thus, electricity system planners should strongly consider a national productive use
program that prioritizes productive use activities in western Kenya due to the potential latent demand for
agriculture, health and education in that region.

Figure 5 shows that the residential and commercial sectors had the single locations with highest amounts of
latent demand in the urban environment of Mombasa in southern Kenya. This is likely due to the latent demand
for high-end appliances (such as air-conditioning and large-scale computing) that businesses in Kenya require
to be productive. Hence, future appliance inventory survey work should focus on identifying the power rating,
quality, and type of devices used in the commercial sector in Kenya, which would improve the accuracy of
demand predictions in urban areas. Furthermore, due to the potential latent demand in the commercial sector,
utility companies and Kenya’s electricity system planners should consider coordinating with business owners
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Table 4. Summary of LASSO regression results for latent demand prediction in Kenya. A (∗) indicates that the variable was not a
significant for predicting latent demand, and was dropped from the model.

Independent variable Coefficient

Intercept −43 941.75
Population +135.86

Travel time to market ∗
Electrification rate ∗

Surface water distance ∗
Groundwater depth ∗

Cropland +191.42

Total observations: 1040

in the sector to fuel electricity development. It is possible that high users in the commercial sector could cross-
subsidize other lower demand sectors (e.g., healthcare and crop production) and rural environments, thus
creating more affordable electricity access.

Additionally, based on existing, least-cost, rural electrification literature, stakeholders interested in meet-
ing latent demand in the residential and commercial sectors may want to consider investing in either
extending Kenya’s grid network or building larger capacity minigrid systems (Afful-Dadzie et al 2017,
Akbas et al 2022, Kemausuor et al 2014. Korkovelos et al 2020, Mentis et al 2016, 2017 Moner-Girona
et al 2019).

5.2. Latent demand by sector
Here we provide a proof-of-concept of the regression model in our proposed framework, using a subset of
our original input data to create a training dataset for a regression model. The input data used are population,
travel time to market (i.e., market accessibility), cropland, education sector demand, healthcare demand, and
current electrification rate. Summary statistics of our input data can be found in appendix A. We use the
LASSO regression model due to its effectiveness for determining the most significant independent variables
in a analysis when multicollinearity (i.e., when two or more predictor variables are highly correlated to each
other) may be present. The form of LASSO regression is shown in equation (1)

LDi = β0 + β1 ∗ pi + β2 ∗ tti + β3 ∗ eri + β4 ∗ sf wi + β5 ∗ gwdi + β5 ∗ cri + εi. (1)

Here LD is the latent demand at location i, β is the coefficient of the predictor variables, p is the population
at location i, tt is the travel time from location i to the nearest market with up to 50 000 people in hours, er
is the electrification rate expressed as a fraction at location i, sfw is the distance from surface water in meters
of location i, gwd is the average depth of groundwater in meters at location i, cr is the hectares of cropland
available for farming at location i, and ε is the error term associated with estimating latent demand in location
i within the regression.

The regression results are illustrated in table 4. From the regression analysis we deduce that of the predic-
tor variables, both population and cropland availability were the most significant drivers of latent demand in
Kenya. Our results are consistent with the fact that the agriculture sector accounts for about 24% of the GDP
in SSA (Banerjee et al 2017), and an increasing population corresponds with increasing demand for electricity
services (Kanagawa and Nakata 2008). Based on the positive values of the coefficient, we can infer that con-
trolling for all other variables, an additional hectare of cropland in Kenya would increase latent demand by
191 kWh per year while each additional person to the population would increase latent demand by 136 kWh
per year.

5.3. Extension to data-poor countries
The above analysis demonstrates the data gathering, collection, and the classification of significant latent
demand predictors using a data-rich country (i.e., Kenya). The next steps of our proposed framework would
involve collecting data on the significant predictors of latent demand for a data-poor country, which in this
case is cropland availability and population. The results of our analysis are in line with our literature review
results which showed that cropland and population were predictors of latent demand in SSA. Population data
collection efforts should be at a granular resolution (i.e., sub-county level) to ensure that the data is use-
ful in predicting latent demand. Cropland data collection is mainly done via satellite imagery, and thus may
require partnerships with research institutions with such technology. We note that despite having a relatively
substantial amount of data on Kenya, it can be computationally intensive to scale each sector-based spatial
dataset used in the deterministic latent demand model to the same resolution for use as training data. As
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such, researchers should consider the resources required, specifically computational power, to perform this
data-intensive analysis.

6. Conclusion

This paper first reviewed existing literature on methodologies to identify drivers of electricity demand, and
more specifically to estimate latent demand, and then outlined a framework for including latent demand in
energy planning studies in SSA. Most existing literature is focused on developing and applying econometric
models (such as ARDL) to broadly forecast electricity demand. However, the econometric models reviewed
in this paper do not explicitly capture latent demand in their estimation of electricity demand. As explained
in this paper, the absence of latent demand in these demand estimations prevents SSA countries from ade-
quately prioritizing infrastructure investments and maximizing economic productivity from electricity access.
In order to specifically quantify latent demand, a shift towards methods driven by high-resolution household
and commercial-level meter data will be essential. Although large gaps in data availability and demand studies
exist across SSA, data-based approaches that use survey data and meter data to create predictive models may
be helpful. As such, it is essential for research institutions and governments in SSA countries to incentivize the
collection of data to facilitate energy-related research.

Based on our review, we conclude that although GDP is commonly identified as a statistically significant
predictor of demand, the direction of causality between GDP and electricity consumption remains unclear.
This makes recorded GDP an imperfect predictor of latent demand because the presence of latent demand
may also imply that a region also has unrealized economic potential. From our review, we identify population
density, urbanization, price, household income and market value of crops cultivated as key potential drivers
of electricity demand. Furthermore, the reviewed literature also supports our hypothesis that electricity is
relatively more price elastic in SSA countries than developed nations, due to the prevalent use of non-electric
fuels (e.g., kerosene and diesel) to power essential services, such as lighting and phone charging; however, more
analysis is needed to draw firm conclusions. As a result, it is difficult accurately project latent demand without
understanding the tariff structures that consumers who are currently underserved will face when their access
and consumption levels increase.

Additionally, we show that some demand drivers, such as education, export diversification and indus-
trial output, need to be studied further to create a multi-sectoral latent demand model that accommo-
dates productive uses of electricity from sectors beyond agriculture (i.e., education, healthcare, commercial).
Such a multi-sectoral estimation of latent demand would help inform stakeholders about which sectors may
hold potential for wealth creation via electrification. Furthermore, we acknowledge the need for any projec-
tion of latent demand to consider the dynamic interaction between access and latent demand. Specifically,
latent demand estimation methodologies need to consider the fact that increasing electricity access generate
wealth, which in turn may further increase demand for electricity. As such, future work on latent demand
may need to perform scenario analysis to consider how demand evolves with increasing access to electricity
in SSA.

Lastly, we propose a framework for quantifying latent demand in SSA countries. As a proof-of-concept,
we create a partial dataset for Kenya (i.e., population, electrification rate, existing education and health sec-
tor demand, cropland availability, and travel time to market) and apply these data to predict latent demand
across several key sectors. Of the predictor variables used, we find that cropland availability and population
were the most significant predictors of latent demand in Kenya. As such, we recommend that data collection
efforts in data-poor countries prioritize collecting data on cropland availability and population. Future work
ought to consider the computational resources required to predict latent demand using the entirety of the
potential input data streams identified in the framework. We also acknowledge that it is essential to collate the
remaining input data not used in our dataset (i.e., road type and network, access to financial services, and the
location of waterbodies) into a single training dataset to more meaningfully determine the error margins of
the correlation coefficient estimates and infer which other variables may be significant determinants of latent
demand.

This approach would enable researchers to quantitatively identify the most important drivers of latent
demand, and predict latent demand in data-poor countries while helping to fill the gap in electricity-demand-
related data in SSA. We also stress that an enabling policy environment is essential to support the commercial
viability of energy systems that are intended to serve latent demand. Improving predictions for latent demand
would significantly contribute to existing literature by stepping beyond supply-side optimization to identify
opportunities for wealth creation via electrification in SSA. Importantly, electrification models that explicitly
account for latent demand could ultimately enable investors and other energy sector stakeholders to iden-
tify areas where the energy infrastructure would spur economic growth leading to fastest achievement of the
universal electricity access target and national development goals.
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Appendix A. Data summary table for LASSO regression analysis

See (table 1).

Table A1. Summary statistics of input data for training dataset used to quantify latent electricity demand in Kenya.

Variable Mean Standard deviation Min Max

Latent demand (kWh) 333 955 2705 332 0 53 260 815
Surface water distance (m) 248 077 432 104 0 1000 000

Groundwater depth (m) 5.87 13.79 0 75
Cropland availability (ha) 174.74 1284.58 0 21 501.04

Population 2535 11 709 0 181 550
Travel time to market (hours) 18.18 43.62 0 448.29

Electrification rate [fraction from 0 to 1] 0.43 0.32 0 1.00

Total number of observations: 1040
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