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We are rapidly reaching the point with today’s quantum computers where we will be unable to verify their outcomes
with our current classical computers. Arguably, in some applications, this threshold has already been reached [1].
Soon this may also be the case with fault-tolerant or near-term intermediate-scale quantum (NISQ) computers [2]
that implement useful quantum algorithms.

Validating the performance of NISQ devices and establishing a clearly-defined threshold for when they can outper-
form current computers is accomplished by directly simulating their outcomes on classical computers. The community
needs more efficient classical algorithms and they need to know how much more efficient they can get. This last desired
quality is often missing in currently available methods. Here, we accomplish both of these goals.

Universal quantum computation requires a universal gateset, appropriate initial states and set of measurements. A
common universal set that is widely used consists of stabilizer states, the Clifford+T gateset, and Pauli measurements.
For classical computers, simulating everything other than the T gates can be done very efficiently in polynomial
time [3]. On the other hand, T gates have been found to be exponentially difficult to simulate.

Fortunately, classical simulation of universal quantum outcomes is made easier somewhat by the fact that quantum
computers only produce output up to additive error [4], and so there is a priori no reason to simulate their outcomes
beyond this. Simulating a given state as it undergoes Clifford and T gate unitary evolution up to some additive
error is an L minimization problem, which are known to scale more favorably compared to Ly or Ly minimizations
appropriate when there are more stringent error constraints. The most natural state decomposition that is used
for such classical simulation is the stabilizer state decomposition, because classical computers can calculate their
inner products especially efficiently. The corresponding number of these stabilizer states sufficient for additive error
decompositions is called the stabilizer extent.

Current state-of-the-art classical simulators of quantum outcomes from this gateset scale as O(£'672) [5-7] and
O(£4571) [8], where ¢ = 270228t ig the stabilizer extent of the T gate magic state and J is the additive error.
Furthermore, it is conjectured [6] that this asymptotic scaling is tight w.r.t. ¢. The most promising route to find
reductions in this algorithm is to look for at the next-order terms.
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FIG. 1. [From Technical Paper #1] The relative improvement in scaling w.r.t. ¢ produced by correlated sampling with

different 0 < f; < O({Qt/g’) compared to the state-of-the-art. In practice, the desired 6 determines which f: you can attain:
> E-f) = fi<i?-¢n

Despite their dimunitive name, next-order effects can offer significant improvements for the intermediate (non-
asymptotic) ¢ regime, which is precisely the regime that NISQ devices are in. For a sense of this, see Figure 1
for a preview of the relative improvement in scaling that can be attained from including such next-order terms.
Unfortunately, existing methods all saturate the asymptotic conjectured lower bound w.r.t. ¢ even when they are not
in the asymptotic limit of ¢ — oo and it is not immediately clear how to extend them to next order in t.

We take a first crack at this problem in [9] (attached Technical Paper #2) and introduce the tool of correlated
Ly sampling. The main technique that we use is supplementing independent L; sampling with correlated samples of
“dissimilar” states that lead to a better average. Given an ensemble of M independently sampled states, which have an
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expectation value close to the desired state we are simulating to d-accuracy, we transform the ensemble to a correlated
one by supplementing each independently sampled state in a M/ f; subset of the ensemble that are “dissimilar” to
each other.
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FIG. 2. [From Technical Paper #1] While the expectation value of independent sampling will approach the desired state,
any finite set will on average deviate from the desired state. By replacing some independent samples with correlated samples,
“spurious” sample deviation from the desired state can be minimized, at the expense of the variance of the distribution. This
latter effect is negligible if the distribution is sufficiently peaked already.

The expectation value of this ensemble is closer to the desired state but converges more slowly for the same J-error.
If § > (& — f;), this slower convergence is negligible (i.e. your probability distribution is already sufficiently peaked).
A sketch of this phenomenon can be seen in Fig. 2.

Using this technique of correlated sampling produces a linear reduction: O((£! — f;)8?) where f; = t. We sub-
sequently extend these results (attached Technical Paper #1) to f; = 2t — 1 states. We then prove that this set
of 2t — 1 states can be used as a “seed” set to generate any higher number of appropriately correlated states up to
fi = O(£2Y/3). This is an additive exponential improvement over the state-of-the-art!

How much further can such an L; technique be pushed? Given widely accepted complexity conjectures, we answer
this question by proving the upper bound f; € o(¢!), thereby proving that our algorithm is tight up to o(£%/3). Again,
see Figure 1 for a plot of the relative improvement in scaling of our new algorithm compared to the state-of-the-art.

This means that weak simulation based on the minimal L; stabilizer decomposition of the T" gate cannot be further
improved beyond an additive factor of o(ft/ 3 with respect to t scaling. This settles the question of how much it is
possible to push the next-order term in weak simulation to speed up intermediate-size problems. To our knowledge,
this work constitutes the first weak simulation algorithm that has lowered this bound’s dependence on finite ¢ in
the worst-case. It holds great promise in rendering classical simulation of NISQ outcomes more tractable on today’s
classical computers.
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We present a classical algorithm for simulating quantum circuit outcomes consisting of the uni-
versal Clifford+T gateset that scales as O((€' — f;)672) for 6% > (€' — f;) ™', where § is the additive
error, ¢£' = 270228 ig the stabilizer extent, and ¢ is the number of T gates. In our algorithm, we
demonstrate an exponential increase of f; € (9(5%/3), compared to the state-of-the-art f: =¢. Nu-
merical demonstrations support our claims. Given widely accepted complexity conjectures, we prove
the upper bound f; € o(£"). As a consequence, classical simulation of quantum outcomes based on
minimal L; stabilizer decompositions of the 7" gate magic state cannot be further decreased com-

pared to our algorithm beyond an additive factor of o(£'/3) with respect to ¢.

The rapid progress in the practical development of
quantum computers holds great promise for producing a
quantum device that can solve many key problems of in-
terest that do not scale favorably on classical computers.
Small fault-tolerant quantum computers and larger near-
term intermediate-scale quantum (NISQ) computers of-
ten target the implementation of the popular Clifford+T
gateset, with stabilizer state initial states and final Pauli
measurements. Validating their performance, as well as
establishing a clearly defined threshold for when they are
outperforming current computers, requires directly simu-
lating their outcomes on classical computers. Such a sim-
ulation scales exponentially with the number of T gates.

Quantum computers only output outcomes that are
correct up to an additive error, which greatly simplifies
their classical simulation. This is because an additive
error constraint reduces the problem to an L; minimiza-
tion, which are known to scale more favorably compared
to Ly or Ly minimizations that are more relevant to mul-
tiplicative error constraints. Given any state decomposed
into an orthonormal basis, |¢)) = >_, ¢;|¢;), the L1 norm
of the state is the sum of the absolute values of its coeffi-
cients: y . |¢;|. The Ly norm is a multiplicative quantity:
the L; norm of [¢)® is the L; norm of |¢) taken to the
power of t.

Here we will be interested in stabilizer decompositions
of given states |¢). Calling the sum of the absolute values
of the coefficients of non-orthogonal stabilizer states an
Ly norm is technically an abuse of terminology, since
the stabilizer states are overcomplete. Therefore, this
quantity is often called the stabilizer extent, &, in this
context.

Nevertheless, the stabilizer extent shares an impor-
tant property with minimal L; norms: it is multiplica-
tive, though for only one-, two-, and three-qubit tensored
states. Luckily, this is sufficient for our uses since we will
be primarily concerned with one-qubit tensored T gate
magic states.

The T gate magic state

17) = —=(10)+ Vil), 1)

is Clifford-isomorphic to the H magic state
|H) = e~ "™/SSHI|T), (2)
which can be decomposed into stabilizer states:

™

|H) = (2 cos §)71 (|6> + |i>) ) (3)

where

: oL

0y =10}, and 1) = —=(|0) + [1). (4)

5

It is often useful to write |[H)®? in terms of its single-
qubit basis:

[H)® = |7). ()

z€F}

The stabilizer state decomposition given by Eq. 3 is
the natural decomposition to use when interested in rep-
resenting |H)®* only up to some additive error §, since it
has minimal L; norm with respect to the stabilizer state
basis, i.e. this decomposition saturates the H gate magic
state stabilizer extent: ¢ = (cos g)_fﬂ = 2~0.228t

Moreover, since we only want to capture |H)®" up to
additive error &, we can sparsify our stabilizer state de-
composition of |H)®! in the sum given by Eq. 5 to pro-
duce an approximation |¢)). We only need to keep enough
|2) states such that |[) — |[H)®|; < 6.

Selecting which |Z) to keep can be done by viewing
the set {|Z)} as an ensemble defined by an indepen-
dent and identically distributed (i.i.d.) random variable.
Sampling |T)®* (or equivalently |H)®") this way requires
O(£1672) states [1]. Using a slightly different normaliza-
tion method, sampling can be improved in scaling with
§ so that it requires O(£071) states [2]. Some improve-
ment has also been made in the next step of estimating
outcome probabilities for certain values of these proba-
bilities [3] but still require O(£'5~1) states.

Here we will be concerned with reducing the scaling
with respect to ¢t. It turns out that, to leading order,



the scaling of sampling |H)®? is likely tight and has been
conjectured [1] to be lower bounded by the same factor:
Q(&Y). However, the optimal next-order leading term is
unknown and can still lead to a substantial reduction in
the scaling for intermediate ¢, of particular interest in
simulating NISQ devices. Unfortunately, existing meth-
ods all saturate the asymptotic conjectured lower bound
w.r.t. t even when they are not in the asymptotic limit
of t — oo and it is not clear from their derivation how to
improve them.

We will show how such next-order reductions in ¢ can
be derived and how they greatly increase the size of uni-
versal quantum circuits that are simulatable by today’s
classical computers.
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FIG. 1. While the expectation value of independent sampling
will approach the desired state, any finite set will on aver-
age deviate from the desired state. By replacing some inde-
pendent samples with correlated samples, “spurious” sample
deviation from the desired state can be minimized, at the ex-
pense of the variance of the distribution. This latter effect is
negligible if the distribution is sufficiently peaked already.

The main technique that we will use is supplementing
independent sampling with correlated samples of “dissim-
ilar” states, that thereby lead to a better average. Given
an ensemble of M independently sampled states, {|Z;)}4,
from the stabilizer state space, which have an expecta-
tion value close to |[H®*), we transform the ensemble to
a correlated one by supplementing each independently
sampled state in a M/f; subset of the ensemble, with
fr = t/2 bit-flipped stabilizer states—which are therefore
“dissimilar” to each other by ¢/2 bitflips—and discard the
rest. These supplemental states are maximally dissimi-
lar from each other in that they constitute the optimal
largest number of supplemental states with the largest
mutual dissimilarity.

The expectation value of this ensemble is closer to
|H®") but converges more slowly for the same J-error.
If 6 > (¢ — f;), this slower convergence is negligible
(i.e. your probability distribution is already sufficiently
peaked; the variance is sufficiently small). A sketch of
the phenomenon can be seen in Fig. 1.

This procedure is a modification of the popular SPAR-
SIFY algorithm [4] and is formally proven in [5] (see The-
orem 1 therein), where it was shown that
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where 0;(j) maps the Z; to the f; states {g,, (j)};%:l they
are correlated with.

Remark If f; correlated states mutually satisfy
E({wilwys, ;) < € and § > (& — fi)~!, then v > 0
and so only O((¢! — f;)d72) states are necessary in the
sparsification of |¢) in order that E(|||H®?) —|¢)[|?) < §2.

Therefore, the scaling with ¢ can be improved by
changing the sparsification from i.i.d. sampling to corre-
lated sampling, where each independently sampled state
|Z) is supplemented with f; states |g;) that satisfy Re-
mark 1 and thereby produce a sparsfication consisting of
only O((& — f;)672) total states. Recently, as a proof
of principle, we showed how to accomplish this with
ft =t [5]- To begin, here we extend this linear result
to ft =2t—1:

Lemma 1 (2¢t — 1 Generation) Given a t-bitstring,
there exist 2t — 1 additional bitstrings that mutually dif-
fer from each other and the given bitstring by at least t/2

bitflips.

The proof of Lemma 1 can be found in Appendix A
along with a proof of the subquadratic runtime required
for this supplemental bitstring generation and a numer-
ical demonstration of this fact. The code for its imple-
mentation is available in Appendix D.

Relative Reduction Compared to i.d.d. Sampling w.r.t. t
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FIG. 2. The relative improvement in scaling w.r.t. ¢ produced
by correlated sampling with different 0 < f; < (9(5%/ %) com-
pared to the state-of-the-art. The relative improvement is
defined as max{¢’ — f;,1}/¢", where the maximum is taken
since f: is constrained to be less than & by Lemma 3 and is
integer-valued. In practice, the desired § determines which f;
you can attain: 62> (¢' — fi) 7' = fi < 6% €

It is easy to show that n = 1/2 is the fraction for which
the largest set of bitstrings that are bitflipped with re-
spect to a given bitstring by nt-bits can be made since

¢ ) Note that

this is the value of 1 that maximizes < nt



Lemma 1 promises a fewer number 2t — 1 < (rft of

such bitstrings because of the additional constraint that
the bitstrings mutually differ by the same number of bit-
strings.

To extend this set and increase f; properly, it is suf-
ficient to satisfy Remark 1’s constraint with added bit-
strings, i.e. their average inner product with each other
must be < ¢, a weaker condition than Lemma 1’s con-
straint of ¢/2 bitflips; the additional bitrsings can mutu-
ally differ by more or less than ¢/2 bitflips, though on
average they must be fairly close to ¢/2 bitflips.

To accomplish this, we can use the set generated from
Lemma 1 as a “seed” set that we generate additional bit-
strings from by bitflippling 0 < n < 1/4 of their bits
again, where the threshold 7 is determined by satisfy-
ing Remark 1. This is shown in Lemma 2, and thereby
exponentially extends f; further to O(£2¢/3):

Lemma 2 Given a bitstring, there exist O(£%/3) bit-
strings where the expectation value of their mutual inner
products is < f;/t4 in the limit that t — oo.

The proof can be found in Appendix B.

In the construction provided in the proof of Lemma 2,
the correlated groups scale as (2¢—1)¢"™. This means that
to experience a quadratic benefit in scaling, we will see
that the second correlated group can be as large as 2% —t
supplemental states. Ever larger and larger groups of f;
states can be found up until f; € O(£24/3). See Figure 2
for a plot of the relative (multiplicative) improvement in
scaling this produces w.r.t. t.

How far can you push this technique? While it is trivial
to see that f(t) € O(¢') since the scaling cost must be
non-negative, we proceed to prove a stronger bound of

f(t) € o(&"):

Lemma 3 (Exponential Decay in Supplementation)
The scaling of SPARSIFY is O((¢! — £,)072) when sup-
plemented with f; correlated states for each independent
state. If #P-hard is greater than BQP-complete, then

ft S O(St).

The proof of Lemma 3 can be found in Appendix C.
The result of Lemma 3 means that classical quantum
outcome simulation based on the minimal L; stabilizer
decomposition of the T" gate cannot be further improved

beyond an additive exponential factor o(¢*/3) with re-
spect to t scaling.

A technical point: as mentioned earlier, there is a con-
jecture that classical quantum outcome simulation of the
T gate magic state with stabilizer states requires (&%)
Gaussian eliminations [1]. A cursory read-through of the
results of this paper might lead one to conclude that
Lemmas 2 and 3 prove this conjecture since they show
that asymptotically classical simulation must scale as
O(&Y). However, this is not formally true; the lemmas are
constrained to consider a particular classical simulation
method, namely one that uses the minimal L, stabilizer
state decomposition of the 7' gate magic state given by
Eq. 5. Though this is the stabilizer decomposition that
minimizes its stabilizer extent, this constraint prevents
this result from being a formal proof of the conjecture.

An appealing feature of the algorithm constructively
described in Lemmas 1 and 2 is that it can be easily added
to the SPARSIFY algorithm used by many contempo-
rary “weak” simulators. It can thus be implemented in
current applications with minimal disruption to reduce
their sampling cost by an additive exponential constant.

Moreover, a similar approach will also extend this
method of correlated L1 norm sampling to any other di-
agonal states (see Eq. 1 in [5]). Such a treatment would
differ only in that the distribution of ¢ bit-flipped bit-
strings would be sampled from the non-uniform distribu-
tions.

In conclusion, we constructively prove that classical
simulation of quantum outcomes to additive error § can
have a next-order exponential reduction in their sam-
pling cost of O((£! — f,)6%) when 62 > (¢! — f,)~! and
f: = €24/3. We prove that this reduction is nearly asymp-
totically tight, in that f; can only be maximally increased
by o(£%/3). This reduction is based on supplementing in-
dependent L; sampling with correlated sampling of “dis-
similar” states and functionally works by further supple-
menting a “seed” set of 2t — 1 supplemental states. To
our knowledge, this work and the work it is based on [5],
constitute the first weak simulation algorithm that has
lowered this bound’s dependence on finite ¢ in the worst-
case. It holds great promise in rendering classical simula-
tion of NISQ outcomes more tractable on today’s classical
computers.
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Appendix A: Linear Scaling of f;

given bitstring |depth ¢| ¢ additional bitstrings
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afpa, BaaB, afaf, Bafa
acaaaaaa, BEEEEAAA
acaafppB, BBBBacac
aafBBaaBB, BBacBBaa,
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depth 4| ¢ additional bitstrings
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Y807y, 6yyd, vOy0, ooy
560666006
VY6868, 6665y
Y8678, 66760y,
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Y86y8yY8, 6yydv6dy
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TABLEIL a =01, 8=10,~v = 11, and 6 = 00. The additional
bitstrings can be used as XOR masks to generate the appro-
priate additional bitstrings for given bitstrings other than all
1s.

An algorithm that generates 2t—1 additional bitstrings
that differ by at least ¢/2 bitflips, such as those given
in Table 1, is given in Algorithm 1. A. is the previous
algorithm that generates ¢t additional bitstrings, and B. is
the addition to this algorithm that generates t—1 more.

Algorithm 1: Generate additional bitstrings that
differ from the ¢-bitstring of all 1s by at least ¢/2
bitflips.

Data: k such that ¢t = 2%,
Result: bitstring array.

begin
bitstrings < A. {a---a, 8--- 8} or B.
{6---d}

masks < {22"};
for treedepth < 1 to k—1 do
levelmask « 22" 7" _ 1,
for levelmaskdepth < 2 to 2treederth—1 dgo
levelmask < levelmask +
gk—treedepth+1
x levelmask;
end
A. bitstring < (a--- a XOR levelmask) or
B. bitstring < (- - -y XOR levelmask);
for mask < Cartesian products of elements
in masks do
| add (bitstring XOR mask) to bitstrings;
end
add levelmask to masks;
end

end

200 250

FIG. 3. Plot demonstrating quadratic runtime scaling of Al-
gorithm 1 given by R code in Appendix. (dots) raw runtime,
(line) quadratic fit. Technically the runtime is O(log(t)t?)
since every point plotted above depends on running the pre-
vious point (i.e. this is a differential plot and should be a
cumulative plot). Since there are log,(t) points that go into
every point with less than ¢* runtime, the full scaling is mul-
tiplied by log(¢). Finally, since this runtime generates 2t — 1
bitstrings, the overall scaling should be divided by O(¢). This
means that the overall runtime is O(log(t)t) to generate each
additional bitstring.

Lemma 1 (2¢t — 1 Generation) Given a t-bitstring,
there exist 2t — 1 additional bitstrings that mutually dif-
fer from each other and the given bitstring by at least t/2

bitflips.

Proof Let a = {10}, 8 = {01}, v = {00}, 0 = {11}.
WLOG we consider z as the bitstring of all 1’s since



we can always consider supplementing any other given

bitstring by XORing the generated additional bitstrings.

Given z - y;,y; -y < 2k for i # j and t = 2¥. When
V2T

t = 2 the y’s are «, 8 and . These satisfy the previous
inequalities.
Assume true for t = 2%, for some k > 1. % = k-1

: zk; = 2% For a bitstring length of 2%, we assume we

generate (2(2F) — 1) y;’'s — (281 — 1) yy’s.

We now consider ¢t = 28*1, For a bitstring length of
21 we want (2(2(2%)) — 1) yi’s — 2(2FFH) — 1) g,
s. We define the operation cloning. Cloning z allow
us to get zxz where x — xx taking our bitstring length
2F — 2(2F) = 2F+! and similarly, cloning y; allow us
to get y;y; where y; — y;y; taking our bitstring length
2F — 2(2k) = 2k+1,

After cloning our new equation is now

1 ) .
SF 1 LF ]
V2 ?

XX YilYir Yilli - Y5 < (A1)

Our m-rule states that a - b means how many bits are
different between a and b, which is our inner product
multiplicative.

1 1 1
mi+msa = mr ¥ ma
V2 V2© V2

Complementation takes y; — y; where j # 1.
Definea=p3,8=a,7 =46, and 6 = 7.

We now consider the ¢ additional bitstrings produced
from all cloned bitstrings, which additionally have none
or one of their components complemented. From our
assumption, there are 2(2%) — 1 bitstrings produced with
no complemented components. Complementation of the
lower bits produces 2(2%) — 1 additional bitstrings. This
brings us to a total of 2(2(2%) — 1) = 2(2F+1) — 2. The
final additional bitstring we consider is of all v’s bringing
the total to 2(2*1) — 1 = 2t — 1 additional prospective
bitstrings. We now proceed to show that these are all
valid.

vz =x-22" + 2. Similarly, yiy; = y; - 22" + .

(A2)

m = mj + ma;

vy = (@22 +a) - (g 22 ) = (0 20) - (s
22%) % (z - y;). We know that (z-22") - (y;-22") < le
and (z-1y;) < —=r. Therefore \/521,9,1 * \/521,671 = \/ﬁlzk

zx=2-22" +1. Similarly, y;y; = y; - 22" + y;.
k k k
o2 )2 ) = (@2 (-

TX - YiYj

k k k
227) % (x - y;). We know that (z-22")- (y;-2%) < 221;%1
and (z-y;) < ﬁ Therefore ﬂzlk,l * \/5211@71 = \/51%

viyi =yi - 2% + Vi Similarly, YiYi = Vi 2? ;" Yi-
Yivi'yy; — (Y2 +yi)'(yj'2k2 +y;) = (4i-2%)-(y;-2% )
(yi-y;). We know that (y;]-22")-(y;-2%") < %and(yi-

y;) < ? Therefore \/521'“71 *

1 _ 1
\/521%1 = %

Appendix B: Exponential Scaling of f;

Lemma 2 Given a bitstring, there exist O(£%/3) bit-
strings where the expectation value of their mutual inner
products is < 5;;4 in the limit that t — oo.

Proof Take the 2t — 1 bitstrings from Lemma 1, and the
given bitstring, and bitflip M < ¢/4 bits. This can be
done to any of the ¢ bits for each bitstring. The resulting

]\Z) bitstrings differ from each other by 7 bitflips,

where t/2 — 2M < 7 < t/2+ 2M. For every bitstring
that differs from one by ¢/2 — «, there exists another that
differs from it by ¢/2 + a.
It follows that
E((wsliopp) = & (27472007072 4 got/s20i-072)
2—t/4+M—2(1 + 2—2M)). (Bl)

In the limit that t — oo, this is less than & f, =

/4
cos(m/8) /% = 22logzcos(/8)t if N[ < (2log, cos(m/8) +
1/4)t < 0.02t.

It follows that

i < (Z\Z>Qt

lim fs 0oV 12701 € O(6279).

(B2)

The bound on the supplemental bitstrings in Lemma 2
is meant to be easy to prove, and is in fact far more
favorable in practice. Our aim was to find an exponential
improvement in f; not to maximize its exponential factor.

Lemma 2 is constructive and proves that each of the
ft — (2t — 1) additional bitstrings can be generated by
supplementing the bitstrings generated by Lemma 1 in
O(fr — (2t — 1)) time.

Appendix C: Asymptotic Limit

Lemma 3 (Exponential Decay in Supplementation)
The scaling of SPARSIFY is O((¢! — £;)0~2) when sup-
plemented with f; correlated states for each independent
state. If #P-hard is greater than BQP-complete, then

fr € o(€h).
Proof If #P-hard is greater than BQP-complete then,
f0)672,

for 62 > (¢! — f;)~! and where x! is the stabilizer rank
of the T gate magic state.

X2 (€8 - (C1)

= fi > & —x¥¢6°

fi> & =X - £

(C2)



o f2(t) > X2t _ £2t.
This implies that

) X
}gl% & >>tlgr(1)£2t—1—0.

Therefore,

and so f; € o(&).

(C3)

(C4)

Appendix D: R Code for 2t — 1 Supplemental State

Generation

alpha <- c(1,0)
beta <-c(0,1)
gamma <-c(0,0)
delta <-c(1,1)

cloning <- function(vec)

{
return <- array(c(vec,vec))
}
comp <-function(vec)
{
for(i in 1:length(vec))
{
vec[il= (vec[il+ 1) %% 2
}
return <- vec
}
comp2 <-function(vec)
{

for(i in (length(vec)/2 +1):length(vec))
{

vec[il= (vec[il+ 1) %% 2
}

return <- vec

}

dp <- function(vecx, vecy)

}

m <- 0

for (i in 1:length(vecx))

{

if (vecx[[i]] !'= vecy[[il]]) m <- m+1
}

val <- (1/sqrt(2)~(m))
return <- val

yis <-list(alpha, beta, gamma)

for(k in 2:8)

{

}

print (k)
oldyis<-yis

for (1 in 1:100)
{

yis<- oldyis
x<-c()
for (j in 1:(27k))
{

x<- array(c(1,x))

}
newyis <-list()

for(i in 1:length(yis))

! newyis[[1]1<-(cloning(yis[[i11))

ior(i in 1:length(yis))

i newyis[[i+length(yis)1]1<- (comp2(cloning(yis[[i]11)))

newyis[[2*length(yis)+1]]<-comp (newyis[[2*1length(yis)].
yis<- newyis

}
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Improved Weak Simulation of Universal Quantum Circuits by Correlated L; Sampling

Lucas Kocia
Sandia National Laboratories, Livermore, California 94550, U.S.A.

Bounding the cost of classically simulating the outcomes of universal quantum circuits to additive
error 9 is often called weak simulation and is a direct way to determine when they confer a quantum
advantage. Weak simulation of the T+Clifford gateset is BQ P-complete and is expected to scale
exponentially with the number ¢ of T' gates. We constructively tighten the upper bound on the
worst-case L1 norm sampling cost to next order in ¢ from O(£672) if 62 > €% to O((¢'—t)d2) if
52> (¢t —t)fl, where &' = 2702281 {5 the stabilizer extent of the t-tensored T gate magic state. We
accomplish this by replacing independent L; sampling in the popular SPARSIFY algorithm used in
many weak simulators with correlated L, sampling. As an aside, this result demonstrates that the T’
gate magic state’s approximate stabilizer state decomposition is not multiplicative with respect to ¢,
for finite values, despite the multiplicativity of its stabilizer extent. This is the first weak simulation
algorithm that has lowered this bound’s dependence on finite ¢ in the worst-case to our knowledge
and establishes how to obtain further such reductions in .

Weak simulation is defined as the task of sampling the
probabilities of universal quantum circuits to additive er-
ror. It is expected to require exponential resources on a
classical computer since it is BQ P-complete. Reducing
the cost of classically simulating quantum computers [1]
is necessary to characterize near-term noisy intermediate-
scale quantum (NISQ) computers [2] that are rapidly
growing in size and performance.

Universal quantum computation can be achieved using
stabilizer states, the Clifford+7 gateset, and Pauli mea-
surement. An equivalent measurement-based formalism
can be written in terms of stabilizer states, T gate magic
states and Pauli measurements [3]. Approximating out-
comes samples to additive error § is equivalent to re-
placing the underlying probability distribution with one
that is d-close to it and then sampling from this approx-
imate distribution. This naturally splits up many weak
simulation implementations into a “sparsification” step
and a measurement step. The measurement step consists
of taking idempotent projections, ([II|y) = |II])|* =
|¥’|?, and so is frequently called a “normalization” step
instead.

The SPARSIFY algorithm introduced [4] a method of
generating an L; sparsification of a given state ¢ to § ad-
ditive error with O(2~0-228:§=2) stabilizer states, which
is asymptotically optimal as ¢ — oo and § — 0 (see
Lemma 2 in [4]). As a result, the authors conjectured
the following lower bound:

Conjecture 1 Any approzimate stabilizer decomposi-
tion of T®? that achieves a constant approximation error
must use at least Q(2~0-228Y) stabilizer states.

This approximated state’s inner product must then be
sampled under random Pauli measurements to complete
a weak simulation algorithm. The full weak simulation
cost is the number of stabilizer states produced by SPAR-
SIFY multiplied by O(t36~2).

Subsequent works [5-7] almost all use the SPARSIFY
algorithm or a similar sparsification method. Improve-
ments have included an extension of the method to diag-
onal states (other than the T' magic state) [5] and mixed

states [6], constant factor improvements [5], a decrease
in the power of ¢ cost for magic states [6], better perfor-
mance when the values of the sampled probabilities are
in certain regimes [7], and an extension to Born proba-
bilities [7].

Nevertheless, these methods have all saturated the
asymptotic conjectured lower bound w.r.t. ¢ even when
they are not in the asymptotic limit of £ — oo and § — 0;
they all require O(2~9-228!) stabilizer states in the worst
case.

Since the lower bound given by Conjecture 1 is an
asymptotic bound, there is no reason to consider it limit-
ing for finite ¢ and §. Indeed, the finite regime is the most
useful for practical simulations and validations of near-
term devices. Non-asymptotic reductions in ¢ can greatly
increase the size of universal quantum circuits that are
simulatable by today’s classical computers and thereby
change when they confer quantum advantage.

Here we introduce the first such reduction in ¢ and
demonstrate its practical usefulness for finite-sized cir-
cuits. Since the reduction occurs in the SPARSIFY al-
gorithm used by many contemporary weak simulators,
it can be implemented in current applications with mini-
mal change and improve their performance. The key idea
is replacing independent L; sampling with correlated L,
sampling.

To begin, we define the general family of diagonal
states that we want to approximate. Following [3, 4],
we define the t¢-tensored state:

IDF) = @)™ Y 1E @ © ), (1)
z€FY

where

) %(—z‘+e-”/4><—z’+ei¢>|o>, (2)
] 1 emmilay(] — gity L
(e 1)

and v = cos /8. |DF") has Ly norm squared, when con-
sidered over the set of stabilizer states, that is minimized

1)

(10) +11)),  (3)



by this stabilizer decomposition into |0) and |1):

2

Z|ng| :(\/l—sinqﬁ—k\/l—cosqﬁ)%EEfb. (4)

z€Fy

Calling ¢} an L; norm is an abuse of the term, since
stabilizer states are overcomplete. As a result 5; is of-
ten called the stabilizer extent, and is more accurately
defined as the minimum value of ||¢||; over all stabilizer
decompositions.

|DZ),) = [H®") for |H) = e~""/SSH|T) and

_ b
V2

where S and H are the Clifford gates phase shift and
Hadamard, respectively. 52/4 = =2 = 2~0:228t  which
sets the exponential scaling for sampling this magic state.
Since the H magic state is related to the T magic state by
a Clifford unitary under which stabilizer states are closed,
its stabilizer state approximation cost is the same.
Before we get into generating an approximation to
these states, we first need to establish a useful result:

T) (10) + V/i[1)), ()

Lemma 1 (¢ Stabilizer States with ¢/2 Bit Flips)
Given a t-bitstring, there ewist t additional different
t-bitstrings such that every pair of bitstrings differs by
at least t/2 bits.

Proof We examine powers of 2. WLOG we can always
assume that the given bitstring consists of all 1s since
any additional bitstrings to this can be generalized to
any other bitstring by XORing it.

Let t = 2F. Consider iterative splitting of the 2% bit-
string by binary tree with layers 0 < ¢ < k—1 (see Table 1
for examples). We define the base layer k = 0 to consist
of two bitstrings, a---« and S--- 3, where a = 01 and
B = 10. Given a t-bitstring of all 1s, it is clear that these
two bitstrings differ from it by ¢/2 bitflips and from each
other by ¢ > t/2 bitflips.

In every subsequent layer we consider ¢-bitstrings that
are evenly split into 2 < 2 < k-1 contiguous blocks
of bits that we treat all together when assigning values.
We assign values « and 8 to the blocks such that the
number of as and [s are even in every pair of blocks
corresponding to a larger block a layer above and at least
half the assignments differ from every other bitstring in
the same layer.

This means that every layer 1 < i < k—1 will have ¢/2
as and t/2 Bs. Hence, they will differ from the given bit-
string of all 1s by ¢/2 bit flips. This also means that they
will differ from bitstrings in the zeroth layer consisting of
only as or fs by ¢/2 bit flips.

Moreover, since the nature of this binary tree split-
ting converts blocks from higher levels into evenly split
subblocks with the same number of as and s where be-
fore there were only as or s, every bitstring differs from
those of other layers by ¢/2 bitflips.

t | given bitstring |depth 4 t additional bitstrings
2 11 0 a, B
0 aa, B
4 1111 T aB. Ao
0 aaaa, BBB6
8 11111111 1 aafB, BBaa
2 affa, faaf, afafB, fafa
0 accaaaan, BBRBBLAS
1 aaaaBBBB, BBABacac
s iy oo
ao aa, Blacan
16(1111111111111111 aBaBaBaB. aBaBBaBa,
3 BaBaaBaB, BaBaBaBa,
appaafBa, paaBBaas,
appafaaf, paafafBa

TABLE I. a = 01 and 8 = 10. The additional bitstrings can
be used as XOR masks to generate the appropriate additional
bitstrings for given bitstrings other than all 1s.

Within a layer, by construction, the bitstrings differ
from each other by at least ¢/2 bitflips. Trivially, the
first layer (i = 1) consists of two bitstrings. Subsequent
layers consist of twice as many bitstrings as their preced-
ing layers since they can be considered as the result of
the same bitflips performed on the given bitstring as the
layer above, but over twice as many bits. It follows that
the ith level consists of 2! bitstrings. This means that
there is a total of 2 4 Zi.:ll 2! = 2% — ¢ bitstrings.

We have therefore ¢ additional total of bitstrings that
differ from the given bitstrings of all 1s and each other
by at least t/2 bitflips. [ ]

An algorithm that generates t additional bitstrings
that differ by at least ¢/2 bitflips, such as those given
in Table 1, is given in Algorithm 1.

We introduce a constructive upper bound that is lower
than Conjecture 1’s in the finite ¢ case:

Theorem 1 (Lower Bound in ¢ for SPARSIFY)
The SPARSIFY procedure introduced by Bravyi et al. [5]
creates a d-approzimate stabilizer decomposition of H®!
with O((2~°-228—1)5=2) stabilizer states for t sufficiently
large such that 6* > (&% ,, —t)~".

Proof Following [5], we define additive error
I1Dg") = 1) <, (6)

where |9 = \/{0[¥).

[¢) is the sparsified k-term approximation to |Dg(t))
given by

k
vy = 13y, )
i=1

where each |w;) is independently chosen randomly so that
it is a normalized stabilizer state |w;) = ¢;/|c;||@;) with



Algorithm 1: Generate additional bitstrings that
differ from the t-bitstring of all 1s by at least t/2
bitflips.

Data: k such that t = 2*.
Result: bitstring array.
begin

bitstrings + {a---
masks < {22k};
for treedepth < 1 to k — 1 do

k—treedepth
levelmask +— 22 -1

for levelmaskdepth < 2 to 2tmeederti—1 4o
levelmask < levelmask +
2k'7t7"eedepth+1
X levelmask;

o, BBl

end

bitstring < (a--- a XOR levelmask);

for mask < Cartesian products of elements in
masks do
| add (bitstring XOR mask) to bitstrings;

end

add levelmask to masks;

end

end

probability p; = |¢;|/|lc|l1. We define a random variable
|w) that is equal to |w;) with probability p;. Then

E(lw)) = [¥)/llell1- (8)
By construction,
E((¢|Dg")) = E(DG"[4)) = 1. (9)

The number of stabilizer states in the approximation
is k and

E([IDF") = [9)[1*) = E((DZ|D%)|) = E({DZ [4)]) —
E(|(@|DJ)]) + E(|(])])
£ 7
_f—? (10)

where we simplified

QZJWJ Z || HlE W2|W2 +Z H ||1E ‘WJ>)

i#]
_ leftgyy, E:WME (i)
i#]
lel? ol
<—41—-—. 11
< Tl (11)

Eq. 10 is less than or equal to 6% when k = (£, —~)d~>.

If |w;) are independent and identically distributed
(iid.) stabilizer states then YF, [|cl|ZE(|[(wilw;)) =
s [B(WDE(w)| = k(k —1) and sy = 1. As a
result, since 1 < §¢ as t increases, it was neglected in
previous characterizations [4].

However, « can become significant if |w;) are not i.i.d.
k k
and 350 el TE(wslw;)) # 3 iz ECSDE(¥))]-

In particular, let us consider sampling the H magic
state |Df?/t4> = |H®?). In this case, its minimal L; sta-
bilizer state decomposition consists of a unifogm super-
position over |0) and |1), where |(0]1)] = 272. In the
SPARSIFY algorithm, t¢-bit strings consisting of these
stabilizer states are uniformly sampled to approximate
|HEY).

By Lemma 1, let us supplement this set of ¢-bit strings
with the ¢ ¢-bit strings that differ from every uniformly
sampled state and each other by at least ¢/2 bit flips
(referring to the tilde basis). It follows that these (t+1)

stabilizer states have inner products of <277z

b)

FIG. 1.

Sketch of the different ensembles produced by (a)
independent and (b) correlated L; sampling. In this exam-
ple, (a) there are nine independently sampled states, {|w;)}s,
from the uniform distribution on the unit circle (the “stabi-
lizer state space”), which when considered as real vectors on
R? have an expectation value close to |[H®!) at the origin.
This ensemble can be transformed to a (b) correlated one,
by supplementing the first three states with two %-bitﬂipped
versions, |w;) and |w}’) (blue and red), which are therefore far
away and equidistant to each other on the unit circle, and
discarding the rest. The expectation value of this ensemble is
closer to |H®*) but converges more slowly.

Since the ensemble consisting of uniformly sampled ¢-
bit strings |w;) satisfies

E((w[H®")) = E(H®"|¢)) = 1, (12)

it follows that the ¢ other ensembles consisting of the
ith state with at least ¢/2 bits flipped (i € {1,...,t})
compared to the uniformly sampled states, also satisfy
this property. Therefore, the full ensemble produced by
adding together these (t+1) ensembles satisfies this prop-
erty too.

However, taken together, these are no longer i.i.d. sta-
bilizer states. In particular, for a given (w;|, there exist



at least ¢ |wy,(;)) such that |[(w;|wy, ;)| < 2-“2 . Hence,

k k-t

k
D lellfECwilw;) =D > el TE(wiDE(w;)) (13)
i i

i#]

k t
£33 IelBE ik, )

<h(k—1—1t) +k||c|22~ 5t (14)
=k(k—7), (15)
where ||c[[} = &, = 277%* and so v = 1+ (1 -

1/2N0'02t)t.

Therefore, given that at least k = (52—7)(5‘2 stabilizer
states are necessary to sample this state to § additive
error, the SPARSIFY procedure creates a d-approximate
stabilizer decomposition of H®! with O((2~0-228¢ —1—(1—
1/2~0-0226Y4)5=2) stabilizer states.

This more efficiently approximated state comes at the
expense of its convergence probability, or sparsification
tail bound. Following the same reasoning as in the proof
of Lemma 7 of [5],

Pr[|H® —|? < (W[y) — 1+ 6%

0% 15 7d?
> 1-2exp (877/4+’y8

52¢t . ~0.02t 2
=1 2exp ( ra, (IHAZ1/27F)D0 ).(17)

(16)

8 8

Therefore, given that 62 > (5;/4 — )71, if post-
selection is performed to discard samples that produce
(Plp) — 1 > 62 (a rare event if this first condition is
met) or (¥ |¢) is approximated to relative error using the
FASTNORM algorithm [5] (which scales linearly with k),
then the states 1 are generated with E(|||H®?) —|¢)||?) <
62 and consist of O((2~9-228!—¢)§=2) stabilizer states. B

A sketch of the key idea used in the proof of Theorem 1
is shown in Figure 1. Independently sampled states with
expectation value |[H®") are replaced with a smaller sub-
set that are supplemented with bit-flipped states. The
resultant correlated distribution has an expectation value
closer to |[H®%), but it converges to it more slowly.

Some polynomial factors in ¢ are not included in the
scaling cost, O((2~0-228—)§=2), of SPARSIFY. More-
over, there is a possible additional polynomial cost in
correlated sampling from generating the bit-flipped sup-
plemental states (such as using Algorithm 1) compared
to independent sampling. We claim that these changes
in polynomial factors are negligible. This claim is sup-
ported by the scaling observed in the practical runtime
of SPARSIFY plotted in Figure 2. A decrease in runtime
is observed for correlated sampling that is lower bounded
by proportionality to the fewer number of stabilizer states
k= (&, —~)~? it generates.

idd., —
correlated --—----------
Worst-Case Runtime
~ 1000 F . . .
3 Difference Difference
2 800 L 80 | 80
S 40 + . 40 + g
\qw_)/ 600 + 0 | _ 0 l |
OE) 400 | 0 14 28/
g 200
ﬁ 0 | |
Sparsified Decomposition i
wn
% 1000 - 80 Difference 80 Difference
@800 |40 L ] 1
g 60| O |
3 0 14 28
£ 400 -
n
[
S 200
=)
P4 0 | |
0 7 14 21 280 7 14 21 28 !

FIG. 2. Plots are for additive error (left) 6 = 0.6 and (right)
6 = 0.4 over 100 runs. The worst-case runtime of calculating
the norm of ¢ where |y—T%"| < 62 is plotted at the top
and the corresponding number of stabilizer states sampled
in the sparsified decomposition with i.i.d. (solid curve) and
correlated sampling (dashed curve) is plotted at the bottom.
1 is generated using the SPARSIFY algorithm and the norm
is calculated using the FASTNORM algorithm of [4] (using
1000 random stabilizer states to calculate the relative error).
[Insets: The difference between the ii.d. sampling and the
correlated sampling curves.|

The statistical distribution of sparsified decomposi-
tions from independent sampling and correlated sam-
pling are compared over 1000 numerical runs in Figure 3.
The expected value of the state generated by correlated
sampling is closer to the desired state (middle of Fig-
ure 3). As a result, the standard deviation of the norm
of the states generated by correlated sampling is larger
(bottom of Figure 3) denoting poorer convergence, as
expected. Hence, it is advantageous to use correlated
sampling when 6% > (&, —)~! to obtain the same
convergence probability as independent sampling does at
8> &,

At small ¢ a small-number effect occurs since the num-
ber of stabilizer states used in correlated sampling is
set to the nearest multiple of ¢ greater than or equal to
(55) —~)6~2 in practice. As aresult, at small ¢ more states
are sampled than required and this produces a lower ex-
pectation value and standard deviation than expected.
The factor of —1/2~9-02¢ in Eq. 17 also reduces the stan-
dard deviation at low ¢.

This method can be extended to produce higher powers
of ¢ in v and thereby improve performance further. In the
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FIG. 3. Plots are for additive error (left) § = 0.6 and (right)
0 = 0.4 over 1000 runs. At the top is plotted the conver-
gence probability lower bound (or sparsification tail bound)
given by Eq. 17 for i.i.d. sampling (solid curve) and corre-
lated sampling (dashed curve). In the middle is plotted the
mean of |(¢[¢)|? for both ii.d. and correlated sampling to
§ error (1 + 6% is denoted by the dotted horizontal line). At
the bottom is plotted the standard deviation of |(1|1)|* of
the sparsified samples, which can be interpreted as a mea-
sure of the convergence probability. The standard deviation
converges more slowly for large ¢t under correlated sampling
than under independent sampling. This agrees with the re-
quirement that 62 > ¢7% and 6% > (&' —¢)~! for ii.d. and
correlated sampling to exhibit O(£'672) and O((£'—t)d?)
scaling, respectively, with the same probability. A small-¢ ef-
fect can be seen where the mean and standard deviation of
the correlated samples is lower than that of the i.i.d. sam-
ples at ¢t < 16 as explained in the main text. The number of
i.i.d. samples and correlated samples generated at particular
t-values is shown in Fig. 2.

proof of Theorem 1, the source of the linear power in =y is
due to correlated t-wise Ly sampling; every i.i.d. sampled
state is supplemented with ¢ samples with a known rela-
tive absolute inner product given by Lemma 1. However,
it is easy to show that the number of mutually >t/2-
bitflipped states is larger than ¢ and the number of states
given by Lemma 1 is a loose lower bound. The number of
supplemented states can be increased to ¢, for m > 1,
limited by the minimal number k = (£} — 7)d~2 of sta-
bilizer states needed and the existence of states with the
minimum number of mutual bitflips desired. This will
add a corresponding power of ¢t™ instead of ¢ in . It is
also possible to extend v to higher powers t™ for fixed k
by supplementing every i.i.d. sampled state with ¢ sam-

ples that have different relative absolute inner products.
In both of these cases, doing so would increase the sparsi-
fication tail bound of Pr [|[H®" — ¢||> < (Q[Q) — 1 + 6%
further. This would decrease the rate of convergence, and
so would require % > (¢, —t™)~" for the improvement
in scaling to outperform independent sampling to the
same convergence probability. However, it is not clear
how many such appropriately bit-flipped supplemental
states exist given a bitstring and, therefore, it is not clear
how large m of a reduction ¢™ in -y it is possible to ac-
complish. We leave this unresolved for future study.

A similar approach will also extend this method of
correlated L, norm sampling to any of the other diag-
onal states expressed by Eq. 1. Such a treatment would
differ only in that the distribution of ¢ bit-flipped bit
strings would be sampled from the non-uniform distribu-
tion given by Eq. 1 for ¢ # 7.

Though the stabilizer extent {4 of one-, two-, and
three-qubit states is multiplicative, general states do not
have multiplicative stabilizer extent [8]. This introduces
the peculiar notion that L; sampling, which is upper
bounded by the stabilizer extent (see Lemma 2 in [4]),
cannot do better than O(2~9-228%) for the T gate magic
state, but that you can always find a more optimal stabi-
lizer decomposition for higher values of ¢ for other states
such that their worst-case scaling improves.

The results shown here may resolve this peculiarity.
Namely, they show that L; sampling is only asymptoti-
cally bounded by the stabilizer extent and that, for finite
t values, an improvement can be found. This means that
the scaling of the L; sampling cost of one-, two-, and
three- qubit magic states may behave similarly to the
scaling of general states.

In conclusion, we show how to lower the finite ¢ scaling
cost of the popular SPARSIFY algorithm used in weak
simulation of the T+ Clifford gateset from O(2~0-228t5-2)
to O((2~0-228t—¢)§=2). We accomplish this by replacing
its i.i.d. L; sampling with correlated L, sampling and
we numerically demonstrate that this scaling reduction
holds after including hidden prefactors polynomial in ¢.
We explain how further reductions in powers of ¢ can be
obtained with this method. To our knowledge, this is
the first weak simulation algorithm that has lowered this
bound’s dependence on finite ¢ in the worst-case.

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Ad-
vanced Scientific Computing Research, under the Accel-
erated Research in Quantum Computing program. San-
dia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engi-
neering Solutions of Sandia, LLC, a wholly owned sub-
sidiary of Honeywell International Inc., for the U.S. De-
partment of Energy’s National Nuclear Security Admin-
istration under contract DE-NA0003525. This paper de-
scribes objective technical results and analysis. Any sub-
jective views or opinions that might be expressed in the
paper do not necessarily represent the views of the U.S.



Department of Energy or the United States Government.

ACKNOWLEDGMENTS

The author thanks Mohan Sarovar for helpful discus-
sions in the process of this research.

ATIP PUBLISHING DATA SHARING POLICY

The code that support the findings of this study is
openly available in ‘https://s3miclassical.com/gitweb/’,
in the repository ‘weak simulation stab extent.git’.

[1] Aram W Harrow and Ashley Montanaro. Quantum com-
putational supremacy. Nature, 549(7671):203-209, 2017.

[2] John Preskill. Quantum computing in the nisq era and
beyond. Quantum, 2:79, 2018.

[3] Sergey Bravyi, Graeme Smith, and John A Smolin. Trad-
ing classical and quantum computational resources. Phys-
ical Review X, 6(2):021043, 2016.

[4] Sergey Bravyi and David Gosset. Improved classical sim-
ulation of quantum circuits dominated by clifford gates.
Physical review letters, 116(25):250501, 2016.

[5] Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Camp-
bell, David Gosset, and Mark Howard. Simulation of quan-
tum circuits by low-rank stabilizer decompositions. Quan-

tum, 3:181, 2019.

[6] James R Seddon, Bartosz Regula, Hakop Pashayan,
Yingkai Ouyang, and Earl T Campbell. Quantifying quan-
tum speedups: improved classical simulation from tighter
magic monotones. arXiv preprint arXiw:2002.06181, 2020.

[7] Hakop Pashayan, Oliver Reardon-Smith, Kamil Ko-
rzekwa, and Stephen D Bartlett. Fast estimation of out-
come probabilities for quantum circuits. arXiv preprint
arXw:2101.12228, 2021.

[8] Arne Heimendahl, Felipe Montealegre-Mora, Frank Val-
lentin, and David Gross. Stabilizer extent is not multi-
plicative. Quantum, 5:400, 2021.



