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Global soil profiles indicatedepth-dependent
soil carbon losses under a warmer climate

Mingming Wang 1,8, Xiaowei Guo 1,8, Shuai Zhang 1, Liujun Xiao 1,
Umakant Mishra2, Yuanhe Yang 3, Biao Zhu 4, GuochengWang 5, Xiali Mao1,
Tian Qian1, Tong Jiang1, Zhou Shi 1,6,7 & Zhongkui Luo 1,6,7

Soil organic carbon (SOC) changes under future climate warming are difficult
to quantify in situ. Herewe apply an innovative approach combining space-for-
time substitution with meta-analysis to SOC measurements in 113,013 soil
profiles across the globe to estimate the effect of future climate warming on
steady-state SOC stocks. We find that SOC stock will reduce by 6.0 ± 1.6%
(mean±95% confidence interval), 4.8 ± 2.3% and 1.3 ± 4.0% at 0–0.3, 0.3–1 and
1–2m soil depths, respectively, under 1 °C air warming, with additional 4.2%,
2.2% and 1.4% losses per every additional 1 °C warming, respectively. The lar-
gest proportional SOC losses occur in boreal forests. Existing SOC level is the
predominant determinant of the spatial variability of SOC changes with higher
percentage losses in SOC-rich soils. Our work demonstrates that warming
induces more proportional SOC losses in topsoil than in subsoil, particularly
from high-latitudinal SOC-rich systems.

Under future warmer climate, whether soils are a sink or source of
atmospheric CO2 depends on the responses of both plant growth
(which determines carbon inputs to soil) and soil organic carbon (SOC)
decomposition (which determines carbon outputs to the
atmosphere)1,2. Due to the complexity of climate-plant-soil interac-
tions, biophysical Earth system models integrating plant growth and
soil biogeochemical processes are commonly used to predict carbon
cycle-climate warming feedbacks3,4. Nevertheless, model-derived pre-
dictions contain large uncertainties and have beenwidely debated due
to our limited ability to model the high heterogeneity of carbon sta-
bilisation and destabilization processes and their interaction with
plants5,6. In addition, direct long-term measurements of soil carbon
inputs and outputs as impacted by warming are lacking7 and our
understanding of underlying mechanisms is also insufficient8, hinder-
ing reliable prediction of net SOC changes at the time scale of SOC
turnover which may be centuries or millennia9–12.

Climate warming (or any directional climate changes) and its
influences are chronic, non-linear, and need decades or centuries to
manifest13–15. A series of ecosystem processes (e.g., vegetation com-
position and structure, soil microbial community and functioning)
may gradually transform or adapt to such chronic warming16–19. How-
ever, experimental manipulation of temperature regardless of in or
ex situ is usually implemented by a step change of temperature and/or
warming a specific component of the ecosystem (i.e., partial warming,
e.g., only soil is warmed but not forest canopy in experiments con-
ducted in forest ecosystems20,21) and relatively short-duration (days/
months in laboratory incubations up to years/decades in fieldwarming
experiments)22,23. The short-term nature of these manipulative
experiments makes it impossible to capture gradual shifts of both
above- and below-ground processes (e.g., vegetation transformation)
and the relevant consequences on long-term net SOC balance when
the soil at last reaches a new steady state under the manipulative
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condition. Indeed, current results on net SOC balance under warming
are inconclusive anduncertain depending on experimental conditions,
edaphic properties, baseline climate, and ecosystem type24–26. A five-
year whole-soil warming experiment in a temperate forest found
opposite responses of SOC stock to warming in topsoil and subsoil27.
As it is challenging via relatively short-term warming experiments, if
not impossible, to obtain direct large-scale observations to holistically
capture long-term responses of ecosystems28, innovative approaches
are needed to address the inconsistency and uncertainty of whole-soil-
profile net SOC balance under future warmer climate.

In this study, we take advantage of a global data set of SOC
measurements in 113,013 soil profiles across the globe29 which includes
2,703 soil profiles in the northern hemisphere permafrost region30

(Supplementary Fig. 1) to assess the responses of both SOC content
(SOCc, g C kg–1 soil) and stock (SOCs, Mg C ha–1) to climate warming,
using a hybrid approach combining space-for-time substitution31 with
meta-analytic techniques (Fig. 1). First, the 113,013 soil profiles were
sorted bymean annual temperature (MAT) at the profile locations and
divided into classes distinguished byMAT. Depending on the warming
level of interest (i.e., 1, 2, 3, 4, and 5 °C in this study), an “ambient” and a
“warm” class were selected. That is, MAT in the “warm” class must be
certain degrees (i.e., 1, 2, 3, 4 or 5 °C) higher than that in the “ambient”
class. Considering the potential effects of precipitation including its
seasonality, landform and soil type, each class was further divided into
groups distinguished by mean annual precipitation, precipitation
seasonality, landform and soil type. Then, meta-analytic techniques
were applied to the two groups (an “ambient” group vs a “warm”

group) that share the same precipitation, landform and soil type to
estimate the percentage response of SOCc as well as SOCs to warming
(i.e., the difference of MAT between the “ambient” and “warm”

groups). Our approach implicitly adopts the steady state assumption.
That is, soils and thus SOC under current climate represented by the
“ambient” group are at steady state, and the soils will finally reach a
new steady state under future warmer climate represented by the
“warm” group. So, the estimated percentage response of SOC repre-
sent the difference between the two steady states.

Results and discussion
Depth-dependent responses of SOC to warming
The meta-analysis results indicate that SOCs in the 0–0.3m soil is
reduced by 6.0 ± 1.6% (mean±95% confidence interval) under 1 °C
warming (Fig. 2a). In the 0.3–1m and 1–2m soil layer depths, the loss is
reduced to 4.8 ± 2.3% and 1.3 ± 4.0%, respectively (Fig. 2a). With
increasing warming level, regression indicates that SOCs losses will
increase at a rate of 4.2%, 2.2% and 1.4% per additional 1 °C warming in
the three layers, respectively (Fig. 2a). Similar responses are also
observed for SOCc (Fig. 2b). To address the effect of the steady state
assumption on the results, we conducted two sensitivity analyses
(Methods section). First, soil profiles from croplands were excluded
from themeta-analysis as cropland soils have a high probability of not
being at steady state. For both SOCs andSOCc, estimated responses are
similar to those including cropland soil profiles (Supplementary Fig. 2).
Second, groups with <20 soil profiles were excluded from the meta-
analysis. This allows the assessedpairs (which include an ambient and a
warm group) to cover a higher diversity of soil conditions such as land
history and future land cover/use, diluting the effect of non-steady
state soil on the estimates. The results indicate that uncertainty in the
estimates is increased due to the decrease in sample size, but the
general net SOC loss does not change (Supplementary Fig. 2).

These results demonstrate that on average global soils will be a
source of carbon to the atmosphere under future warmer climate (i.e.,
positive soil carbon loss-climatewarming feedbacks). However, SOC in
deeper layers show smaller losses in general (Fig. 2 and Supplementary
Figs. 3 and 4). This may be attributed to the inhibition of lower oxygen
availability and less high-quality carbon substrates to SOC decom-
position in deeper soil depths32. If SOC decomposition and turnover
are predominantly determined by other environmental constrains
rather than temperature, temperature sensitivity of SOC decomposi-
tion would be largely attenuated1. In addition, under a warmer climate,
given otherwise similar environmental conditions, plants may invest
more carbon to growth deeper roots to acquire water, compensating
SOC losses in subsoil33. Another important reason would be that the
magnitude of soil temperature change may not keep the same pace

Fig. 1 | Schematic representationof the approachused toquantify the response
of soil organic carbon (SOC) to warming. Each dot represents one soil profile.
Dots with the same colour indicate that they share the same mean annual pre-
cipitation, precipitation seasonality, landform and soil type, and are grouped into
classes distinguished by mean annual temperature (MAT). Depending on the
interest of warming level (e.g., 1 °C in this schematic example), two classes (i.e., an

ambient class and a warm class) are selected and SOCmeasurements (content and
stock) from soil profiles belong to the same group are compared between ambient
and warm classes (e.g., group 1 in ambient class vs group 1 in warm class). Meta-
analytic techniques are applied to calculate the effect size for each comparison (i.e.,
the log response ratio lnRR), and aweighted averageeffect sizeby the inverse of the
sum of within- and between-group variances is estimated.
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with air temperature change due to energy dissipation with heat
conduction and diffusion through the soil profile. In deep layers, soil
temperature may be also strongly modulated by belowground geolo-
gical characteristics (e.g., groundwater table, depth of bedrock). The
consequence of such discrepancy between air and soil temperature
changes on the estimation of whole-soil SOC dynamics in response to
climate warming is rarely assessed34. If SOC in deeper layers do not
have much weaker temperature sensitivity as observed by a series of
field and laboratory experiments21,35,36, similar proportional net SOC
changes under the same soil temperature changes should be expected.
Our results of smaller percentage SOC losses in deeper layers suggest
that surface air warming may induce depth-dependent soil tempera-
ture increases, which should be carefully assessed. As the “ambient”
and “warm” groups used in the meta-analysis were selected by surface
air temperature, the space-for-time substitution approach used in this
study would partially capture the difference between soil and air
temperature changes.

Controls over SOC responses
The responses of SOC towarming vary significantly across biome types
(Supplementary Figs. 3 and 4 and Supplementary Tables 1 and 2). In
most biomes, SOCs show significant negative responses in all three soil
layer depths. In tundra systems, however, contrary to the expectation
of negative response of SOC to warming17,37,38, SOCs are increased
irrespective of soil depth and warming level, albeit the increase is
statistically insignificant (Supplementary Fig. 3). There is evidence that
warming may substantially increase carbon inputs to the soil through
enhanced vegetation growth in cold systems, thus offsetting SOC
losses induced by increased decomposition26,39,40. Another intriguing
finding is that SOC in different biomes do not show the same response
to increasing warming level. For example, SOCs reduction in the
0–0.3m soil is 10% and 34% under 1 °C and 5 °C warming, respectively,
in temperate forests (i.e., 24% absolute change), but this absolute
change under the two temperatures is only 10% in tropical/subtropical
forests (Supplementary Fig. 3). In tundra systems, the response of
SOCs in the top 0.3m soil is relatively stable under all warming levels.
These results highlight biome-specific sensitivity of SOC dynamics to
warming.

The responses of SOC to warming are also regulated by pre-
cipitation including its seasonal pattern, but are less influenced by soil
type and landform (Supplementary Figs. 3 and 4 and Supplementary
Tables 1 and 2). Herewe note that the soil type assessed is based on the
world map of soil orders of the USDA soil classification system. To
verify the effect of soil type (Supplementary Tables 1 and 2), we also
used FAO and WRB soil groups in the estimation (Methods section).
The results indicate that using soil types from the three soil classifi-
cation systems generates similar results on the response of SOC to
warming (Supplementary Fig. 5). One may argue that the soil orders/
groups used are too coarse to reflect soil properties.We conducted an
additional assessment based on the 63 soil suborders in the USDA
system. This also does not change the estimation of the responses of
both SOCs and SOCc to warming (Supplementary Fig. 5). Soil proper-
ties are recognised to be important for SOC stabilisation and
storage8,41,42. It is reasonable to expect that soil properties may also
shape the response of SOC towarming. Soil types assessed here can to
some extent reflect common soil physiochemical conditions, but our
assessment does not support that soil type plays a significant role in
regulating overall SOC balance under climate warming at the global
scale. At finer scales, we acknowledge that heterogeneous soil prop-
erties may be important.

To assess the relative importance of biome type, precipitation
pattern, soil type and landform, together with a suite of other envir-
onmental variables, we trained a random forest model adapted for
meta-analysis (meta-forest) which considers interactions among the
variables and potential nonlinearity (Methods section). The meta-
forest model shows good predictive power for SOC changes induced
by warming (tenfold cross-validated R2 = 0.69 for SOCs changes and
0.64 for SOCc changes, Fig. 3). For SOCs, existing SOCs is the most
important variable influencing its percentage changes under warming
(Fig. 3a), and high SOC level is associated with higher SOC losses in all
layer depths (Supplementary Fig. 6). Following the existing SOC stock,
baseline mean annual precipitation and temperature are the twomost
important variables. This result may imply the important role of trade-
offs between soil moisture and thermal regimes in controlling the
response of SOC to warming43,44. Similar variable importance is also
found for the responseof SOCc (Fig. 3b). These results suggest the vital
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Fig. 2 | The resoponse of soil organic carbon (SOC) to warming. Global per-
centage response of SOC stock (a) and content (b) towarming. Sample size (i.e., the
number of soil profiles used to estimate the response) is shown for each soil layer
depth (i.e., 0–0.3, 0.3–1 and 1–2m) under each warming level (i.e., 1, 2, 3, 4, 5 °C
warming). Black vertical bars show the 95%confidence interval. Solid lines show the

linear regression line between response and warming level in three soil layer
depths, and inset table shows statistics for the regression including the determi-
nation coefficient (R2), regression slope and p value. Values for warming levels are
jittered to make the points more distinct.
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role of baseline climatic conditions in regulating SOC dynamics in
response to warming. The importance of aridity index and precipita-
tion centralization index (PCI) further demonstrates this (Fig. 3).

Comparison with predictions of soil carbon models
We compared our estimates in the three soil depths to predictions of
SOCmodels (Methods section; Fig. 4). To do so, aQ10 function (which
describes the temperature sensitivity of SOC decomposition) was
applied to a one-pool SOCmodel to predict net steady-state SOC stock
changes under different warming levels. Themodel-predicted changes
of SOC stock were calculated as the percentage difference of SOC

between two steady states under ambient and future warmer condi-
tions. Our estimates of temperature responses of net SOC stock
changes are well in line with the modelled responses using Q10 values
of 1.7, 1.4 and 1.2 under a scenario of no carbon input changes in the
0–0.3, 0.3–1 and 1–2m soil depths, respectively (Fig. 4a). Under sce-
narios of carbon input changes, Q10 values vary depending on the
magnitude of carbon input changes. If assuming a 2% increase of car-
bon inputs per 1 °Cwarming,Q10 values of 2.1, 1.7 and 1.4 are predicted
in order to capture the estimated SOC losses in the 0–0.3, 0.3–1 and
1–2m soil depths, respectively. The decrease of Q10 with soil depth
maybe attributed todecreased substrate availability and increased soil

Fig. 4 | Comparisonwith soil carbonmodel-estimated responses of soil organic
carbon (SOC) to warming. a SOC stock, b SOC content. Points are averages esti-
mated using the space-for-time substitution approach developed in this study.

Lines are predictions of a one-pool carbon model using optimised Q10 values, with
different line width indicating carbon input change scenarios under warming. The
optimised Q10 values are shown in the inset table.
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Fig. 3 | The relative importance of environmental variables in influencing the
response of soil organic carbon (SOC) towarming. a, b the results for SOC stock
and content, respectively. The relative importance is identified by a meta-forest
model driven by the listed variables to predict the response of SOC stock and
content to warming. MAP, mean annual precipitation; MAT, mean annual tem-
perature; PCI, precipitation concentration index; P in summer, the fraction of

precipitation in summer to MAP; NPP, net primary production. Insets show the
performance of the meta-forest model with RMSE and R2 show the rooted mean
squared error and determination coefficients, respectively. Brown bars, soil-related
variables; blue bars, climate-related variables; grey bars, topography-related vari-
ables; green bars, vegetation-related variables.
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environmental constraints which inhibit microbial activity and its
temperature response45. Overall, the estimates using the space-for-
time substitution approach can well reflect SOC decomposition and
turnover processes formulated by pool-based carbon models (e.g.,
temperature response functions inmostmodels assume aQ10 value of
~2, ref. 44), and are also in the range observed by field and laboratory
experiments1,21,37. Our estimates of net SOC changes under warming
can provide benchmarks for constraining the temperature sensitivity
of SOC decomposition and verifying predictions of soil carbon cycle-
climate warming feedbacks by Earth system models.

Comparison with field warming experiments
We also compared the estimated responses of SOC to warming using
our approachwith thoseobserved infieldwarming experiments. Using
data from existingmeta-analyses7,26,46–50, we compiled a global data set
of a total of 261 observations of SOCs from 85 field warming experi-
ments including warmed and ambient plots. Across the experiments,
temperature in warmed plots are 0.1–7 °C higher than that in ambient
plots, and the majority of SOC observations are limited to the top
0.2m soil. To facilitate comparison, the temperature changes (i.e.,
warming) were grouped into six categories: <1 °C, 1–2 °C, 2–3 °C,
3–4 °C, 4–5 °C and >5 °C. Meta-analysis using the data (Methods sec-
tion) shows that SOC in general responds negatively to warming
(Supplementary Fig. 7). However, the responses are much weaker
compared with the estimates in the top 0.3m soil layer using our
space-for-time substitutionapproach, particularly under highwarming
levels (Fig. 2a). Indeed, none of the responses under the six field
warming levels are significant (QM=0.19, which indicates hetero-
geneity caused by the six warming categories, p = 0.66). This disparity
is also common across ecosystem types (Supplementary Fig. 7b). For
example, SOC changes in forests are on average neutral in field
warming experiments irrespective of warming levels, but are esti-
mated to be significantly negative using our space-for-time substitu-
tion approach (Supplementary Fig. 7b).

We propose several reasons for the disparity of net SOC changes
under warming between that detected by field warming experiments
and that by our space-for-time substitution approach. First, durations
of field warming experiments are relatively short ranging from <1 to 25
years with an average of 4.7 years, and thus SOC would be far from
steady state. By looking into the relationship between SOC responses
to experimental durations, a negative, albeit insignificant, relationship
is detected (Supplementary Fig. 8), demonstrating the importance of
experimental duration. Second, field manipulation of temperature
faces some technical challenges in terms of representing natural gra-
dual climate warming and the relevant plant-soil-microorganism
interactions. For example, most warming experiments cannot simul-
taneously warm the whole soil profile and vegetation canopy (parti-
cularly in forests). Third, field warming experiments are still scarce
(<20 except in grasslands), and cannot cover the heterogeneous
environmental conditions across the globe (Supplementary Fig. 7b).
We should use caution when extrapolating results from field warming
experiments to infer changes in SOC balance under warming condi-
tions across large extents.

Digital global mapping of SOC changes under warming
Weapply the validatedmeta-forestmodel for SOCs (Fig. 5) to each 1 km
grid across the globe using three global maps of SOC stock estimates
includingWISE51, HWSD52 andSoilGrids53, combiningwith global digital
maps of other environmental predictors (Methods). The three SOC
data sets provide critical input (i.e., existing SOC stock which is the
most important predictor; Fig. 3a) for themeta-forest model, enabling
us to obtain insights into how uncertainties in global SOC stocks
influence the prediction of net SOC responses to future warming.
Under 2 °Cwarming, digital globalmapping basedon theWISEdata set
indicates that SOC loss mainly occurs in relatively cool regions

(Fig. 5a). Boreal forest will lose >20% of SOC in all soil depths, followed
by temperate grassland in the 0–0.3m soil depth (>20%; Fig. 5b).
Despite the global average loss, most tundra and desert soils will
accumulate carbon under warming (Fig. 5b, d, f). This result is con-
sistent with predictions by Earth system models54,55. However, the
predictionuncertainty in tundra anddeserts is also larger than in other
ecosystems (Supplementary Fig. 9). As the sample size (i.e., soil pro-
files) of “ambient” and “warm” pairs (<100) is relatively small in tundra
systems, new observations would help reduce the uncertainty.

Basedon theWISE, HWSD, andSoilGrids data sets, themeta-forest
model predicts that, averaging across the globe, SOC stock will
decrease by 11.8 ± 5.6%, 7.7 ± 6.2% and 23.2 ± 5.6% in the 0–0.3m soil,
respectively, under 1 °C warming (Supplementary Table 3). In terms of
absolute SOC stock changes, using the three data sets, global SOC
stock loss is estimated to be 166 ± 46, 115 ± 42 and 343± 67 Pg C in the
0–0.3m soil under 1 °C warming, respectively (Table 1). Aggregating
layer-specific absolute losses to the 0–1m and 0–2m soil depths
indicate that global SOC loss is 620 ± 130 Pg and 1551 ± 293 Pg under
1 °C climate warming, respectively (Table 1). The loss will be increased
to 843 ± 176 Pg and 1945 ± 387 Pg in the two depths, respectively,
under 5 °C air warming. If assuming 40% of the SOC loss in the 0–1m
soil profile (508 ± 117 Pg based on SOC stock estimates of WISE) will
endup in the atmosphere (the remaining 60%would be sequestered to
the ocean and terrestrial vegetation) under 2 °C warming, current
atmospheric CO2 concentration of ~410 ppmwill be increased by ~24%
or to ~508 ppm. This result is in line with the close association of
temperature with atmospheric CO2 concentration revealed by ice
cores56. However, it should be highlighted that different estimates of
current SOC stocks across the globe result in large uncertainty in the
magnitude of SOC loss under future warming (Table 1). The main
reason is that there is a large difference of SOC stocks in the three data
sets, especially SoilGrids estimates much higher SOC stock in many
biomes than HWSD and WISE (Supplementary Fig. 10).

Limitations and uncertainties
There are several limitations/uncertainties in the space-for-time sub-
stitution approach. First, it does not allow us to assess the effects of
other global change factors that may accompany with warming, e.g.,
elevated CO2, nitrogen deposition, and fire. Considering the general
positive effects of elevated CO2 and nitrogen deposition on plant
growth57,58, our results would overestimate SOC loss. In terms of fire,
warming may lead to more severe and frequent fires, particularly in
relatively dry areas59, altering carbon inputs to soil in terms of both
quantity and quality (e.g., more pyrogenic carbon inputs) and physi-
cochemical environment for SOC decomposition60. Such fire-induced
changes in carbon inputs and outputs and SOC stabilisation processes
may interactwithwarming to regulate SOCbalance. Second, we do not
consider the potential effects of changes in other climatic variables
(e.g., extreme climate events), which may interact with warming to
determine the net balance of SOC under warming. Indeed, our results
have demonstrated that precipitation seasonality together with other
precipitation-related variables are important predictors of the
response (Fig. 3). Third, the approach adopts an implicit assumption
that the history (e.g., paleoclimate) of the soil profiles experienced in
the ambient and warm groups are similar, or has negligible effect on
the responseof SOC towarming. Althoughwehave partially tested this
by only including groups with more than 20 soil profiles to dilute/
average the effect of the potential diverse history, the role of soil
history related to land use, climate and geological events should be
further elucidated.

Assessing a comprehensive observational global data set of
whole-soil-profile SOC measurements using an innovative hybrid
approach of space-for-time substitution and meta-analysis, we have
demonstrated that global soils on average will be a carbon source to
the atmosphere under future warmer climate, supporting the
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expectation of positive soil carbon loss-climate warming feedbacks17.
This positive feedback ismainly attributed tonet SOC loss inupper soil
layers, and carbon in deeper soil depths is less vulnerable to air
warming. Overall, this study provides in situ evidence of strong posi-
tive soil carbon-climate feedbacks, and estimates a global average SOC
loss of ~700 PgC in the top 1m soil when soils reach a new steady state
under 2 °C warming; and boreal forests are the most vulnerable areas.
However, some soils will also sequester carbon under future warming.
Particularly, tundra systems and desert will play a vital role in miti-
gating climate change by sequestering atmospheric carbon under
warming. Although the time (which would be decades or even mil-
lennia depending on ecosystem types and other environmental con-
ditions) needed to totally manifest this change cannot be quantified
using our approach, natural or industrial capture of atmospheric

carbon is required to offset such loss which, otherwise, will undermine
the efforts of mitigating climate change. The derived global maps of
net SOC changes can be used to configure and/or test Earth system
models for more robust regional and global implications and reliable
predictions, facilitating the development of management strategies
for SOC preservation and sequestration under future warming
conditions.

Methods
WoSIS and permafrost-affected soil profiles
The World Soil Information Service (WoSIS) collates and manages the
largest database of explicit soil profile observations across the globe29.
In this study, we used the quality-assessed and standardised snapshot
of 2019 (ISRIC Data Hub). We further screened the snapshot, and

Fig. 5 | Global pattern of percentage changes of soil organic carbon (SOC)
stocks under 2 °C warming. Top, middle and bottom panels: three soil layer
depths (i.e., 0–0.3, 0.3–1, 1–2m), respectively. Left panels: maps of the spatial
distribution of the changes; right panels, aggregated by biome types. In b, d, f, the
red points are the average value in each biome; boxplots show the median and
interquartile, with whiskers extending to the most extreme data point within
1.5×interquartile range. The maps are produced by applying machine learning-

basedmeta-forestmodels constrained by the global soil profiles across the globe at
the resolutionof 1 km.Uncertainties in themapped changeshavebeenpresented in
Supplementary Fig. 9. Theglobal SOCmapofWISE isused for current standing SOC
stocks. TS forests, tropical/subtropical forests; Med/Mon shrublands, Mediterra-
nean/montane shrublands; TS grasslands/savannas, tropical/subtropical grass-
lands/savannas.
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excluded soil profiles with obvious errors (e.g., negative depth values
of mineral soil, the value of the depth for the deeper layer is smaller
than that of the upper layer). Finally, there is a total of 110,695 profiles
with records of SOC content (SOCc, g C kg–1 soil) in the fine earth
fraction < 2mm. The soil layer depths are inconsistent between soil
profiles. We harmonised SOCc to three standard depths (i.e., 0–0.3,
0.3–1 and 1–2m) using mass-preserving splines61,62, which makes it
possible to directly compare among soil profiles. We also calculated
SOC stock (SOCs, kg C m–2) in each standard depth as:

SOCs =
SOCc

100
Á D Á BD Á 1À G

100

� �
, ð1Þ

where D is the soil depth (i.e., 0.3, 0.7, or 1m in this study), BD is the
bulk density of the fine earth fraction <2mm (kgm–3), and G is the
volume percentage gravel content (>2mm) of soil. Amongst the
110,695 soil profiles, unfortunately, only 18,590 profiles have mea-
surements of both BD and G. To utilise and take advantage of all SOCc

measurements, we used generalised boosted regression modelling
(GBM) to perform imputation (i.e., filling missing data). As such, SOCs

can be estimated. To do so, for BD and G in each standard soil depth,
GBMwas developed based on all measurements of that property (e.g.,
BD) in the 110,695 profiles with other 32 soil properties recorded in the
WoSIS database. The detailed approach for missing data imputation
has been described in ref. 41.

Together with the WoSIS soil profiles, a total of 2,703 soil profiles
with data of SOCs from permafrost-affected regions were obtained
from ref. 30. The original data used in ref. 30 have been obtained, and
we used the data of SOCs in the 0–0.3, 0.3–1, and 1–2m soil layers in
this study. These permafrost-affected profiles compensate for the
scarce soil profiles in high latitudinal regions in the WoSIS database.
Overall, the soil profiles cover 13 major biome groups although the
profile numbers vary among biome types (Supplementary Fig. 1). The
profiles also cover various climate conditions across the globe with
mean annual temperature (MAT) ranging from –20.0 to 30.7 °C and
mean annual precipitation (MAP) ranging from 0 to 6,674mm.

Environmental covariates
MAT and MAP for each soil profile were obtained from the WorldClim
version 2 (ref. 63). The WorldClim version 2 calculates biologically

meaningful variables using monthly temperature and precipitation
during the period 1970–2000. We obtained global spatial layers of
MAT andMAP at the resolution of 30 arcsecond (i.e., 0.0083° which is
equivalent to ~1 km at the equator). Soil profiles in the same 0.0083°
grid (i.e., ~1 km2) share the sameMAT andMAP. BesidesMAT andMAP,
other climatic variables for each soil profile were also obtained from
the WorldClim version 2. The WWF (World Wildlife Fund) map of ter-
restrial ecoregions of the world (https://www.worldwildlife.org/
publications/terrestrial-ecoregions-of-the-world) was used to extract
the biome type at each soil profile. TheMODIS land cover map64 at the
same resolutionofNPPdatabaseswasused to identify that if the land is
cultivated (i.e., land cover type of croplands and cropland/natural
vegetation mosaic) at the location of each soil profile.

Space-for-time substitution: grouping soil profiles
We used a hybrid approach of space-for-time substitution andmeta-
analysis to estimate the response of SOC to warming. Traditionally,
space-for-time substitution involves determining regression rela-
tionships across gradients at one time31. The regression was then
used to predict future status under conditions when one or more of
the covariates has changed31. However, the approach was compro-
mised when the effects of other driving variables such as soil type
and landform were not minimised. Regarding SOC dynamics, they
would show non-linear relationships19 with temperature modulated
by a series of other environmental covariates (e.g., precipitation,
vegetation type).

Based on the idea of space-for-time approach31, first, we sorted all
soil profiles by MAT at the soil-profile locations and designated them
into MAT classes with an increment of 1 °C (Fig. 1). Then, we derived
pairs of soil profiles, with each pair including a “ambient” and “warm”

class (i.e., control vs treatment in meta-analysis language) dis-
tinguished byMAT (Fig. 1). The ambient class includes soil profileswith
MAT ranging from i to i + 1 degree Celsius, where i is the lowest tem-
perature in the class. If 1 °C warming is of interest, for example, the
warm class will be identified as the class withMAT ranging from i + 1 to
i + 2 degree Celsius (i.e., one degree higher than that of the ambient
class; Fig. 1). To control the effects of precipitation, soil type and
topography, soil profiles in both ambient and warm classes were fur-
ther grouped; and each group must have the same following
characteristics:

Table 1 | Global absolute loss of soil organic carbon (SOC) under different warming levels predicted by meta-forest model
using SOC stocks from three global maps

Data sets Soil layers (m) SOC stock (Pg) The sum of absolute losses across global upland pixels (Pg)

+1 °C +2 °C +3 °C +4 °C +5 °C

WISE 0–0.3 830.3 −166.1 ± 45.9 −193.8 ± 51.5 −213.4 ± 50.1 −242.7 ± 53.0 −261.6 ± 64.3

0.3–1 996.3 −281.0 ± 61.0 −313.9 ± 65.2 −331.6 ± 67.4 −361.9 ± 73.6 −379.6± 82.6

1–2 988.2 −294.5 ± 64.4 −322.0 ± 69.5 −335.6 ± 72.0 −365.6 ± 77.6 −382.7 ± 84.6

HWSDa 0–0.3 708.4 −115.5 ± 42.2 −137.0 ± 42.5 −154.5 ± 43.7 −180.7 ± 49.6 −195.7 ± 52.5

0.3–1 858.0 −215.6 ± 52.4 −242.2 ± 55.7 −257.5 ± 54.8 −286.1 ± 65.6 −300.9± 70.5

SoilGrids 0–0.3 1172.2 −343.6 ± 67.2 −396.3 ± 72.2 −425.5± 74.1 −462.7 ± 79.1 −485.0± 89.4

0.3–1 1838.4 −739.1 ± 120.0 −817.9 ± 130.6 −844.8 ± 170.4 −882.3 ± 152.4 −906.7 ± 167.5

1–2 2785.5 −1278.0± 227.0 −1383.1 ± 203.1 −1408.0± 235.5 −1444.8 ± 261.5 −1475.7 ± 285.2

Average across datasets 0–0.3b 903.6 −208.4 ± 51.8 −242.4 ± 55.4 −264.5 ± 56.0 −295.4 ± 60.6 −314.1 ± 68.7

0.3–1b 1181.0 −378.5 ± 74.4 −422.9± 79.4 −443.6± 93.8 −475.0± 91.9 −494.0± 100.9

1–2c 1886.8 −786.3± 145.7 −852.6 ± 136.3 −871.8 ± 153.8 −905.2 ± 169.6 −929.2 ± 184.9

0–1b 2134.5 −620.3± 129.6 −700.4± 139.2 −742.4 ± 153.5 −805.5 ± 157.8 −843.2 ± 175.6

0–2c 4305.5 −1551.2 ± 292.8 −1713.5 ± 296.1 −1779.5 ± 334.8 −1880.0± 348.6 −1945.7 ± 386.8

Values show the mean ± 95% confidence interval.
aHWSD does not report SOC stock in the 1–2m soil layer depth.
bThe average values were derived based on SOC stock estimates of WISE, HWSD and SoilGrids.
cThe average values were derived based on SOC stock estimates of WISE and SoilGrids.
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(1) Landform. A global landform spatial layer was obtained from
Global Landform classification - ESDAC - European Commission
(europa.eu), and global terrestrial lands were divided into three
general landform types: plains including lowlands, plateaus, and
mountains including hills.

(2) Soil type. The 12 USDA soil orders were used to distinguish soil
types. A global spatial layer of soil orders was obtained from The
Twelve Orders of Soil Taxonomy | NRCS Soils (usda.gov). We also
independently tested the sensitivity of the results to different soil
classification systems by including FAO andWRB soil groups (Soil
classification | FAO SOILS PORTAL|Food and Agriculture Organi-
zation of the United Nations).

(3) Mean annual precipitation (MAP).MAPcannotbe exactly the same
between the ambient andwarmgroups. In practice,we considered
that soils meet this criterion if the absolute difference of MAP
between ambient and warm soils is less than 50mm. We also
tested the sensitivity of the results to this absoluteMAP difference
using another value of 25mm, and found that this difference has
negligible effect (Supplementary Fig. 11).

(4) Precipitation seasonality. Precipitation seasonality indicates the
temporal distribution of precipitation. In this study, we focused
onwarming alone, and global warmingwould also have less effect
on this seasonal distribution of precipitation. The seasonal dis-
tribution pattern of precipitation was classified into three cate-
gories: summer-dominated precipitation, winter-dominated
precipitation and uniform precipitation. Precipitation concentra-
tion index (PCI) was calculated in R precintcon package to
distinguish the three patterns65:

PCI =
P12

i = 1 p
2
iP12

i = 1 pi

� �2 Á 100, ð2Þ

where pi is the precipitation inmonth i in a particular year. In this study,
we used the monthly precipitation from 1970 to 2000 obtained from
WorldClim version 2 (ref. 63) to calculate the average PCI at the loca-
tion of each profile. If PCI < 8.3, precipitation spreads throughout the
year (i.e., uniform precipitation). If PCI > 8.3 and total precipitation
from April to September (from October to March in the Southern
Hemisphere) is larger than that from October to March (from April to
September in the Southern Hemisphere), precipitation mainly occurs
in summer (i.e., summer precipitation); otherwise, it is winter
precipitation.

By applying these selection criteria to all soil profiles, we obtained
pairs (i.e., an “ambient”groupvs a “warm”group) of soil profilesmainly
distinguished by MAT (i.e., warming). Amongst pairs, they would be
different in landform, soil type, MAP and precipitation seasonality,
which enables us to address their effects on the response of SOC to
warming. We are interested in five warming levels including 1, 2, 3,
4, and 5 °C.

Meta-analysis: estimation of the response of SOC to warming
Meta-analysis techniques were used to estimate the percentage
response of SOC to warming by comparing SOC content and stock in
groups in the warm group to that in the ambient group. The log
response ratioof soil C (lnRR) towarming for eachpair (i.e., an ambient
group vs a warm group) of soil profiles was calculated as:

lnRR= ln
�SOC*

SOC

 !
, ð3Þ

where SOC and �SOC* are the mean SOC (either content or stock) in
groups from ambient and warm class, respectively. In order to provide
a robust estimate of global mean response ratio, the individual lnRR
values were weighted by the inverse of the sum of within- (v) and

between-group (τ2) variances. As such, the global mean response ratio
(lnRR) could be estimated as:

lnRR=

P
i lnRRi ×wi

À ÁP
iwi

, ð4Þ

wherewi =
1

vi + τ2
is the weight for the ith lnRR. In addition, we estimated

and compared the mean response ratios under different soil orders,
landforms, and precipitation concentration patterns. These mean
response rates were calculated in weighted, mixed-effects models
using the rma.mv function in R package metafor. To assist interpreta-
tion, the results of lnRR were back-transformed and reported as
percentage change under warming, i.e., ðeRR À 1Þ× 100. These back-
transformed values were also used for subsequent data analyses.

An implicit assumption underlying the space-for-time substitu-
tion approach is that important events or processes which sub-
stantially change the succession direction of studied system (e.g.,
volcano disruption in one class but not in another class, cultivation in
one class but not in another class) are independent of space and time
(which includes the past and future)66. We conducted two sensitivity
assessment to test this assumption. First, we repeated all above
assessment by excluding soil profiles fromcroplands sincepreferential
choice of land clearing for cultivation should be common. Second, we
repeated all assessment by including onlygroups having at least 20 soil
profiles. This allows the assessed pairs to cover a higher diversity of
land history and future land cover/use, diluting the effect of a typical
event at a specific soil profile on the estimates.

Comparison with SOC turnover models
We compared our estimation with predictions by SOC models. A
simple one-pool SOC model can be written as:

dC
dt

= I À k Á C, ð5Þ

where I is the amount of carbon input, k is the decay rate of SOC, andC
is the stock of SOC. At steady state, C = I=k. A Q10 function can be
applied to estimate k under warming (kw):

kw = k Á exp 0:1 Á 4T Á log Q10

À ÁÀ Á
, ð6Þ

where 4T is the warming level. Thus, when soil reaches a new steady
state under warming, SOC stock (Cw) can be estimated as:

Cw =
Iw

k Á exp 0:1 Á 4T Á log Q10

À ÁÀ Á , ð7Þ

where Iw is the carbon input amount under warming condition. Finally,
the response of SOC to warming (R) can be calculated as:

R=
Cw À C

C
=
Iw
I
Á exp À0:1 Á 4T Á log Q10

À ÁÀ ÁÀ 1: ð8Þ

Using Eq. (8), we calculatedRunder a series of ensembles of IwI ,4T , and
Q10, and compared R with that estimated using our space-for-time
substitution approach.

Comparison with field warming experiments
A number of meta-analyses based on data from field warming experi-
ments had been performed to assess the response of SOC to
warming7,26,46–50, which enable us to conduct comparisons with the
estimates using our hybrid approach combining space-for-time sub-
stitution and meta-analysis techniques. A total of five meta-analysis
papers have been foundby searching theWebof Science.We retrieved
the response ratios from the identified papers, and compared them to
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our estimations. Here, it should be noted that most field warming
experiments focused on SOC changes (stock or content) in the top
0.2m soil layer. We compared them with our estimation of the
response of SOC stock in the top 0.3m soil.

Besides the published results of meta-analysis, we also conducted
an independent meta-analysis using data from field warming experi-
ments. Themeta-analysis datasetwasmainly frompublishedpaperson
meta-analysis from 2013 to 2020 (see Supplementary Data 1). It should
be noted that the field warming experiments manipulate temperature
using different approaches such as open/closed-top chamber, infrared
radiators and heating cables. For the comparison, we did not explicitly
distinguish these approaches. The experimental duration ranged from
0.42 to 25 years with a mean of 4.7 years, and the warming magnitude
ranged from 0.1 to 7°C with a mean of 1.92 °C. To ease comparison,
field warming levels were classified into 0–1, 1–2, 2–3, 3–4, 4–5, and
>5 °C. The same meta-analysis to that assessing soil profile data was
used to predict the response ratio of SOC to the above six warming
levels. In addition, we divided the data into four ecosystems (i.e.,
tundra, forest, shrublands and grasslands) and estimated the response
ratio in each ecosystem. These estimates based on field warming
experimentswere comparedwith those estimated using our space-for-
time approach.

Variable importance and global mapping
We included 15 environmental predictors to derive a meta-forest
model, a machine learning-based random forest model adapted for
meta-analysis, to map the response of SOC stock/content to warming
across the globe at the resolution of 0.0083°. The 15 environmental
predictors reflect generally four broad groups of environmental con-
ditions: baseline SOC conditions represented by current standing SOC
stock or content, soil order and soil depth; current baseline climatic
conditions represented by MAT, MAP, aridity index, precipitation
seasonality represented by PCI, the fraction of precipitation in sum-
mer, the difference of temperature between ambient and warm
groups, the difference of precipitation between ambient and warm
groups; topography represented by elevation and landform; and
vegetation represented by NPP and biome type.

The metaforest function in the metafor package was used to
derive the model. To fit the model, a fivefold cross-validation was
conducted. That is, 80% of the derived response ratios was used to
train themodel, and the remaining 20% to validate themodel. The best
model hypeparameters were targeted by running the model under a
series of parameter combinations, and the model performance was
assessed by the rootedmean squared error (RMSE) and determination
coefficient (R2). The meta-forest model allows the estimation of the
relative influence of each individual variable in predicting the
response, i.e. the relative contribution of variables in the model. The
relative influence is calculated based on the times a variable selected
for splitting when growing a tree, weighted by squared model
improvement due to that splitting, and then averaged over all fitted
trees which are determined by the algorithm when adding more trees
cannot reduce prediction residuals. As such, the larger the relative
influence of a variable, the stronger the effect of the variable on the
response variable.

Combining with spatial layers of predictors, the meta-forest
model for SOC stock was used to predict the response of SOC to
warming across the globe at the resolution of 1 km (most data layers
are already at the 1 km resolution as abovementioned, for those layers
that are not at the target resolution, they were resampled to the 1 km
resolution). In the meta-forest model, current standing SOC stock is
themost important predictor (Fig. 4).Weuse three globalmaps of SOC
stocks includingWISE51 (WISE Soil Property Databases | ISRIC), HWSD52

(Harmonized World Soil Database (HWSD v 1.21) - HWSD - IIASA) and
SoilGrids53 (SoilGrids250m 2.0) to obtain current standing SOC stocks.
These three global maps represent the major mapping products of

SOC stock at the global level, and had been widely used for large scale
modelling. The derived meta-forest model was applied across the
globe to estimate the response ratio of SOCstock in each 1 kmpixel. To
do so, the same procedure to group the observed soil profiles (Fig. 1)
was applied to group global land pixels (section Space-for-time sub-
stitution: grouping soil profiles). The only difference is that global
mapping uses all pixels instead of the 113,013 soil profiles. In each 1 km
pixel, prediction uncertainty was also quantified using estimates of
randomly drawn 500 trees of the fitted meta-forest model to calcuate
standard deviation of the predictions.

Data availability
All data used in this study are from publicly accessible data sources.
The World Soil Information Service (WoSIS) provides quality-assessed
and standardisedglobal soil profile data (ISRICDataHub).Three global
maps of SOC stocks: WISE51 was obtaind from (WISE Soil Property
Databases | ISRIC), HWSD52 from (Harmonized World Soil Database
(HWSD v 1.21) - HWSD - IIASA), and SoilGrids53 from (SoilGrids250m 2.
0). Climate data were obtaind from WorldClim version 2 (WorldClim
Version2 | WorldClim - Global Climate Data). The global biome type
distribution map is available at https://www.worldwildlife.org/
publications/terrestrial-ecoregions-of-the-world. The NPP can be
accessed at https://ladsweb.modaps.eosdis.nasa.gov/missions-and-
measurements/products/MOD17A3. The global landform spatial layer
was obtained from Global Landform classification - ESDAC - European
Commission (europa.eu). The map of USDA soil orders was obtained
fromTheTwelveOrders of Soil Taxonomy |NRCS Soils (usda.gov). The
FAO and WRB soil orders were obtained from Soil classification | FAO
SOILS PORTAL | Food and Agriculture Organization of the United
Nations, respectively. The ocean boundary data was obtained from
http://www.naturalearthdata.com/downloads/.

Code availability
Code (R scripts) used to assess the data and generate the results67

are deposited to figshare (https://doi.org/10.6084/m9.figshare.
20365551.v1).
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