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About me: Characterization answering mostly 

materials science questions

• I started doing TEM in 1991 in grad school

– Solid state chemistry in epitaxial oxide thin film reaction couples

• Post doc at LANL

– Analysis of oxides, intermetallics, and other things…with TEM

• Staff at Sandia

– I look at almost all classes of materials with TEM/STEM

– Technique development in hyperspectral imaging and data analysis

– Most interesting project: Analysis of Anthrax attack materials as part 

of the FBI’s Amerithrax investigation (2001-2008)



What is TEM?

• High-energy (100 kV-300kV) electrons pass through a sample.

– Relativistic light particles with wavelengths of 0.037Å-0.0197Å

– Interesting fact: There’s only one electron passing through the sample at a 

time. Wave? Particle? Yes both!

• The sample must be thin since electrons interact strongly with 

matter. Electrons are easy to steer and we can do imaging and 

diffraction in the same tool.

• For FA, FIB allows us to make site-specific sample with little 

effort. Other FA techniques are typically used to identify defects 

and mark locations prior to FIB.



What information does TEM give us?

• Metrology: e.g., gate oxide thickness

• Defects: e.g., dislocations, mask issues, etc.

• Chemistry

– In STEM mode, scanning TEM analogous to SEM but in 

transmission

– The fast electrons can eject core and bonding electrons from 

the atoms in the sample. Relaxation results in:

• Characteristic X-rays (EDXS)

• Energy-loss electrons resulting from X-ray and Auger transitions



Sample Preparation
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Most FIBs use Ga LMIS but Xe 

plasma FIBs are now here

Goal: Sample 50 nm -100 nm 

thick, suitable for TEM analysis

FIB Column



High-throughput FIB sample preparation via automation

Courtesy Thermo Fisher Scientific

Fortunately this is not the type of stuff Sandia does



Basics of TEM/STEM



TEM/STEM basics: Parts of the microscope

• High-voltage generator

• Electron Source (typically FEG)

• Accelerator

• Condenser Lenses

• Spherical aberration corrector*

• Objective Lens (Immersion)

• Sample goniometer

• Projector Lenses

• Detectors (electrons/photons)

TEM specimen grids are 3 mm in diameter

*optional



Basics of TEM/STEM

TEM mode, imaging/diffraction, ~planar illumination

Diffraction pattern

STEM mode, diffracted electrons imaged on detectors

Like an SEM, for 

each beam position 

we record a signal

Sample sits here.

Lower objective lens

Upper objective lens

Our sample sits inside the objective lens which has an upper and lower part

Sample sits here.



For most microelectronic FA work, 

STEM is used
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Metrology

Critical dimensions can me measured, 

like an oxide layer thickness by using 

the Si lattice (bottom) observed along 

the [110] direction. NIST considers the 

spacings of the Si lattice as standard 

dimensions no matter how it’s doped.

FFT of the lower Si
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STEM-EDXS/EELS analytical signals
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X-ray Detectors

The silicon drift detector…1984

Finally perfected in 2006!

Lithium-drifted Si reigned from 1968 until the early 2000’s! 



EELS Spectrometers

Omega 90° sector magnet



EDXS versus EELS

• EDXS covers most of the periodic table (B and above but 

B, C, N, O, F K-X rays are strongly absorbed in even thin 

samples). The signals for harder X-rays are readily 

quantified.

• EELS wins for light elements. The edge energy and 

ELNES, energy-loss near-edge structure, are sensitive to 

local chemical environment. The low-loss spectrum can 

be used (with care) to measure band gaps.



STEM-EDS sampling: Points & Maps
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AEM Spectral Imaging
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Conventional Data Analysis

Add range of channel-images together
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Example of Conventional Analysis
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Example of Conventional Analysis
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Multivariate statistical analysis of the same data
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A few seconds of computation 

The Al was found at the interface 

between two of the dielectric layers, 

providing a current leakage path.
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Raw spectrum from a CMOS spectral image
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Eigenvalues: sum= 490218303

1st non-component point

Non-component exponential fit

Noise baseline

9 non-noise factors

Sorted Eigenvalue Index
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Crystalline Si3N4
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Component Images and Spectra from MSA
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Different Flavors of Corrected STEMs

JEOL NEOARM at UNM FEI Titan at Sandia NION STEM



Spherical Aberration Correction

Courtesy Nestor Zaluzec, ANL

Sherzer’s Theorum
O. Scherzer, Z. Phys. 101 (1936) 593 

Round electromagnetic lenses suffer 

from spherical and chromatic aberration

At high voltages, like 200kV, 

DE/E is small so chromatic 

aberration isn’t limiting.

At 40 kV-60kV that’s not true 

any more which is why 

monochromation helps here, 

also chromatic aberration 

correctors



Spherical aberration correction: 

Break round symmetry
http://www.ornl.gov/~grg/BES_sym/talks/Pennycook.ppt#386,9,2002: NION builds successful STEM aberration corrector

NION uses quadrupoles 

and octupoles. CEOS 

uses hexapoles and 

makes correctors for 

Thermo and Jeol.



Monochromation

• The Wien filter is uses orthogonal electric and magnetic 

fields, so that particles with the correct speed will be 

unaffected while other particles will be deflected

The monochromator design 

used in the UNM NEOARM



Resources

• Williams and Carter/ Carter and Williams

All the background and basics you’ll need.

Advanced techniques and practical 

instructions.

e.g., Chapter 16: X-ray and EELS 

Imaging, written by me…



Conclusions

• TEM/STEM are powerful and versatile 

tools for materials characterization 

including failure analysis covering 

microns to sub-Å

• Automation and data analytics are the 

present and future

• Sandia has had MSA-based data

analytics for over 20 years that are still

used commercially and in research

• Future UNM side to my research

• Paul.Kotula@sandia.gov
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