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2 | Interruption of virtuous cycle in semiconductor
manufacturing

FINFET

Figure 5: Process Technology Development Costs
by Node (US$ billions)
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Source: Common Platform Technology Forum 2012 and AlixPartners analysis

Decreasing node sizes include radical R&D costs are increasing exponentially.
changes - not just scaling.

Relax manufacturing requirement and look for
opportunities from the perspective of the atomic limit.



3 1 What is atomic precision advanced manufacturing
(APAM)?
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Chemical contrast at the surface of silicon
* Reactive unterminated Si
* Unreactive H-terminated Si

Selectively react with dopant precursor



+ I What can APAM do for microelectronics now?
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Dramatic control over material properties ... better CMOS contacts




5 ‘ What can APAM do for microelectronics in the future?

Tunnel field effect transistor (TFET)
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TFETs 10x energy
efficiency in theory

Lu & Seabaugh, IEEE JEDS (2014)
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TFETs have not realized
their promise in practice .

What can you learn with atomic-scale degree of control?



Why has APAM not been used in this space?

Oxide r_@)___ C C

Ex situ prep In situ clean H termination I STM. PH3 incorp. Si capping
Patterning

>1200° C
Too hot - creating an APAM-compatible Too cold - can’t add much to chip
surface will destroy everything else after APAM without diffusing
donors

Thermal budget issues preclude leveraging past
investments in microelectronics

Si(100) 2x1:H

APAM devices are simple (donors only)
 Devices only work at cryogenic temperature
 No path to manufacturability, etc.



7 I Outline — Digital electronics at the atomic scale
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1. Integration with CMOS (contacts) 2. Sophisticated devices (TFET)
* Do no harm to parent CMOS » Added features must preserve APAM
« Wafer-scale high-throughput APAM * Quality of APAM & other device

APAM robustness vs. CMOS elements



s I Why are APAM-enabled contacts interesting?

Contact Resistivity (Q-cm?)
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APAM beats state of the
art in doping density

Working w/ K. Jones (Florida)
on quantifying impact to
contact resistance.



9 ‘ Can APAM be integrated into CMOS manufacturing?

Is it compatible with CMOS process flows? Can it be scaled? Does it hold up in accelerated

lifetime testing?

APAM

Metallization T8 ,[:' -




0o I APAM — CMOS integration

CMOS:
Front-End-Of-Line (FEOL)
Transistor generation

APAM Addition

CMOS:
Back-End-Of-Line (BEOL)
Metal layers

Temperature (°C)

APAM can do no harm to CMOS - thermal budget challenge



11

Design simple test of APAM + CMOS on the same chip

Circuit editor

CMOS Ring Oscillator
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Nominal Vt Shift (V)

Can we fully integrate APAM with CMOS? YES!!

Temperature effects
on threshold voltage
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Punchline: Atomic scale processing session
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CMOS-compatible processing of atomic-precision donor devices

DeAnna Campbell




13 ‘ Wafer-scale high-throughput APAM using hard masks
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14 | Accelerated lifetime testing

* Heat sample to 300 C
« Current density 5-10 MA / cm?
(metal fails ~ 1 MA/cm?)

(a) | b-e f-h channel width Al bond pad

Failures never associated with APAM,
always with electromigration

C. Halsey, “Accelerated lifetime testing and
analysis of delta-doped silicon test structures”,
submitted.

* Monitor sample for months
* Analyze failed parts
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One failed device
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15 ‘ Can APAM be integrated into CMOS manufacturing?

Is it compatible with CMOS process flows? Can it be scaled? Does it hold up to accelerated
lifetime testing?

Transistors m i -

APAM

Metallization ' 'j | II ' | E" —

Yes, but... Yes



16 1 Outline — Digital electronics at the atomic scale

We have overcome the thermal budget issues with APAM, opening the door to microelectronics applications.
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APAM robustness vs. CMOS elements



17 ‘ Why are APAM-enabled TFETs interesting? E

MOSFET APAM confinement enables vertical geometry
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Tunneling makes the device energy efficient,
but also introduces a speed bump reducing Vertical geometry potentially ‘

current circumvents TFET limitations

on current




8 I Why are APAM-enabled TFETs interesting?
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High temperature - diffusion

Atomically abrupt doping profiles may
circumvent manufacturing limitations to
TFET energy efficiency
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19 ‘ How do you make an APAM vertical TFET?

lon implants

APAM

Surface gate, hole contact Isolated drain contact

Source

Gate Source Gate Drain

N\
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?
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1. Isolated contacts

Source

Drain

Electrons stay confined to APAM layer

2. Surface gate

Gate

Need low density of charge traps &
APAM layer to stay in place



20 I APAM layer provides strong confinement, even at room

temp.
P-N junctions pinch off leakage paths

source drain

Dielectric Depletion region

Preserving doping profiles is a
challenge

Transport: 500 nm nanowire at room temp

800

Source-Drain Current (uA)

1 1 1 ] ] 1 1 1 1 ] _200
1 2 3 4 5 6 7 8 9 10
Source Voltage (V)

Current density > 30
MA/cm?

Whole story: Atomic scale processing session

Room Temperature Operation of Donor-Based Atomically Precise Devices

Jeff lvie



21 I APAM-compatible surface

Density (1e14/cm2)
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Whole story: Atomic scale processing session
Development of low thermal budget S| epitaxy |

and high-k/metal gate for APAM
Evan Anderson




2 I Conclusion — Digital electronics at the atomic scale

We have overcome processing issues with APAM, opening the door to microelectronics applications.
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Measure contact resistance improvement

2. Sophisticated devices (TFET)
» Making our first TFETs!!




2 ‘ Questions®Shashank Misra: smisra@sandia.gov
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DeAnna Campbell Contributed on-demand Atomic Scale CMOS-compatible processing of atomic-
Processing - 25 precision donor devices
Jeff lvie Contributed on-demand Atomic Scale Room temperature operation of donor-
Processing - 28 based atomically precise devices
Evan Anderson Contributed on-demand Surface Science - 1 Development of low thermal budget SI
epitaxy and high-k/metal gate for APAM
Dhamelyz Silva Quinones Contributed on-demand Surface Science - 67 Reactions of Boron-containing molecules
with H- and Cl-terminated Si(100)
James Owen Contributed on-demand Atomic Scale Towards ultraprecise bipolar 2D devices
Processing - 40 using APAM

Measurement: Lisa Tracy, Tzu-Ming Lu, Albert Grine, Connor Halsey, Ping Lu, Aaron Katzenmeyer, Chris Allemang

Microfabrication: Andrew Leenheer, DeAnna Campbell, Mark Gunter, Phillip Gamache

Modeling: Denis Mamaluy, Juan Granado, William Lepkowski, Andrew Baczewski, Quinn Campbell, Steve Young

Surface Science: Scott Schmucker, Evan Anderson, Jeff lvie, Ezra Bussmann, Fabian Pena, Aaron Katzenmeyer, Esther
Frederick, David Wheeler

Collaborators: Kevin Jones (Florida), Bob Butera (Maryland), Alex Shestopalov (Rochester), Andrew Teplyakov (Delaware),
James Owen (Zyvex)



