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Selected Modeling and
Simulation Applications




4+ I MALI: Land Ice Simulation of Greenland and Antarctica

= Antarctic and Greenland ice sheets store
most of fresh water on earth

= Mass loss of ice sheets significant source
of sea level rise

= Simulation of temperature and velocity of |
ice sheet give rise to large highly
nonlinear system of equations with a ]

strong coupling of the variables

= Unique mesh structure, 2D mesh with
extruded for the height dimension

= Unique features of computational
frameworks used: Multigrid/ domain
decomposition solvers (distributed), graph
partitioning techniques, linear algebra

: . : o data structures and kernels like sparse

* Unique multigrid/domain decomposition triangular solver, iterative solvers,

solvers in Trilinos developed over the years preconditioners

FROSch Preconditioners for Land Ice Simulations of Greenland and Antarctica, Heinlein et al.
"A matrix dependent/algebraic multigrid approach for extruded meshes with applications to ice sh
modeling.”, Tuminaro et al. SIAM Journal on Scientific Computing 38, no. 5 (2016): C504-C532.

Trilinos POC: Mauro Perego, Ray Tuminaro, Siva Rajamanickam



5 I HOMMEX-NH: E3SM nonhydrostatic atmosphere dynamical core

= Energy Exascale Earth System Model's
nonhydrostatic atmosphere dynamical
core
1 = Major source of uncertainty in climate
s / models is from parameterized effects of
E convective cloud systems from 25 km
: //r.j/.a resolutions
goo = = Cloud resolving simulations of 3km and 1
e e km needed (7.2 billion / 65 billion grid
| ] points, 16 unknowns per grid poin
Turbulent eddies in water vapor on = Solve the the fully compressible Navier-
the 500 hPa model layer from a StOkeS equatlons
HOMME.-NH.Bkm h.orizontal o .
bl aion of baroctimic = Result: 0.97 simulated years per day on
fill Summit system, 27600 GPUs
» Performance portable nonhydrostatic : :

P naydr = Unique mesh structure, 2D mesh with
atmosphere dycore rewritten in C++ and extruded for the height dimension
Kokkos . :

= Unique features of computational

Bertagna, Luca, Oksana GTBMIBWOTKE USROS, KOXKOS oM perfermance

Sivasankaran Rajamanic » - Performance-Portable Nonhydrostatic
Atmospheric Dycore for t yale Earth System Model Running at Cloud-Resolving
Resolutions." In SC20: International Coriference for High Performance Computing, Networking,

POC: Luca Bertagna, Mark Taylor ,
Storage and Analysis, pp. 1-14. IEEE, 2020.



6 I Exawind: Wind plant performance simulation

= Simulate the physics of entire wind power
plants.

= Improve wind turbine and plant structures to
advance performance.

= Nalu-Wind fluids code uses Trilinos

= Based of Nalu code used for fire simulations
(Lin et al.)

= Evaluate the energy output and the structural
loading on wind turbines by modeling the
incoming turbulent wind field and the evolution
of turbine wakes and their interaction with the
downstream turbines.

» Performance portable nonhydrostatic

atmosphere dycore rewritten in C++ and =_Unique features of computational frameworks

used: Multigrid/ one level doinairn

Kokkos By . . . \
decomposmon iterative solvers (distributea),
ggraadngeolrg Aﬁlgﬁ}[_’rxlamd é:v'n:;l;talwdlr an M [o) ns_cig‘ZdO?tg e? n OWMEIS;"III(C@ PO: el
Trilinos POC: Jonathan Hu plrrg’ce.sa:il;ge;eattérs (2)2’%';1 (828)1(4r)em ﬁ)gs "Q‘I"@G@}n P@I"‘IGTS k@gatlon rrnes aratie

ecosvstem for nerformance oortabllltv



7 I Xyce: Parallel Circuit Simulator

Xyce application drivers: stockpile
stewardship, RF design, microwave/satellite

apps

Circuit response Linear Solver

Radiation Effects
« Transient Photocurrent (Y dot) *© Devices *Robustness
« Neutron * Integrated circuit «Strong Scaling
e Circuit Board eArchitecture Aware

» Unique direct/hybrid solver capabilities in
Trilinos developed over the years that
support DOE requirements for robustness
and scalability

Trilinos POC: Siva Rajamanickam; Heidi Thornquist

Verify design of electrical components
prior to manufacture and deployment.

Xyce: Analog time domain and frequency
omain parallel circuit simulation software.

Application: Predict the reliability of
weapon system components when
exposed to hostile radiation and
electromagnetic environments.

Simulate effects of ionizing radiation in
transistors and circuits. This radiation
could cause the circuit to become
unpowered.

Unique Features of Trilinos used: Sparse
nybrid/direct solvers (distributed, _
multithreaded), graph partitioning/ordering
techniques, linear algebra data structures
and kernels, iterative solvers,
preconditioners
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SPARC: Sandia Parallel Aerodynamics Reentry Code

Mach

> Hypersonic speeds result in intense heating

environment
> Thermal protection needed to protect internal
radiatio Surfaos:ct:g;tiiaoolliﬁoi:dep.th CO m po n e n tS
— > Need to simulate aerodynamics and material
oreeimve Lo Bttt N S ke o thermal response
> Hybrid structured-unstructured finite volume
3 §Linear Equ?tion Solver§ — C-‘rs:l/BDW'lth‘read Code
14 77777777777777 L > Perfect and thermo-chemical non equilibrium
0 IR NG O I 21— gas models
El N Unique Features of Frameworks used: Sparse
0 NS NS SN NG S S B tridiagonal solvers, linear algebra data
NS WS S SIS B AN G structures and kernels, preconditioners, Kokkos
4o N BN ecosystem for portablllty

Number of Compute Nodes or GPUs

Kokkos Kernels + Ifpack2 provides nearly perfect scalability for
Intel KNL and GPU platforms

Trilinos POC: Siva Rajamanickam, Jonathan Hu



ElectroMagnetic Plasma
In Realistic Environments Massively Parallel Frequency Domain

(or EMPIRE) is a Electromagnetic Simulation Codes : Eiger

ALEGRA — Shock and multphysics and GFMMA

modeling and design tool
for plasma environments.

9 I More applications ... E
i

Naval vessel with helicopter on de

(Source: FEKO)
Magnetic field strength

in z-pinch array . The Boundary Element Method

(BEM) version of the Method of
Moments (MoM) for solving integral
equations results in dense linear
systems.

B ||\||||uF

Wi I._i\iii : I ‘|H|”|‘||H|\Iluil' Framework for Engineering Mechanics

I I Em B



Computational Frameworks:
Trilinos




1 ‘ Trilinos: Open-Source Toolkit of Mathematical Algorithms for HPC

Application Impact ‘

Trilinos Software

55 packages in five
areas

~100 contributors in
total

~50+ active
contributors

30-140 commits per

Science and Engineering Applications

.

l Nonlmear Solvers } l

Linear Solvers [ Discretization

J

Data Services

-

Framework

J

~ Trilinos

~

)

400Jrnl nos product areas (Lead : Heroux)

ramework Build, install, and test infrastructure; application integration (Product Lead: Willent...

> Solid mechanics,
fluid dynamics,

> SIERRA, Empire,
SPARC, Xyce,
Drekar, Charon, etc.

electrical circuits, etc.

Two main codes paths:
* 32-bit stack (maintenance)
Templated C++ stack (active)

- Data Services — Linear algebra, Kokkos performance-portability, load balancing, mesh services (Product Lead:

Devine)

o Linear Solvers — Iterative/direct solvers, preconditioners (domain-decomposition, multigrid, block) (Prod

Rajamanickam)

> Nonlinear Solvers — Time-stepping methods, non-linear solvers (Product Lead: Pawlowski)

* Disere  Trilinos provides scalable algorithms to ASC-IC/ATDM applications,
enabling high performance on current and next generation HPC platforms




12 ‘ Trilinos Solvers Overview

/ { Linear Solver Interfaces (Stratimikos, Solver Factory)
{ lterative Linear Solvers (Belos)
N N\ ) ~
a Direct Linear 4 Multilevel Domain
Adelus . o
Solvers Multigrid Methods Decomposition Methods
(Dense
Interfaces (ML, MueLu)
LU) A 5 Sh ch
\_ J \ ( mesos( )) /\ Y, \ (overlapping Schwarz) Y,
{ Incomplete factorization, One level J | LU factorization (KLU, I Cholesky and LDL A
K DD (Ifpack(2)) Shyl U/Basker factorizations (Sh LU/Tacho/

= Comprehensive suite of solvers that covers entire spectrum of solver needs
» Direct linear solvers for highly ill-conditioned, unsymmetric, problems (Xyce)
= Dense LU solver for distributed memory complex LU (Eiger/GEMMA)
= Schur complement solvers for distributed-memory direct solvers (Xyce)
lterative linear solvers that cover broad suite of applications (SIERRA, Xyce, Charon, EMPIRE, SPARC)
Multigrid methods for broad suite of applications (Fluid dynamics, Charon, EMPIRE, SPARC)
Multilevel domain decomposition methods (SIERRA-SD, SIERRA-SM)
Incomplete factorization preconditioners (Smoother for multigrid methods)



13 I Adelus : Dense LU Solver for EM Calculations

1 A distributed-memory, dense M,=NIP,
LU SO|VeI’ Capable Of UtI|IZIng . Total number of MPI processes: 6
hardware accelerators available I e o boimers siess P=PxP
on top supercomputers is In \
need
D Complex |inear systems 226,647 25 (100) 240.5 1291.0 10
_ 1,065,761 310 (1240) 1905.1 1694.5 31
- X(():l:/uasr;:/a\t/gggpel\giﬁpg?gcess has 1,322,920 500 (2,000) 6443.9 958. 1 20
nearly the éame workload and 1,322,920 500 (2,000) 2300.2 2684.1 50
the process idle time is 1,322,920 500 (2,000) 2063.6 2991.9 100
minimized 2,002,566 1,200 (4,800) 3544.1 6042.6 100
2,564,487 1,900 (7,600) 5825.2 7720.7 80

1 7.7 Pflops on the Sierra system
on full application run

7.7 Pflops on 7600 GPUs. Still state of the art.
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1 Schwarz preconditioners with algebraic coarse
spaces based on extension operators, e.g., GDSW
(Generalized—Dryja—Smith—Widlund) coarse spaces

_lAlgebraic and scalable

1 Part of the package ShyLU
J Scalability up to 32,000 cores on Cori system

FROSch: Multilevel Domain Decomposition solver

1 OpenMP thread 4 OpenMP threads
MPl | mesh | # avg. its avg. avg. avg. its avg.  avg.
ranks dofs (nlits)  setup  solve (nlits) setup  solve
32 16km | 2.2m 241 (11) 197s 947s | 23.5(11) 4.15s 3.25s
128 | 8km | 8.8m 320(10) 14.08s 871s| 320(10) 4.97s 285s
512 | 4km | 35.3m || 426 (11) 1499s 1250s | 426 (11) 550s 4.02s
2048 | 2km | 141.5m | 61.0 (11) 2283s 19.76s | 61.0(11) 7.36s 6.55s
8192 | 1km | 566.1m || 67.1 (14) 17.36s 2291s | 67.1(14) 6.20s 7.39s
Problem: Velocity Mesh: Antarctica, Coarse space: RGDSW

20 vert. layers




Sparse Linear Solvers: Direct and lterative

15 E
C

= Direct Solvers:
= Factor the sparse matrix to find an exact solution, LDL’, LU,
Simplicial LU, LL’

= KLU (BTF based sequential solver), ShyLU (distributed-memory

LU, Tl thread’s

hybrid Schur Complement solver), Basker %B F + Nested-dissectiol

based multithreaded simplicial LU’) Tacho (multithreaded Cholesky

= Amesos2: Interfaces to standard sparse direct solvers libraries:
SuperLU, MUMPS, .

Ly, Loy [ Lgg. Ly Lgs Lgs
LUy L, LU LU

= |terative Solvers:

“ €2 - | Ci3-

= Choose an approximate solution out of an
appropriate subspace.

= Belos: Templated Krylov solvers:
Conjugate Gradient (CG), MINRES,
GMRES, BiCGStab, GCRO-DR

= Simple interface for matrix-free operators

= Block solvers for multiple right-hand sides



Preconditioners and Smoothers

* Multigrid methods
* MueLU package offers scalable

preconditioning

* Based on second generation solver
stack with scalable solves on GPUs

“Domain Decomposition (1-level):

= [fPack2 package offers 1-level DD or
smoothers

= [LU “Incomplete LU” factorization on the node
"Chebyshev (polynomial) iteration

=Relaxation: Jacobi, Gauss-Seidel

(a) 1 level with 1 Jacobi sweep (b} 1 level with 10 Jacobi sweeps (c) 1 level with 100 Jacobi sweeps

(d) 2 level with 1 Jacobi sweep (e) 2 level with 10 Jacobi sweeps  (f) 2 level with 100 Jacobi sweeps

() 3 level with 1 Jacobi sweep (h) 3 level with 10 Jacobi sweeps (i} 3 level with 100 Jacobi sweeps



17 I Zoltan2 supports rebalancing in STK mesh database

Mesh database: critical component of Sierra Toolkit
(STK)

STK Rebalance capability uses Zoltan2’s geometric and

graph-based methods for a range of applications Parallel static partitioning for
o Static parallel partitioning of huge meshes 8B elements on 4K cores
> Dynamic load balancing for deforming meshes, particle codes

Dynamic partition in particle
ImpaCt example: suspension modelling in cross-flow
> Zoltan2’s multicriteria load balancing enabled Sierra Low Mach Fire
~2x faster matrix assembly and
~1.5x faster solution in Aria for
mock abnormal thermal use case
with 655K elements

POC: Karen Devine
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Zoltan/Zoltan2 for Partitioning, Dynamic Load Balancing, and Task

Placement

Zoltan/Zoltan2 in Science application:
= Maintain load balance and geometric localit %"
particles (Aleph, SIERRA)
= Increase geometric locality in crash/contact simulations for
efficient contact search (SIERRA) £

= Partition extremely large meshes, electrical networks & linear

systems in parallel (Xyce, SIERRA, Charon)

" Repartition adaptive meshes to maintain load balar .= 28
(CTH-AMR, SIERRA)

= Redistribute coarse operators in MuelLu multigrid to maintain
scalability
(Benefits all applications using Muelu)

Zoltan/Zoltan2 key
capabilities:
= Partitioning & load-balancing

— Fast geometric methods maintain
spatial locality

— Graph and hypergfraph methods
exptlc:ltly account for communication
costs

— Single interface to popular

g)(a itioning TPLs:
traPuLP%SNL RPI); PT-Scotch (U.

Bordeaux); ParMETl)é (U. Minn.)

= Architecture-aware MPI task
placement

— Places interdependent tasks on
“nearby” nodes in computing
architecture

— Reduces communication time and
network congestion

Zoltan/Zoltan2 improves parallel efficiency of DOE applications through better
load balancing and task placement




o Other product areas and packages
» Tools for the discretization of integral and differential equations.
» Local (on-Node) Finite Element Discretizations: Intrepid2
» Global Finite Elements: Panzer
»Provides local-to-global mappings of finite elements from Intrepid
= Automatic Differentiation: Sacado
= Model building tools: Phalanx
= Decomposes problems into simpler pieces and manages dependencies.
* Non Linear Solvers Product

® Continuation and Bifurcation: LOCA (“Library of Continuation Algorithms”)
* Nonlinear solvers: NOX
= Optimization: ROL (“Rapid Optimization Library”)
= Time Integration: Tempus
= Distribute Linear Algebra
= Tpetra: (Underneath has Kokkos + MPI)
» Data structures for Sparse matrices (CRSMatrix), map to distributed ranks, vectors,

linear algebera kernels



Computational Frameworks:
Kokkos Ecosystem




21 I Changing HPC Landscape and Need for Performance Portability

Several many/multi-core architecture central to DOE/NNSA HPC

Intel Multicore NVIDIA GPU IBM Power Intel Manycore

AMD Multicore/APU
2012 2016 2018 2021
el A21 Decade of DOE HPC
IBM BGQ (Sequoia, Mira) Intel KNL NVIDIA Volta (Summit, Sierra) e will have seen 4-5
Trinity, Cori .
NVIDIA Kepler (Titan) (Trinity, Cort) ARM (Astra) AMD GPU “new” paradigms! I
NVIDIA GPU

« Several architectures, many with different programming models
« Applications struggle to obtain good performance on all of these




Changing HPC Landscape and Need for Performance Portability

m—

Ar Jonn: A

-ll-l L |0 AR

* 'ENERGY

Lawrence Livermare
t Matianal L abaratory

D 0 P

Upcoming Exascale systems use different programming models from different
architecture vendors




23 I Approaches to Programming GPUs

Native Programming Models

- CUDA (NVIDIA), HIP (AMD), SYCL (Intel)

> Pros: Customized for each architecture, so low level control

- Cons: Rewrite code every time you buy a hardware from a new vendor

Directive Based Approach
> OpenMP, OpenACC
> Pros: Standards based, General

> Cons: Long lag time between what is needed and when they are needed, Might have
to resort to #ifdef after all, Different level of support from vendors

Library Based Approach
> Kokkos, RAJA

> Pros: Portable, Clean abstractions, Quicker turnaround, Reference implementations of
standards

o WSS o W U -0 SR S,

Library based performance portability allows for writing applications to several
architectures with limited dependencies
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okkos Ecosystem for Performance Portability

4
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Science and Engineering Applications

Kokkos

RS Trilinos

Kokkos EcoSystem
Kokkos Remote Spaces ][ Kokkos Kernels

Kokkos Core

ﬁi— E =2

Many-Core APU CPU + GPU

Kokkos Ecosystem addresses complexity of supporting numerous
many/multi-core architectures that are central to DOE HPC enterprise




25 | Kokkos Overview

Kokkos is a productive, portable, performant, shared-memory
programming model.

1 is a C++ library, not a new language or language extension.

1 supports clear, concise, thread-scalable parallel patterns.

l lets you write algorithms once and run on many architectures
e.g. multi-core CPU, NVidia GPU, Xeon Phi, ...

J minimizes the amount of architecture-specific implementation
details users must know.

1 solves the data layout problem by using multi-dimensional arrays
with architecture-dependent layouts

https://github.com/kokkos/kokkos-tutorials/blob/master/Intro-Short/Slides/KokkosTutorial_ ATPESC18.pdf



26 I An Abstraction Layer to Avoid Rewriting an Entire Code

GEMMA

LAMMPS Trilinos Albany O O

* Kokkos

['iiiiii'J\\ y \

Multi-Core Many-Core APU CPU + GPU

L
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Kokkos Data Management and Execution

i i' i i
Vliemory Spaces (“Where

- Multiple-Levels
- Logical Space (think UVM vs explicit)

Mlemory Layouts (“Ho

- Architecture dependent index-maps
- Also needed for subviews

a MemoryTraits
- Access Intent: Stream, Random, ...

- Access Behavior: Atomic
- Enables special load paths: i.e. texture

Parallel Execution

Execution Spaces (“Where”)

N-Level
Support Heterogeneous Execution

Execution Patterns (“How")

parallel for/reduce/scan, task spawn
Enable nesting

Execution Policies

1 2 3 4 0 1 2 3

e o (S
L] L! i

2 | | ! 1 el R (D] [
I ! | J

3 [ R R I R ] N

A Column-major order {Fortran-style)

B: Row-major arder (C-stybe)

Range, Team, Task-Dag
Dynamic / Static Scheduling
Support non-persistent scratch-pads

Execution Policies Patterns

parallel_for (N, [=]
/* loop body */
s

(const size_t i) {

double totallntegral = 0;
parallel _reduce (numberOfIntervals,
[=] (const size_t i,
valueToUpdate += function(...);
},
totalIntegral);

parallel _outer(

TeamPolicy <>(number0fTeams, teamSize,

KOKKOS_LAMBDA (const member_type & teamMember/,

/* beginning of outer body */
parallel _middle (
TeamThreadRange (teamMember ,
[=] (comst int indexWithinBatch/,
/* begin middle body */
parallel_inner (
ThreadVectorRange (teamMember ,
(=]
/* inner body */
3 S
/* end middle body x/
VoL );
/% end of outer body */

L, o2 1);

(const int indexVectorRange [,

double & valueToUpdate) A

vectorLength),
DA

thisTeamsRangeSize),

P

thisVectorRangeSize) , I
N
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okkos Ecosystem for Performance Portability
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Science and Engineering Applications

Kokkos

RS Trilinos

Kokkos EcoSystem
Kokkos Remote Spaces ][ Kokkos Kernels

Kokkos Core

ﬁi— E =2

Many-Core APU CPU + GPU

Kokkos Ecosystem addresses complexity of supporting numerous
many/multi-core architectures that are central to DOE HPC enterprise
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/ Sparse Linear Algebra \
v Cluster Gauss-Seidel
v’ Sparse ILU factorization
v’ Sparse triangular solves
for sparse Land U
v’ Sparse triangular solves
for supernodal L and U
v’ Structured sparse matrix
vector multiply

v Cluster Gauss Seidel )

4 Portable Vectorization h
v’ Support ARM platforms
v Improved application
performance on CPU,
KNL, GPU and ARM
v’ Portable SIMD primitive

\ )

New Features in Kokkos Kernels 3.X

( Dense Linear Algebra \

v’ Faster kernels for
orthogonalization

v’ Complex support for
dense LU factorization

v'Interfaces to vendor
libraries

v'"More BLAS and LAPACK
support with Kokkos

views

Team Level Kernels
v Team level sorting utilities
v’ Team level DFS
v" More team level BLAS
and LAPACK support

/ Graph Algorithms \

v'Distance-2 graph coloring

v'Faster distance-1 graph
coloring

v'Balanced distance-1
coloring

v'Balanced “well shaped”
graph clustering

v'"RCM ordering for
preconditioners

\/ MIS-2 and Coarsening /

4 )
Software

v'CMake support
v'ETI changes to allow ETI
file generation at compile

. _/

time

\. J

Kokkos Kernels is rapidly growing to support the needs of computational science

applications.




Emerging Frameworks:
MALA
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Motivation

* Multiscale materials modeling (MMM) provide
fundamental insight into microscopic mechanisms
using:

« LAMMPS molecular dynamics (MD) code.
* Quantumespresso/VASP Density Functional

Theory (DFT) codes
« Applications: - 1 |
 Rad-hard semiconductors, Advanced Ef B PBE ||I
manufacturing, Energetic materials il
* DFT calculations can be prohibitively expensive, O i , ; |
(Natoms3) g“ O I I 1
« Objective: Develop an O(N.,.,.) physics-informed 1 % of ‘ d
machine learning (ML) model to accelerate first-principle _ : |’  chemistry §
DFT calculations ommprun AL ERLE L “""

year

“This new level of technological complexity, combined with the need to search undiscovered
areas of the chemical and materials landscape without clear theories or synthesis directions,
requires new paradigms that utilize artificial intelligence (Al).” — DOE Al For Science Report




ML-DFT: Accelerating Multiscale Materials Modeling with Machine Learning

w

MESOSCALE MACROSCALE
(um, ps) (cm, ms)

Experimental design backflow
ML-DFT

Device level
simulations

V

ML-LDOS, Feed Physics model,
forward network or CNN, or Supervised
Unsupervised BERT BERT

* Physics-informed Machine Learning (ML) model based Multiscale Materials Modeling (MMM) toolchain.

* Accelerate first-principles data generation, and increase fidelity and robustness of predictive atomistic
material simulations.

* ML to accelerate interpolation of microscale data (102 atoms) and enable extrapolation to mesoscale (104
atoms)
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Feature and Data Generation

Fingerprint Inputs:
* Atom-centered SNAP descriptor developed at Sandia

* Rich set of 4-body features, effective for interatomic potentials
* Heavily optimized LAMMPS implementation O(N ., x N

* We extended to grid-centered form O(N,.;., X N ;)

atom)

Local Density of States (LDOS) Outputs:
* 10 Aluminum snapshots from an MD-trajectory (previously
used by 1600 to calculate the equation-of-state and

conductivity of aluminum for 1300)
* 256 atoms, 298K, 2.699g/cc
* 8x8x8 k-points
* LDOS Gaussian smearing

* Post-processed LDOS defined on same grid-centered locations
ML Mapping:

* Input: Fingerprint features are N, x N, real values

* Output: LDOS data are N, x N, real values

Output LDOS

-10 0 10
Energy (eV)
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Band Energy (meV/atom)

Machine Learning Predictions and Results o o
* ML model achieves 5.6 meV/atom max absolute error for 298K sentTrare
« ML model achieves 15.76 (liquid) 39.23 (solid) meV/atom max absolute error foFg3] e oe ~°°° "°°°
« Test errors less than or equal to intrinsic error in DFT S e, T T
* Training time: 151 secs/epoch (298K), 76 minutes/epoch on 2 GPUs (39-100 epochs, 48 and 23 iterations
for hyperparameter tuning)
« Data parallel training has brought down training time
10300 — Multitask learning prloblem IS quite expensive 63300 |
* —— Liquid/Solid Snapshots —— Liquid/Solid Snapshots
10200 - o DFT LDQS Targ.etsl g —63200 - o DFT LDQS Targlets.
o0 ML-Hybrid Predictions S o ML-Hybrid Predictions
>
10100 £ —63100
\E, o o0 o o
° 0o 0O > °°°Oog°°o°
o) o o o
10000 - o ©00° ° o | g -63000- °o °
o0O00O0 © o | 5§
T 08098°
9900 1 0Qq0 5 —62900 1 8 g 88
20°%08 " 50 g 8 =
(o] o O
9800 — . . . . . . ~62800 1— . . . . . .
0 3 6 9 12 15 18 0 3 6 9 12 15 18
Al 933K Snapshot Al 933K Snapshot

ML-DFT reproduces DFT to within chemical accuracy. ML inference takes ~53 seconds on 1 GPU. The
training cost can be reduced and amortized by using the model many times on many snapshots.




Methods, Software and Data

L/j M-A-L-@

Materials Learning Algorithms

Open Source Software:

Step 1
Fingerprint generation

Step 2
Trained ML-DFT model

Step 3
WML-DFT analysis

Atomic SHAP tachine-learning LDOS Total
configuration fingerprints inference energy
=g CFT LDOS Targ:
E & ML-Hybrid Predictions
A dy g_a — 1501 shets
1 d‘ £ 631004
2 t, s8388,8

{a) Snapshot of an atomic (b} Bispectrum components

configuration.
grid

* New software framework for ML-DFT Calculations
« MALA: Materials Learning Algorithms
* https://github.com/mala-project/mala

Open Training Data, Models, input files:
* https:/Irodare.hzdr.de/record/1107

450 GB! - Be careful where you download

Reference:

{c) Feed-forward neural
at each point on a Cantesian  network.

{d)ML-DFT prediction of {e)ML-DFT prediction of
the local density of states  the total energy for both
(LDOS)Yon Cartesian grid.  solid and liguid phases.

« https://journals.aps.org/prb/abstract/10.1103/PhysRevB.104.035120

» Accelerating finite-temperature Kohn-Sham density functional theory with deep neural

networks


https://rodare.hzdr.de/record/1107
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.104.035120

36 I Summary

» Decades long investment in computational frameworks
» State of the art algorithms in the frameworks

» Portable implementation of the algorithms with focus on
large petascale/exascale systems at DOE to desktop
computers (in some cases)

» Modeling and simulations built on top of the foundational
frameworks






