SAND2022-14662

SANDIA REPORT i
SAND2022-14662 @ ﬁatignal

Printed September 2022

Laboratories

A Model of Narrative Reinforcement on
a Dual-Layer Social Network

Benjamin Freixas Emery

with technical consultation from
Christina Ting,

Jared Gearhart,

& J. Derek Tucker

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550




Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represent that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the
United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.
Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov

Online ordering:  http://www.osti.gov/scitech
Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order:  https://classic.ntis.gov/help/order-methods

NYSH

National Nuyclear Security Adminisfration




ABSTRACT

Widespread integration of social media into daily life has fundamentally changed the way
society communicates, and, as a result, how individuals develop attitudes, personal
philosophies, and worldviews. The excess spread of disinformation and misinformation due
to this increased connectedness and streamlined communication has been extensively
studied, simulated, and modeled. Less studied is the interaction of many pieces of
misinformation, and the resulting formation of attitudes. We develop a framework for the
simulation of attitude formation based on exposure to multiple cognitions. We allow a set
of cognitions with some implicit relational topology to spread on a social network, which is
defined with separate layers to specify online and offline relationships. An individual’s
opinion on each cognition is determined by a process inspired by the Ising model for
ferromagnetism. We conduct experimentation using this framework to test the effect of
topology, connectedness, and social media adoption on the ultimate prevalence of and
exposure to certain attitudes.
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1. INTRODUCTION

1.1. Background

Although widely considered to be a modern phenomenon, disinformation has played a
critical role in conspiracy theories and hate movements throughout history. The rise of the
Nazis came in conjunction with widespread blame for Germany’s economic downturn on
Jewish Germans. Similarly, American racists in the Jim Crow era used falsified crime
reports to justify lynchings. Today, many conspiracy theories with active believers make
use of the same scapegoating of vulnerable factions of society as the historical examples.

While structural commonalities can be seen between historical and modern conspiratorial
hate movements, the environment in which these spread has substantially changed within
the past few decades, due to the emergence of the internet and social media. The removal
of physical distance as a barrier to communication has amplified the total flux of
information, including potentially false information, hateful messages, or incitements of
violence. With the consequences of misinformation proliferation and its acceleration
becoming increasingly apparent and deadly, it is critical to the wellbeing of society that
these phenomena are well understood, as are potential methods of mediation. Pursuit of
this understanding can and has taken the form of retrospective study, cognitive
experimentation, and prospective modeling.

1.2, Existing research

The body of research surrounding social influence has been expanding for the past 100
years, and recent advancements in computing technology have allowed for the validation
and disproving of the many psychological hypotheses regarding the phenomenon. As
recently as the mid 2000’s, we've seen generalized frameworks for modeling social influence
on network structures [1-4]. These generalized models have in turn been used to uncover
universal behaviors of influence cascades on networks [5-8]. With varying levels of validity,
social influence theory has been applied to a set of real-world phenomena spanning from
smoking to housing segregation [9, 10]. Adding to these areas of study, the past five years
have seen the emergence of great interest in the echo-chamber-aided-proliferation of
misinformation online, which has been studied empirically and synthetically [11-17].

With advancements made in understanding how and why misinformation spreads across our
collective consciousness, the next step is to address the way that multiple misinformative
articles, posts, and memes build and reinforce larger narratives. These narratives can serve
as motivation for individuals to commit acts of terror without the need for a centralized
leader or group, making accountability for such indoctrination nearly impossible. This
question has been investigated in the past few years. In 2018, racial violence in Sri Lanka
was traced to misinformation propagating on Facebook and Whatsapp [18]. Researchers
have compared the narratives of false conspiracy theories to those of actual conspiracies,
developed methods of detecting cultural schema in text data, and built algorithms to
represent and extract narratives from event maps [19-21]. Frameworks have been created
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for simulating belief interaction and agenda-setting, and some researchers have even
modeled interaction between spreading beliefs, and found that given a sufficiently complex
relationship between these diffusants, polarization emerges universally [20, 22].

This particular work will apply modified methods adopted from Dalege et al to model the
interaction between beliefs as an Ising process [23, 24]. This approach lends itself well to
misinformation, as it only requires two states per belief, which simplifies computation.

1.3. Focus of study

In this work, we introduce a simple framework for simulating the spread and interaction of
information on a social network in such a way that the duality of online and offline
relationships is explicitly included. This places an SIR-type contagion model on a
dual-layer network topology, where the two layers can be interpreted as online and offline
social connections. Critically, it allows for interaction between multiple beliefs, using the
Ising model for ferromagnetism to capture a preference for cognitive consistency.

While the work presently serves as an introduction to a modeling and simulation tool, we
wish to demonstrate potential use of this framework as part of the aforementioned
introduction. We do this by conducting a simple parameter sweep and observe how the
results deviate due to changes in these parameters. We discuss further experiments
possible with this framework and potential expansions of the model.

2. METHODS
2.1. Model construction
2.1.1. Cognitive network belief model

We establish the weighted and undirected “cognitive network” C' = {V,, E.}, which defines
the reinforcement structure of a connected narrative. The network’s nodes V, are a set of
cognitions, which one may imagine as statements which can either be believed or
disbelieved by an agent. The edges F. are reinforcement relationships between these
cognitions. In essence, an edge represents a cognitive consistency between the statements,
so it is more consistent for two connected cognitions to be both believed or both
disbelieved. Such a cognitive network exists as an attribute of every agent within this
model.

We use the mechanism for cognitive state adoption introduced by Dalege et al [23, 24].
Each cognitive node v.; € V. has a value x;, which may be either 1 or —1, corresponding to
spin up or spin down of a particle on a ferromagnetic lattice. We define x to be the set of
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all y; values for all nodes in the cognitive network, with each possible vector value of y
having Hamiltonian energy

H(x) = - ani - sz‘,inXj,
i ij

where 7; € [—1,1] is a predisposition toward x; = —1 or 1, and w; ; € (0,1] is the weight of
the edge connecting v.; and v, ;. Each energy value also has a corresponding
energy-minimizing probability
1
P(X = X) = _eiH(X)7
z
with normalization factor z. We show an example cognitive network and configuration in

Figure 2-1.

A

Figure 2-1 An example of a cognitive network occupying a possible set of belief (spin up) and disbelief (spin
down) states. Connected nodes with the same state are in consistency, where as those in opposing states
are dissonance. Consistent and dissonant pairs decrease and increase the Hamiltonian energy of the system,
respectively.

2.1.2. Cognitive spread on a social network

We consider the social network S, in which nodes are agents within a simulation. For
simulations using this model, one agent begins with a complete cognitive network C' with
all cognitive nodes in the spin-up state, and all other agents have a null cognitive network.
At each timestep, a separate random event of probability p determines whether each agent
receives each cognition that each neighbor holds in the spin-up state. Agent i’s cognitive
network at time ¢, ¢;; is therefore a subgraph of C', with all links between pairs preserved.
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Once the synchronous passage of cognitive nodes is determined for the timestep, the state
of each agent’s cognitive network must be determined. Agent i’s predisposition toward
belief of cognition j 7; ; is computed as

Tijt = SijtXiji—1 + Opii(1 — 8i ),

where s; ;; is the stickiness of agent i’s belief state for cognition j at time ¢, x; j;—1 is their
belief state for that cognition at the previous timestep (assumed to be 0 if the agent was
previously unexposed to that cognition), ¢ is a social parameter determining how much
influence the neighbors of an agent have, and p; ; is the proportion of their neighbors from
whom they’ve received the cognition.

Stickiness s; j; is calculated with a recursive processes. If the cognition is novel to the
agent, or the agent has switched the state of that cognition, the stickiness assumes the
value s, referred to as “base stickiness”. Otherwise the value of stickiness grows as

St = S¢—1+ 7"(1 — Stfl)a

where 7 is a predefined stickiness growth rate. With the values of 7; ;; computed, each
agent has their cognitive network state reconfigured according to the probability
distribution described in Section 2.1.1.

2.1.3. Extension to dual online/offline network

We extend the multiple-cognition social network spreading mechanism described in section
2.1.2 to a dual-layer network in order to capture the discrepancy between online and offline
interpersonal relationships. The parameters for spreading are may thus be different
between the layers, even between the same pair of neighbors should they share both an
online and offline edge. Our offline network is specified as a Watts-Strogatz small-world
network with n = 20,k = 4, p = .2, and our online network is specified with a
two-community stochastic block model with n = 12 and variable density values.

In order to initialize an existing echo-chamber effect at the simulation start, we define one
community of the stochastic block model for the online to be “credulous”, meaning they
are more likely to adopt the cognitions within the simulated narrative. We specify that the
other community is “skeptical”, meaning they are likely to reject the cognitions. This
specification corresponds to 7y values of 0.2 if they receive the cognition via an offline
connection,and 0.3 if they receive it via an online connection. Agents that only exist in
the offline layer have 7y = 0. These specifications only determine the initial behaviors of
agents upon being exposed to a cognition. After the first exposure an agent’s behavior with
respect to that cognition is determined according to the spreading rules defined in section
2.1. An example of narrative spread over time with this dual-layer topology is shown in
Figure 2-2.
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Figure 2-2 An example of the complete spread of a narrative on a social network projected into online and
offline components. Agents are represented with pie charts that display the proportion of cognitions that
they adopt (red), reject (blue), and have not yet been exposed to (blue). The online block of each node
is denoted by the letter S for “skeptical”, C for “credulous”, and N for “neutral” (meaning the agent is
offline-only). The three timesteps shown are the initial state (¢ = 0), partway through the spread (¢t = 3),
and after every agent has been exposed to every cognition (¢t = 13).

2.2 Experiment: online network structure

While the intent of the work is to present a model for general use, we demonstrate its
utility with a simple experiment. We design a scheme to investigate the role that different
topologies for online connectedness play in the proliferation of narrative structures. We do
this by conducting a parameter sweep on the within-group and between-group densities
specified for the stochastic block model that represents our online social network structure.
We run 10 simulations for 100 timesteps at each pair of values for within-group and
between-group densities from 0.1 to 1.0 in steps of 0.1. This culminates in a total of 1,000
independent simulations over the 100 pairs of density values. For each independent run, we
initialize a new random topology of each network layer, and choose a new random starting
agent from the “credulous” community of the online network. We provide the values of all
fixed parameters for this experiment in Table 2-1.

Parameter Description Value
1) Probability that an agent spreads 0.2
their belief to a neighbor
10) Influence of neighbors on belief 0.8 if belief received offline
0.4 if belief received online
Stickiness base 0.1
Stickiness growth rate 0.2
T0 Initial predisposition for online agents =+ 0.2 if belief received offline
=+ 0.3 if belief received online
w Cognitive link strength 0.8

Table 2-1 Fixed parameters for our simulations and their values. Value ranges for non-fixed parameters
are specified in Section 2.2. Values that include a + are positive for “credulous” agents and negative for
“skeptical” agents.
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3. RESULTS

While we observe differences in the details between behavior at different density values, the
larger trend toward polarization is universal. Figure 3-1 displays a snapshot of every
simulation at the tenth timestep, which is amid the transient period before full polarization
for most simulation runs. We use the variance of these distributions as a proxy for
aggregate polarization at each density value pair, which we show at four different timesteps
in Figure 3-2.
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Figure 3-1 Snapshot at timestep 10 of the simulation states for each density pair. Each cell contains the
histogram showing the proportion of cognitions believed by each agent in each simulation with the between-
group density indicated by the row and the within-group density indicated by the column.
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Figure 3-2 Variances of the distributions of the proportions of cognitions believed by agents for each density
value pair at times ¢ = 10, 30, 50, 70, from left to right.

The similarity between the distribution variances at ¢ = 50 and ¢ = 70 suggests that
transient behavior of the system has largely concluded after 50 timesteps. To investigate
the temporal length of this transient behavior, we compute the time taken in each
simulation for the average reach of each cognition to surpass 17 agents. We present a
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breakdown of the time taken to reach 17 agents on average by within and between density
in Figure 3-3.
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Figure 3-3 Time taken for the reach of cognitions in a simulation to surpass 17 agents. Broken down by
within density, between density, in aggregate, and broken down by both within and between density, from
left to right. The two left panels contain violin plots showing the distributions of times taken for cognitions
within individual simulations to reach 17 agents at each density value. Points are also included to show
results of individual cognitions, with an opacity of 0.3, allowing many points in the same position to appear
darker. The third panel displays a histogram showing the aggregate distribution over every simulation at
all density values. The final panel shows the average time to reach 17 agents over all cognitions, and all
simulations at each value-pair for within and between density.

Figure 3-3 indicates a heavy-tailed distribution of cognition spreading rates, where most
spread to 17 agents in between 5 and 20 timesteps. In a few rare instances, a cognition
takes longer than 40 timesteps. As expected, higher densities result in faster spreading,
although there isn’t a clear difference in effect between the within-block density and
between-block density.

In addition to the universal emergence of polarization stemming from this model, we
observe the flipping of some agents from their initial dispositions to an opposing set of
beliefs. To measure this, we recorded the number of agents at the 100th timestep whose
proportion of spin-up cognitions was 1.0 if they began in the S block, or was 0.0 if they
were in the C block. We display this final distribution and it’s breakdown by density in
Figure 3-4. We find that this “side-switching” is a universal behavior alongside
polarization, and while it does vary between simulations, this variation is not impacted
noticeably by online network density.

4., DISCUSSION

Misinformation, polarization, and hate movements are widely viewed as some of the most
imminent and existential threats to national security, democracy, and human well-being
today. Despite often being considered as separate issues, these phenomena are inseparably
linked. While efforts are in place to combat these issues and to understand them, there is
still a lack of holistic understanding necessary to optimally address them. Many forms of
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Figure 3-4 Number of agents whose final belief state opposed their initial predisposition toward the connected
narrative. Broken down by within density, between density, in aggregate, and broken down by both within
and between density, from left to right. Plotting details are identical to those in Figure 3-3.

study are necessary to fully understand these problems and their societal impacts,
including retrospective data investigations, analyses of the systems that allow and
propagate harm, and computational modeling to simulate these systems.

Among existing agent based modeling techniques are models of disinformation spreading
and models of cognitive consistency and dissonance. The model we’ve presented intends to
capture both spreading and cognitive consistency, as well as a deliberately specified duality
between online and offline social interaction. Such an extension of both these methods
brings the social and cognitive simulation community closer to capturing reality with
agent-based modeling.

Experimental results using this model confirmed some expectations and defied others. As
with previous models of cognitive consistency on social networks, polarization among
agents emerged universally for parameter ranges included in this study. While the rate of
transmission did become more rapid with higher social network density, distributions were
long-tailed, with only a few extreme, slow-transmission events. Another universally
observed behavior was side-switching, in which some collection of agents reached a
homogenous final cognitive state that opposed their initial predisposition, which is by
definition the same predisposition as their online community. This side-switching, however,
did not change with density of the online network, and distributions of side-switching
frequency were nearly symmetric.

Although these insights can be drawn from experimentation we’ve conducted, this writing
serves to mainly present a useful model, and our tests so far have been limited. We do,
however, encourage readers to run their own simulations using our model with focus their
parameters of interest. In addition to exploring the large parameter space, there exist
numerous extensions to the current model to better approximate the dynamics of online
and offline social interaction. We've considered removing the permanence of links in the
social network, allowing agents to strengthen links to others who share an attitude toward
the cognitive network, and weaken those toward agents with opposing attitudes. This
could mimic the real-life phenomenon of people cutting off family members and friends in
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favor of an internet community, pushing them deeper and deeper into a conspiracy
“rabbit-hole”. The chosen topology also favors simplicity. Different behaviors of the system
as a whole could be revealed by transferring the model to scale-free network or
Lancichinetti-Fortunato-Radicchi benchmark. The ability to extend this model to large
networks (thousands or tens of thousands of nodes) would be ideal for simulating a societal
phenomenon accurately, but the exponential scaling of the model makes such an extension
intractable with current computing technology.

This work sits upon a lineage of cognitive, psychological, and computational research to
understand and address disinformation and conspiratorial narratives. As we continue into
our next phase of research toward that end, we look forward to the advances made by our
colleagues in this field at this and other institutions.
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