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Hardware Implementation2

 General Requirements
• 2 tones per channel

• Up to 350 MHz

• Absolute phase control
• Re-synchronize phases without bookkeeping

• Fast & continuous parameter modulation
• Spline modulation on all parameters 

simultaneously

• Synchronous control across channels
• Full parallelism

• Long sequences of gates
• Scalable
 Error Handling Requirements
• Fast repetition rate lock reconfigurability
• Cross talk cancellation

 Our Approach

• Custom firmware design using a Xilinx 
RFSoC

• Currently using ZCU111 evaluation boards

• 8 DACs per board, 6.5 GSPS
 A Packaged “Octet”



Gate Implementation at the Experiment Level3

Counter-propagating

• Supports motional-
state addressing and 
ground state cooling

• Affected by Doppler 
shifts

• Necessary for two-
qubit gates
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Co-propagating

• Immune to Doppler 
shifts

• Not affected by 
timing errors and 
pulse overlap
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 171Yb+ qubit, clock state 12.6 GHz

 Individual addressing requires lasers

 Optical frequency comb to bridges 12.6 GHz via Raman 
transitions

 Frequency, phase, and amplitude control using RF signals 
applied to acousto-optic modulators (AOMs)

 Two configurations: Co- and Counter-propagating



Challenges: RF Reproducibility and Agility4

Sideband cooling
 

State initialization

Single qubit gates

Two-Qubit Gate

Individual
beams

Global
beam

• Each configuration requires different frequencies

• Phase of beat note produced by red and blue 
sideband tones determines global phase of Mølmer-
Sørensen gate

Absolute phase control is imperative!
 Three basic 
configurations



Simplified Model of a Direct Digital Synthesizer (DDS)5

 Extremely simplistic model of a DDS requires an accumulator, which advances the 
phase of some waveform based on a frequency input, and something to convert the data 
into a sinusoidal amplitude such as a lookup table (LUT)

LUT

Accumulator Lookup Table
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Changing Frequency7

 Changes in the frequency word lead to continuous changes in the output, leading to 
undesirable phase differences when trying to maintain coherent gate operations.

 One option is to use free-running DDSs and switching between them, but that typically 
wastes design resources or involves complex external switch networks that suffer from 
frequency-dependent phase shifts



 DDS frequencies regularly need to be changed for 
running different types of gates  Accumulators need 
to be reset

 Manual phase bookkeeping requires pre-calculating 
phase based on when a particular gate is to be run 
during a sequence 
◦ This breaks down in cases with context dependence e.g. 

gates that depend on mid-circuit measurement results

…or it leads to lots of effort making sure all gates have 
uniform time etc.

◦ This approach can be disrupted by small timing mismatch 
such as catching a trigger associated with a measurement 
result

◦ Extra time taken to calculate all of this information can subtly 
increase the time taken to compile all the pulse information

 These are solvable problems, but there’s a better 
way…

Recycling Accumulators8



Automated Global Phase Synchronization9

 Solution: Let the hardware do the work

 Phases are automatically calculated based on a global 
counter for the input frequency word

 A single pulse can be used to synchronize a tone to 
match the phase to a point in the past

◦ As long as its synchronized for the first application at the 
frequency!

1
Global Counter

common to all 
tones/channels

Local Accumulator

Global Sync 
toggles switch for one 

clock cycle

t0



Hardware Features: Global Phase Synchronization10

 Tones being manually synchronized to an 
earlier state

 Changing parameters while applying 
synchronization

What else can we 
let the hardware 

handle?



Virtual Gates11

 Without direct access to certain dimensions (e.g. Z), physical gate operations are restricted (e.g. 
X and Y gates)

 Gate sequences such as XZX can artificially represented as YX

 But this is also strongly affected by context dependence!

LUT

0

 Virtual phase can be independently tracked in an 
accumulator such that Z gates will automatically 
add the accumulated phase for all gates the 
follow

 This means that Z gates can exist as natural 
primitives without having to mutate gate 
sequences in a way that accounts for context 
dependence

 No manual bookkeeping required!



Dealing with Experimental Imperfections: Cavity Drift12

 Cavity drift in our pulse laser requires a 
frequency feedforward lock to correct for 
errors

 How this error is forwarded strongly depends 
on the beam configuration!

Initial State

Change in Repetition 
Rate

Feed Error 
Forward to AOM

No longer aligned to comb teeth! Sideband cooling
 

State initialization

Single qubit gates

Two-qubit gate

Beat Note 
Lock

Individual
beams

Global
beam

Lock must be applied to exactly one tone for each Raman pair!



 Cavity drift is monitored by 
measuring output pulses on a 
photodiode and subsequently 
mixed down by ~3.7 GHz

 The resulting signal is further 
mixed down via a complex mixer 
and compared with a dedicated 
DDS for feedback

 By using a multiplier in the 
feedback loop, we can divide the 
repetition rate by the input 
harmonic being measured

 The output is then multiplied by 
the target harmonic, which can 
be individually configured for 
each tone and added to the local 
accumulator output for a 
lightweight firmware footprint

Dealing with Experimental Imperfections: Cavity Drift13

LUT

LUT
PID

Input 
Harmonic

Input Repetition 
Rate Signal

Target 
Harmonic



Dealing with Experimental Imperfections: Crosstalk Compensation14

 Different types of crosstalk can occur
◦ Optical: overlap of individual addressing beams
◦ Acoustic: sympathetic vibrations of neighboring 

crystals in multi-channel AOM
◦ Electrical: control signal crosstalk on next-

nearest neighbors in multi-channel AOM

 Want the ability to handle all types!

 Complex output of each DDS is given an 
configurable coarse delay and passed to 
nearest- and next-nearest-neighbor channels

 Each input signal is multiplied against a 
complex amplitude to change the amplitude 
and phase for fine-tuning alignment

Fine-tuning 
using phase 

adjusts

Applying a signal 
with equal/opposite 

amplitude on 
neighboring 

channels



Quantum Gates15

 Gates must be defined as discrete “pulses” with precise timing and characteristics to achieve the 
desired results State of the art gate designs 
require discrete or continuous 
modulation of frequency, 
phase, and amplitude.

 Gates must be synchronous 
across all channels and tones, 
with the ability to run all 
modulation types 
simultaneously

 Long sequences can be 
necessary, so a compact 
representation is needed.

 Gate times (2-200 us) are typically much slower than the period (5 ns) of the natural frequencies 
(200 MHz) needed to drive the AOMs

 Instead of writing raw waveform data like an arbitrary waveform generator (AWG) we can 
advantage of more compact representations



Gate Sequencer16

 Gates are represented as natural cubic splines (square pulses force the higher order coefficients 
to zero) and are interpolated on-chip with update rates of ~2.5 ns

 Gate data is often redundant, for example X & Y gates differ only by a phase

 Raw gate data is compressed to unique elements and then sequenced on chip using a series of 
LUTs

 The simplest gates require at least 2048 bits of information, but can be stored once and streamed 
out using 9 bit identifiers

ADDR DATA

P0 0010…0111

P1 0101…0101

… …

Pn 0101…1000

ADDR DATA

S0 P3

S1 P0

… …

Sn P6

ADDR DATA

G0 {S0,S11}

G1 {S12,S43}

… …

Gn {S186,Sn}

G1 G3 G0 G5 … Gn G5 G2 G6 G5 … G0G8 G1 G9 G4 … G7

GATE
SEQUENCE
ADDRESS
ITERATOR
for s in [Sj,Sk]:
    yield s

SPLINE
ENGINES

Pulse LUTSequence LUTGate LUT



Gate Sequencer17

 Compressed representations 
allow for running large 
numbers of gates which can 
be streamed in externally

 12,000,000 gates each with 
100 ns duration (by no 
means a limit of the system)

 The gate sequencer can be 
dynamically reprogrammed 
between gate sequences.

 Here the sequencer was run 
and immediately 
reprogrammed such that all 
gates had twice the duration 
and subsequently re-run

 Direct data streaming is 
supported for one-off 
sequences.

 Though partial re-
programming is often the 
better option

 Compressed representations allow arbitrarily long gate sequences and multiple sequences can 
be queued up and run back to back with dynamic reprogramming



Fast Branching For Conditional Gate Sequences18

 When mid-circuit measurements require a conditional sequence of 
gates to be run, the hardware must be able to react quickly

 For situations where these gates are known in advance, they can be 
passed to the hardware with a partial gate identifier (i.e. address for 
the gate LUT) 

 Given a gate identifier of 0b001010 and a measurement result of 0b0011, the lookup value of the 
gate address is converted to 0b0011001010 using a matrix-style bitmask

 Once a measurement result is complete, a secondary trigger is sent to the gate sequencer 
such that the additional latency only depends on the latency imposed by the measurement 
process and extra trigger

0 0 1 1 0 0 1 0 1 0

1 1 0 0 0 0 1 0 1 0

1 1 0 0 0 0 1 0 1 0 Moreover, depending on how the gate 
LUT is programmed, one can optionally 
and dynamically configure the aspect 
ratio of the matrix lookup, since 
measurement result masks are simply 
OR’d with the input gate identifier

1 1 0 0 0 0 1 0 1 0

 Since gate identifiers are packed into 256-bit words, multiple gates can be applied based on a 
single measurement result and chained together across multiple 256-bit words to realize long 
measurement-based sequences



Jaqal: “Just another quantum assembly 
language”

from QSCOUT.std.v1 usepulses *

register q[8]

let pi4   0.78539816339
let mpi2 -1.57079632679

macro Hadamard target { 
  Sy target           
  Px target           
}

macro CNOT control target {  
  Sy control
  MS control target 0 pi4
  < Rx control mpi2 | Rx target mpi2 >  
  Sy control 
}

prepare_all
Hadamard q[1]
CNOT q[2] q[1]
measure_all 

 Example Jaqal Code
Features
• Simple interface, easy to learn
• Provides a natural way to write 

gates that can be run in sequence 
or in parallel

• Basic elements such as parameter 
definitions, macros, loops, and 
qubit aliases to ease programming 
while maintaining readability and 
explicitness

• Quickly switch between low-level 
gate definitions

• Extensible via custom gate 
definitions

19



JaqalPaw: Jaqal “Pulses and waveforms”

def gate_R(self, qubit, theta, phi):
    phase = (phi < 0)*1 + 0*180 + theta + 0/math.pi*180
    calibrated_rabi = self.single_qubit_rabi_cal[qubit]
    symmetric_amp = 0.5 * self.maximum_amplitude
    duration = self.duration_from_rabi_angle(phi, 
                                             symmetric_amp, 
                                             calibrated_rabi)
    lower_frequency = self.adjusted_carrier_splitting/2
    upper_frequency = -self.adjusted_carrier_splitting/2
    gauss_amp = np.sqrt(self.gauss(7, 

       symmetric_amp, 
                                   freqwidth=200e3, 
                                   total_duration=4e-6))
    return [PulseData(qubit,
                      duration,
                      amp0=Spline(gauss_amp),
                      amp1=Spline(gauss_amp),
                      freq0=lower_frequency,
                      freq1=upper_frequency,
                      phase0=0,
                      phase1=phase,
                      fb_enable_mask=0b01,
                      sync_mask=0b11)]

 Example JaqalPaw Code
Features
• Uses Python for flexibility
• Pulse representation is a 

simple data structure
• Modulation expressed as 

tuples of spline knots or 
lists of discrete values

• Splines can be specified 
for multiple parameters 
simultaneously an with 
different lengths

20



Future Directions21

 Take full advantage of the hardcore processing systems on the chip

 APU: Application Processing Unit for intermediate-level feedback involving gate mutation 
high-level algorithmic control over gate sequences

 RPU: Real-time Processing Unit for deterministic timing and precise control flow across 
multiple systems

 Adapting MPSoC system as master control hardware for various subsystems, classical 
control electronics, data handling, and more



More Resources22

 https://qscout.sandia.gov
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