
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Scalable coherent control
hardware for trapped-ion systems:

a tailored approach

Danie l Lobser

SAND2021-13170CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Hardware Implementation2

 General Requirements
• 2 tones per channel

• Up to 350 MHz

• Absolute phase control
• Re-synchronize phases without bookkeeping

• Fast & continuous parameter modulation
• Spline modulation on all parameters

simultaneously

• Synchronous control across channels
• Full parallelism

• Long sequences of gates
• Scalable
 Error Handling Requirements
• Fast repetition rate lock reconfigurability
• Cross talk cancellation

 Our Approach

• Custom firmware design using a Xilinx
RFSoC

• Currently using ZCU111 evaluation boards

• 8 DACs per board, 6.5 GSPS
 A Packaged “Octet”

Gate Implementation at the Experiment Level3

Counter-propagating

• Supports motional-
state addressing and
ground state cooling

• Affected by Doppler
shifts

• Necessary for two-
qubit gates

GLOBAL AOM

AO
M

AO
M

AO
M

AO
M

AO
M

Co-propagating

• Immune to Doppler
shifts

• Not affected by
timing errors and
pulse overlap

AO
M

AO
M

AO
M

AO
M

AO
M

 171Yb+ qubit, clock state 12.6 GHz

 Individual addressing requires lasers

 Optical frequency comb to bridges 12.6 GHz via Raman
transitions

 Frequency, phase, and amplitude control using RF signals
applied to acousto-optic modulators (AOMs)

 Two configurations: Co- and Counter-propagating

Challenges: RF Reproducibility and Agility4

Sideband cooling

State initialization

Single qubit gates

Two-Qubit Gate

Individual
beams

Global
beam

• Each configuration requires different frequencies

• Phase of beat note produced by red and blue
sideband tones determines global phase of Mølmer-
Sørensen gate

Absolute phase control is imperative!
 Three basic
configurations

Simplified Model of a Direct Digital Synthesizer (DDS)5

 Extremely simplistic model of a DDS requires an accumulator, which advances the
phase of some waveform based on a frequency input, and something to convert the data
into a sinusoidal amplitude such as a lookup table (LUT)

LUT

Accumulator Lookup Table

Simplified Model of a Direct Digital Synthesizer (DDS)6

 Extremely simplistic model of a DDS requires an accumulator, which advances the
phase of some waveform based on a frequency input, and something to convert the data
into a sinusoidal amplitude such as a lookup table (LUT)

LUT

Accumulator Lookup Table

Changing Frequency7

 Changes in the frequency word lead to continuous changes in the output, leading to
undesirable phase differences when trying to maintain coherent gate operations.

 One option is to use free-running DDSs and switching between them, but that typically
wastes design resources or involves complex external switch networks that suffer from
frequency-dependent phase shifts

 DDS frequencies regularly need to be changed for
running different types of gates  Accumulators need
to be reset

 Manual phase bookkeeping requires pre-calculating
phase based on when a particular gate is to be run
during a sequence
◦ This breaks down in cases with context dependence e.g.

gates that depend on mid-circuit measurement results

…or it leads to lots of effort making sure all gates have
uniform time etc.

◦ This approach can be disrupted by small timing mismatch
such as catching a trigger associated with a measurement
result

◦ Extra time taken to calculate all of this information can subtly
increase the time taken to compile all the pulse information

 These are solvable problems, but there’s a better
way…

Recycling Accumulators8

Automated Global Phase Synchronization9

 Solution: Let the hardware do the work

 Phases are automatically calculated based on a global
counter for the input frequency word

 A single pulse can be used to synchronize a tone to
match the phase to a point in the past

◦ As long as its synchronized for the first application at the
frequency!

1
Global Counter

common to all
tones/channels

Local Accumulator

Global Sync
toggles switch for one

clock cycle

t0

Hardware Features: Global Phase Synchronization10

 Tones being manually synchronized to an
earlier state

 Changing parameters while applying
synchronization

What else can we
let the hardware

handle?

Virtual Gates11

 Without direct access to certain dimensions (e.g. Z), physical gate operations are restricted (e.g.
X and Y gates)

 Gate sequences such as XZX can artificially represented as YX

 But this is also strongly affected by context dependence!

LUT

0

 Virtual phase can be independently tracked in an
accumulator such that Z gates will automatically
add the accumulated phase for all gates the
follow

 This means that Z gates can exist as natural
primitives without having to mutate gate
sequences in a way that accounts for context
dependence

 No manual bookkeeping required!

Dealing with Experimental Imperfections: Cavity Drift12

 Cavity drift in our pulse laser requires a
frequency feedforward lock to correct for
errors

 How this error is forwarded strongly depends
on the beam configuration!

Initial State

Change in Repetition
Rate

Feed Error
Forward to AOM

No longer aligned to comb teeth! Sideband cooling

State initialization

Single qubit gates

Two-qubit gate

Beat Note
Lock

Individual
beams

Global
beam

Lock must be applied to exactly one tone for each Raman pair!

 Cavity drift is monitored by
measuring output pulses on a
photodiode and subsequently
mixed down by ~3.7 GHz

 The resulting signal is further
mixed down via a complex mixer
and compared with a dedicated
DDS for feedback

 By using a multiplier in the
feedback loop, we can divide the
repetition rate by the input
harmonic being measured

 The output is then multiplied by
the target harmonic, which can
be individually configured for
each tone and added to the local
accumulator output for a
lightweight firmware footprint

Dealing with Experimental Imperfections: Cavity Drift13

LUT

LUT
PID

Input
Harmonic

Input Repetition
Rate Signal

Target
Harmonic

Dealing with Experimental Imperfections: Crosstalk Compensation14

 Different types of crosstalk can occur
◦ Optical: overlap of individual addressing beams
◦ Acoustic: sympathetic vibrations of neighboring

crystals in multi-channel AOM
◦ Electrical: control signal crosstalk on next-

nearest neighbors in multi-channel AOM

 Want the ability to handle all types!

 Complex output of each DDS is given an
configurable coarse delay and passed to
nearest- and next-nearest-neighbor channels

 Each input signal is multiplied against a
complex amplitude to change the amplitude
and phase for fine-tuning alignment

Fine-tuning
using phase

adjusts

Applying a signal
with equal/opposite

amplitude on
neighboring

channels

Quantum Gates15

 Gates must be defined as discrete “pulses” with precise timing and characteristics to achieve the
desired results State of the art gate designs
require discrete or continuous
modulation of frequency,
phase, and amplitude.

 Gates must be synchronous
across all channels and tones,
with the ability to run all
modulation types
simultaneously

 Long sequences can be
necessary, so a compact
representation is needed.

 Gate times (2-200 us) are typically much slower than the period (5 ns) of the natural frequencies
(200 MHz) needed to drive the AOMs

 Instead of writing raw waveform data like an arbitrary waveform generator (AWG) we can
advantage of more compact representations

Gate Sequencer16

 Gates are represented as natural cubic splines (square pulses force the higher order coefficients
to zero) and are interpolated on-chip with update rates of ~2.5 ns

 Gate data is often redundant, for example X & Y gates differ only by a phase

 Raw gate data is compressed to unique elements and then sequenced on chip using a series of
LUTs

 The simplest gates require at least 2048 bits of information, but can be stored once and streamed
out using 9 bit identifiers

ADDR DATA

P0 0010…0111

P1 0101…0101

… …

Pn 0101…1000

ADDR DATA

S0 P3

S1 P0

… …

Sn P6

ADDR DATA

G0 {S0,S11}

G1 {S12,S43}

… …

Gn {S186,Sn}

G1 G3 G0 G5 … Gn G5 G2 G6 G5 … G0G8 G1 G9 G4 … G7

GATE
SEQUENCE
ADDRESS
ITERATOR
for s in [Sj,Sk]:
 yield s

SPLINE
ENGINES

Pulse LUTSequence LUTGate LUT

Gate Sequencer17

 Compressed representations
allow for running large
numbers of gates which can
be streamed in externally

 12,000,000 gates each with
100 ns duration (by no
means a limit of the system)

 The gate sequencer can be
dynamically reprogrammed
between gate sequences.

 Here the sequencer was run
and immediately
reprogrammed such that all
gates had twice the duration
and subsequently re-run

 Direct data streaming is
supported for one-off
sequences.

 Though partial re-
programming is often the
better option

 Compressed representations allow arbitrarily long gate sequences and multiple sequences can
be queued up and run back to back with dynamic reprogramming

Fast Branching For Conditional Gate Sequences18

 When mid-circuit measurements require a conditional sequence of
gates to be run, the hardware must be able to react quickly

 For situations where these gates are known in advance, they can be
passed to the hardware with a partial gate identifier (i.e. address for
the gate LUT)

 Given a gate identifier of 0b001010 and a measurement result of 0b0011, the lookup value of the
gate address is converted to 0b0011001010 using a matrix-style bitmask

 Once a measurement result is complete, a secondary trigger is sent to the gate sequencer
such that the additional latency only depends on the latency imposed by the measurement
process and extra trigger

0 0 1 1 0 0 1 0 1 0

1 1 0 0 0 0 1 0 1 0

1 1 0 0 0 0 1 0 1 0 Moreover, depending on how the gate
LUT is programmed, one can optionally
and dynamically configure the aspect
ratio of the matrix lookup, since
measurement result masks are simply
OR’d with the input gate identifier

1 1 0 0 0 0 1 0 1 0

 Since gate identifiers are packed into 256-bit words, multiple gates can be applied based on a
single measurement result and chained together across multiple 256-bit words to realize long
measurement-based sequences

Jaqal: “Just another quantum assembly
language”

from QSCOUT.std.v1 usepulses *

register q[8]

let pi4 0.78539816339
let mpi2 -1.57079632679

macro Hadamard target {
 Sy target
 Px target
}

macro CNOT control target {
 Sy control
 MS control target 0 pi4
 < Rx control mpi2 | Rx target mpi2 >
 Sy control
}

prepare_all
Hadamard q[1]
CNOT q[2] q[1]
measure_all

 Example Jaqal Code
Features
• Simple interface, easy to learn
• Provides a natural way to write

gates that can be run in sequence
or in parallel

• Basic elements such as parameter
definitions, macros, loops, and
qubit aliases to ease programming
while maintaining readability and
explicitness

• Quickly switch between low-level
gate definitions

• Extensible via custom gate
definitions

19

JaqalPaw: Jaqal “Pulses and waveforms”

def gate_R(self, qubit, theta, phi):
 phase = (phi < 0)*1 + 0*180 + theta + 0/math.pi*180
 calibrated_rabi = self.single_qubit_rabi_cal[qubit]
 symmetric_amp = 0.5 * self.maximum_amplitude
 duration = self.duration_from_rabi_angle(phi,
 symmetric_amp,
 calibrated_rabi)
 lower_frequency = self.adjusted_carrier_splitting/2
 upper_frequency = -self.adjusted_carrier_splitting/2
 gauss_amp = np.sqrt(self.gauss(7,

 symmetric_amp,
 freqwidth=200e3,
 total_duration=4e-6))
 return [PulseData(qubit,
 duration,
 amp0=Spline(gauss_amp),
 amp1=Spline(gauss_amp),
 freq0=lower_frequency,
 freq1=upper_frequency,
 phase0=0,
 phase1=phase,
 fb_enable_mask=0b01,
 sync_mask=0b11)]

 Example JaqalPaw Code
Features
• Uses Python for flexibility
• Pulse representation is a

simple data structure
• Modulation expressed as

tuples of spline knots or
lists of discrete values

• Splines can be specified
for multiple parameters
simultaneously an with
different lengths

20

Future Directions21

 Take full advantage of the hardcore processing systems on the chip

 APU: Application Processing Unit for intermediate-level feedback involving gate mutation
high-level algorithmic control over gate sequences

 RPU: Real-time Processing Unit for deterministic timing and precise control flow across
multiple systems

 Adapting MPSoC system as master control hardware for various subsystems, classical
control electronics, data handling, and more

More Resources22

 https://qscout.sandia.gov

References

Questions?23

 Thanks to our team and collaborators

Peter Maunz
Susan Clark
Ashlyn Burch
Matt Chow
Craig Hogle
Megan Ivory
Melissa Revelle
Dan Stick
Andrew Van Horn
Josh Wilson
Chris Yale

Matt Blain
Ed Heller
Jason Dominguez
Chris Nordquist
Ray Haltli
Tipp Jennings
Ben Thurston
Corrie Sadler
Becky Loviza
John Rembetski
Eric Ou
Matt Delaney

Jay Van Der Wall
Josh Goldberg
Andrew Landahl
Ben Morrison
Tim Proctor
Kenny Rudinger
Antonio Russo
Brandon Ruzic
Kevin Young
Collin Epstein
Andrew Van Horn

Brad Salzbrenner
Madelyn Kosednar
Jessica Pehr
Ted Winrow
Bill Sweatt
Dave Bossert

UNM
Nafis Irtija
Jim Plousquellic
Eirini Tsiropolou

Duke
Ken Brown
Marko Cetina
Jungsang Kim
Chris Monroe

AOSense
Alan Bell

