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Abstract: Zinc is a promising anode material for grid-scale energy storage because of its high gravimetric capacity, low equilibrium potential, non-toxicity, and low cost. The electrochemical performance of Zn
anodes in rechargeable alkaline Zn/MnO, batteries is influenced by the structure and composition of the ZnO layer formed on the surface of metal Zn during the battery discharge. The crystal structure of
Zn0O formed in Zn anodes is known to contain defects and impurities, such as Zn and O vacancies, interstitial hydrogen, and alkali metal ions. We apply ab initio computational methods based on density
functional theory to study the structural and electrochemical properties of Zn and ZnO in rechargeable Zn/MnO, batteries. Our calculations show that the formation energies of charged defects and
impurities in ZnO are strongly affected by the position of the Fermi level and the applied anode potential. The existence of Zn and O vacancies changes the band structure and optical properties of ZnO. The
results of our study suggest that the presence of defects and impurities in ZnO has a significant impact on the electrochemical properties of Zn anodes.

Intr

oduction

/n has long been recognized as a promising anode
material for aqueous rechargeable batteries because of
its high theoretical capacity (820 mAh g1), low redox
potential (-0.76 V vs. standard H electrode), high
stability in ambient environments, non-toxicity,
abundance, and low cost.13 However, Zn anodes have
demonstrated low utilization and poor rechargeability
in alkaline electrolytes due to the problems associated
with surface passivation and dendrite growth.4®

Major challenges for Zn anodes:

The

Passivation of Zn with an insulating layer of ZnO.
Dendrite growth.

Hydrogen evolution reaction.

Crossover of Zn?* ions to the battery cathode.

re are two types of ZnO:

 Type I: porous, loose, and white.
* Type Il: nonporous, compact, light gray to black.

Re

search Objectives

The

goal of our study is to develop a theoretical model

describing the influence of structure and composition
of Zn and ZnO on the electrochemical performance of
Zn anodes in rechargeable alkaline Zn/MnO, batteries

and

apply this model to evaluate the role of structural

defects and impurities in ZnO.

Co

mputational Methods

* Ab initio computational method based on DFT.””

e Quantum ESPRESSO (opEn-Source Package for
Research in Electronic Structure, Simulation, and
Optimization) electronic structure code.’

* Electronic bands & DOS were calculated using PBE+U.

* Optical spectra were computed using TDDFT.

* XRD simulations were performed using VESTA.

Results and Discussion

Crystal Structure & Properties of Zn & ZnO
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Zn.
electronic band structure of ZnO. The calculated direct band gap

of ZnO is equal to 3.314 eV.
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1. (a) & (b) Optimized structure and simulated XRD pattern of
(c) , (d) & (e) Optimized structure, XRD pattern, and

Neutral H, O, & Zn defects in ZnO

Fig. 2. Optimized crystal structure of ZnO containing (a) interstitial

Ha

tom, (b) O vacancy, and (c) Zn vacancy.

The formation energies of neutral H, O, and Zn defects

were evaluated using the following equationi®!
EFormation = EDefect,q - EPerfect 'Zi nil"i

where n. - number of defects of element i in a supercell,

U - chemical potential of element i, n.> 0 for an added

atom, and n,< 0 for a removed atom.

interstitial H | O vacancy | Zn vacancy
Er (eV) 0.82 3.72 5.26

H insertion into pristine & defective ZnO
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FIG. 3. Optimized structured of (a) 2 H atoms in pristine ZnO (b)
1 H atom in O-vacant ZnO, and (c) 3 H atoms in Zn-vacant ZnO.
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FIG. 4. Formation energies of pristine and defective structures
of ZnO containing several inserted H atoms.

Our calculations show that the addition of hydrogen
increases the formation energies of O vacancies and
decreases the formation energies of Zn vacancies in
Zn0. This result suggests that the Zn-vacant structure of
Zn0O can be stabilized by the inserted hydrogen.

B. Charged H, O, & Zn defects in ZnO

The formation energies of charged H, O, and Zn defects
were evaluated using the following equation®®!

EFormation = EDefect,q — EPerfect 'Zi N;U; +CI(VBM + ef)

where q - defect charge, VBM - valence band maximum,

and e; - position of Fermi level with respect to the VBM.
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Fig. 5. Insertion energies of 0
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Charged O vacancy state
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Neutral and charged O vacancies produce defect states
inside the band gap of ZnO. The defect state is located
near the middle of the bang gap for the neutral vacancy
but is shifted upward for a positively charged vacancy.
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Neutral and charged Zn vacancies slightly change the size
of the band gap of ZnO, but do not produce defect states
inside the band gap.

Summary

We applied first-principles computational methods based
on density functional theory to study the structural and
electrochemical properties of Zn and ZnO in rechargeable
Zn/MnO, batteries. Our calculations demonstrated that
the electrochemical properties of Zn anodes could be
significantly influenced by the presence of defects and
impurities in the crystal structure of ZnO. The formation
energies of neutral O and Zn vacancies in ZnO were found
to be 3.72 eV and 5.26 eV, respectively. The addition of
hydrogen increased the formation energies of O vacancies
and decreases the formation energies of Zn vacancies in
/n0O. The formation energies of charged defects in ZnO
were strongly affected by the position of the Fermi level.
The computed electronic band structures showed that O
vacancies produced defect states inside the band gap of
/n0O. The mid-gap defect states could be responsible for
the light absorption in visible range, which was observed
in experimental studies of Zn anodes.
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