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‘ Problem Statement s

Goal of the project

« HARMONIE Special Protection Scheme (SPS) is a methodology to process cyber-
physical data and provide effective, automated responses to defend against grid
disturbances

1) Defend against unpredictable disturbances that do not fit predefined abnormal
conditions,

2) process digital relay measurements and incorporate out-of-band (OOB) data for
increased situational awareness, and

3) proactively respond to compromises by deploying cyber-physical corrective
actions to reduce/eliminate svstem imbpact

|
|
I

e Defend and increase resilience of our nation’s critical infrastructure

« HARMONIE-SPS would enable adaptive, fast, and proactive response to both
predictable and unpredictable cyber-physical disturbances, reduce/eliminate
cascading impact




3 ‘ Proposed Solution

me | raditional SPSs

e SPSs are leveraged by utilities to maintain
stability, acceptable voltages, and loading limits
during disturbances in the electric grid

e Detect predefined abnormal conditions and
deploy predefined corrective actions; operate

A next-generation SPS with the "
following attributes is needed:

1) A SPS that can adapt to unpredictable

in playbOOk manner _events qnd effecti\{ely re.spond.to

« Can take actions beyond the isolation of a A/ RTINS 1S EREPEE GREdy;
fault angi include changes to‘dema.nd, 2) A SPS that is cyber-physical in
generation, and system configuration analyzing collected data and taking I

« Traditional SPSs are unable to defend against SEH OIS T,

unpre.c!lctable dlStUI'b.anC?S 3) A SPS that extends the use of

e Resilience and volatile disturbances such as protective relays from fault isolation to
EMPs, extreme weather, and malicious events also adaptively learning system

. . . conditions, preventing cyber-attack

threatening national security must be propagation, and taking proactive
considered; cyber-attacks targeting grid actions totﬁ;e;/:lf;t comprormise within
operations are increasing in frequency and Y I
intensity

Return: Technical Review I




+! Proposed Solution

HARMONIE-SPS is a strategy to respond to cyber-physical grid disturbances, both predictable and
unpredictable, that can learn system conditions using relay measurements and OOB data, detect
abnormal events, and deploy proactive response

 HARMONIE-SPS will be validated using high-fidelity, cyber-physical testing using both virtual and
hardware relays within dynamic transmission system models (e.g., synthetic Texas 2000-bus
system)

Next-generation relay voting

Deployable cyber-physical SPS scheme

Emulytics™ testing

Coordinates relays to prioritize
selectivity, speed, and/or security based Considers inter-relay

on ML algorithms and deploys cyber- . .
physical corrective controls rel§t1onsh1ps and OOB data,
including both full and

Using RTDS using HIL and
simulated relays within dynamic
grid models paired with realistic

communication infrastructure;
the environment can benefit
various existing and future
projects.

ML algorithms process a combination of reduced-order versions, to

relay physical measurements, relay host . . .
data, and OOB data to classify actual prov1de confidence in relay

system conditions, adapting to any actions
disturbances




.| Emulytics™ Testing of HARMONIE-SPS &

Emulytics™

Utility

Gateway

vrtual

Image Sources: https://knowledge.rtds.com/hc/en-us/articles/360034290474-NovaCor-; https://selinc.com/products/751/; https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000 I
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1 Overview of HARMONIE-SPS Approach

%

Cyber-physical
relay and other
data collected

N\ /7

Data classified to
determine system
conditions

N/

Classification
determines
selectivity, security,
and speed
prioritization

NS

Prioritization
determines use of
MCA and proactive

response options

Data Collection

Digital Relay
Physical Data |Cyber Data
* Current, * Communica-
voltage, tion traffic
frequency * Setting files
* Fault data « Device
logs configuration

Phasor Measurement Units

Physical Data

* Current, voltage, frequency from
various areas of grid

* Not limited to relay location

Intrusion Detection Systems

Alerts and
warnings when | Could detect
abnormalities relay
detected in compromise
system

Classification of
System Conditions

Normal
stable,
unstressed

Unsafe
insecure

Unstable
stressed,
disruptions

Prioritize

(single or combination)

~

Security

A

* Matrix-Weighted
Consensus Algorithm

Cyber-physical mitigation
Backup protection schemes

Selectivity

N

/
<

Matrix-Weighted
Consensus Algorithm

Physical mitigation
Backup protection schemes

v

Speed

/
~

¢ Reduced Matrix-Weighted
Consensus Algorithm

¢ Physical mitigation
e Backup protection schemes




Machine Learning Approach

Approach converts incoming cyber-physical data
into a graph of interconnected nodes, where each
edge is a flow of information with an associated
timestamp

After the whole capture is split into subgraphs

using 24-second sliding windows, the algorithm

relies upon two deep learning architectures to

obtain an overall representation of the system
state in each window:

A Graph Convolutional Neural
Network (GNN/GCN/GCNN),
which applies deep learning to
the structure of
interconnected nodes in the
subgraph, and

A Recurrent Neural Network
(RNN), which applies deep
learning to the temporal
ordering of the edges in the
subgraph

A classification layer was added onto the
network that predicts two binary labels

Labels were whether a cyber
disturbance is occurring and
whether a physical disturbance
is occurring

This combination of two binary
labels allows our model to
categorize the system state into
four categories:

1) normal operations, 2) cyber-only
disturbances, 3) physical-only

disturbances, and 4) cyber-physical
disturbances

We have demonstrated that such a network can
be trained using 50 network and physical data
captures of various 2-minute scenarios, along

with ground truth labels for when a cyber and/or

physical anomaly was occurring Tested 4

different disturbances:

1) denial of service (cyber-
only),

2) single-line-to-ground fault
(physical-only),

3) tripping command injection
(cyber-physical), and

4) time-delay attack (cyber-
physical)



s | Initial Machine Learning Results

For the experiments, we partitioned all scenarios into 30 for training, 10 for validation
and model selection, and 10 for testing --- these were then split into their respective
sliding windows

We ran experiments varying the size of the training data and comparing the results when
using a model that has already been pretrained using some basic predefined perturbations
versus a model that had not been pretrained.

» Used the area under the receiver operator curve (AUC) as our metric because it identifies how well a model’s
predictions split the two classes apart and does not require a predefined threshold to convert real-valued
confidence scores into a discrete class prediction

Table 1-1. Preliminary Results for HARMONIE-SPS ML Model
(Cyber anomaly AUC / Physical anomaly AUC)

With Pretraining No Pretraining
Training with all 900 windows (30 scenarios) | 0.74 /0.92 0.95/0.92
Training with 100 windows (~3.3 scenarios) 0.49/0.64 0.52/0.60




o I Initial Machine Learning Results

*From the initial results, we can see that using the full training data, our model can
differentiate between disturbances and normal behavior

» The pretraining step seems to either add nothing to or even mildly hiders the performance of
the model, especially when identifying cyber anomalies

» Could attribute this to a domain shift between the inputs during the pretraining step, where
perturbed graphs are given to the model, and the training step, where unmodified graphs are
given to the model

* The current approach i clonser tn transfer learnina than nretrainina
Cyber anomaly (MCC=0.78) Physical anomaly (MCC=0.70)

” n ” N,
Or,,]e/ 00764, O/“/be/ oh;c?/y
1 |
200 140
normal - 221 75 hormal - 10 120
150
100 . 0 0 . . .
125 900 training windows with no pretraining
o - )

anomaly =
Confusion matrices for identifying cyber and physical disturbances on the test data using a
threshold of 0.5. Matthew’s Correlation Coefficient (MCC) is used to assess the quality of the
predictions. Rows correspond to actual classes and columns correspond to predicted classes.




0 | Initial Machine Learning Results

*Also used our best model (trained on all 30 scenarios with no pretraining) to plot the
predicted anomaly scores for each scenario in the test set.

*Since our approach uses 24-second sliding windows, all windows ending between
00:00:59 and 00:01:23 will contain the disturbance which occurs at 00:00:59 (blue

vertical line).
* Note that some scenarios have cyber disturbances only in the middle of the capture, which is
why some gyl ;. monmnb: monens dvne bo cosels A ~fne ANAA DA

0.8 | 0.8

0.6 - 0.6 4

0.4 0.4

0.2 4 0.2

f

0.0

0.0

T T T T T Ll T T T T T T T 1 T T
00:00:30 00:00:45 00:01:00 00:01:15 00:01:30 00:01:45 00:02:00 00:02:15 00:00:30 00:00:45 00:01:00 00:01:15 00:01:30 00:01:45 00:02:00 00:02:15

Reported anomaly scores over time for the 10 test scenarios. A value of 1 indicates confidence in an
anomaly, and a value of 0 indicates the confidence of normal operations. Left: Cyber anomaly score.
Right: Physical anomaly score.



11 ‘ Next Steps for Machine Learning Framework

Work to improve our
data by obtaining more
scenarios to use for
training, validation, and
testing, obtaining more
diverse scenario types
and improving how our
data is labeled.

Plan to incorporate our
forecasting algorithm for
imputing missing data
and the support vector
machine for identifying
violations in the
underlying physical
system

All in all, our current
machine learning
algorithm for identifying
known disturbances in
the cyber network or
physical power system
shows promise

Gain better insight into
the model itself by
inspecting and
interpreting the GNN’s

output

«Our data is complex and noisy, and «By continuing to improve upon our
understanding what our network is existing approach, we believe this will be
learning will be a critical step in refining a viable solution to the problem of using
it machine learning to understand the

wholistic state of a power system and
recommend action for our SPS



For each test case, many scenarios are created to represent a wide
spectrum of physical system conditions

* WSCC 9 bus system:

| T -
«Over 22,000 scenarios representing different combinations of 5 operational variables TR ke Mo
(area 1 load/gen, area 2 load/gen, area interface flow) sy NG
BuS 4 i ua;ﬁii'\ safrmwe
1 \"*“"
Contingency Analysis for sampled scenarios m L
rea .
e Unrealistic to execute power system studies on all 22,000 scenarios
e Instead, subset of scenarios is sampled and analyzed to reduce the computation time
while maintain the results within acceptable accuracy range
« Distributed computing is utilized for the contingency analysis of each sampled scenario a . . . F
1 Scenario Name CTGLabel LimViolCat | LimWiollD LimViolValue LimViolLimit |
2 WSCCS_0001_8591_tritpwh  G_000002Bus2L Bus High Volts Bus2{2) 11016705 1.10000002
3 WSCCS_0001_8591_trid.pwb  G_000002Bus2L Bus High Volts Bus2(2) 1.11696506 1.10000002
175 | . e« Sampled scenarios (500) 4 WSCCY_DO0L_8591 tridpwh  G_000003Bus3L Bus High Volts Bus3(3) 1.11528087 1.10000002
. 3 WSECB_DDDI_&SE]_Tr!!.pwh G_000003Bus3L Bus ngh Volts Bus 3[3) 1.12898779 1.10000002
| . 6 WSCCS_D0D01_8591_tr3d.pwh  G_000002Bus2L Bus High Valt Bus3(3) 1.10541546 110000002
130 « All scenarios (22,000) 7 wsccs_uom_&sn_uaa.:wn G_oououzauzzl. Bu: Hign '.r:nz Bu:?li'J 110167038 1.10000002
& 'WSCCS_0001_8591_tr3d.pwh  G_000002Bus2l Bus High Volts Bus 7(7] 1.11633692 110000002
. 125 1 O WSCCS_0001_8591_tritpwb  G_000003Bus3L Bus High Valts Bus & [8) 110760462 1.10000002
> 10 WSCCH_0001_8591_trid.pwb  G_000003Bus3L Bus High Volts Bus 5 (9) 111528038 110000002
g 100 1 11 WSCCHS 0001 8591 trid.pwb G 000003Bus3L Bus High Volts Bus % [9) 1.12898767 1.10000002
I 12 WSCC9_00D1 7809 trdl.pwhb G 000003Bus3L Bus High Volts Bus 3{3) 1.10521531 1.10000002
f 75 13 'W5CCS_DD01_7809_trad.pwh G_000003Bus3L Bus High waolts Bus 3[3) 1.11834742 1.10000002
£ 14 WSECCS_D00L_7309 trdd.pwh  G_000002Bus3L Bus High Valts Bus 3(3) 1.12450445 1.10000002
a 50 15|w54:c9_ooo1._mg_1r4u.pwh G_000003Bus3L Bus High Volts Bus & (6] 1.10190713 110000002
16 WSCC9_0001_7809_trdd.pwh  G_000003Bus3L Bus High Valts Bus & [3) 111241782 110000002
17 WSCCY_DD01_7809_trd0.pwb  G_000003Bus3L Bus High Volts Bus 9 (9) 1.105214 1.10000002
231 168 WSCCS 0001 7809 trd0.pwb  G_000003Bus3l Bus High Volts Bus%[9) 1.11844718 1.10000002
19 WSCC9 0001 7809 trdl.pwb  G_000003Bus3L Bus High Volts Bus 9 [9) 1.12445255 1.10000002
0 20 wSECB_DDDl_]S]G_TI‘H_pwh G_D00002Bus2L Branch MVA Busd| 4)-»Busé 123.1743774 110
50 100 150 200 250 21 WSCCY_D001_3536_tr72.pwh  G_000001BusIL Branch MVA Bus7[ 7)-»Buss 1248182443 110
Area 1 Gen 22 WSCCS_0001_3536_tr72.pwb  G_000001BuslU Branch MVA Bus7( 7)-»Busg 171.5330582 110




Machine Learning Approach: Automated Corrective
Actions

CTG violation elements are clustered as scheme groups; violations within the same cluster can be addressed
within one corrective action "

e The violation elements from the contingency analysis are presented in graphs

» Nodes are unique scenarios and contingencies

e Links are combinations of scenario and contingency that will result in the CTG violation
e Graphic embedding is utilized to compress the graph information as vectors

» The compressed vectors are then used as input to a hierarchical clustering algorithm that determines the
violations being addressed in one single remedial action scheme

“-- --- |

C2 (1 C2 (1 cC2 C1 C2 (3
Violation Element 1 Vlolatlon Element 2 Violation Element 3

Voo Yde %6

[0.12,0.45,0.72,.. [0.62,0.45,0.33,...] [0.12,0.25,0.03,...] I



14 I Overall Machine Learning Architecture

Cyber-Physical Data

Forecasting

4 N\

Default use
cyber-physical
data; if loss of

comm., use

forecasting
. algorithm output )

k4

Algorithm

ELEN

GNN: processes cyber-physical structural information
RNN: processes cyber-physical temporal information

SVM: processes power system violations, automates corrective action deployment

Forecasting algorithm: predicts data flows if comm. lost




15 I Next-Generation Relay Voting Scheme

Examining how to formulate next-gen relay voting schemes with
far more connectivity and communications enabled devices

e Examining use of communication-enabled digital relays

o Allows new ways to incorporate relays into situational awareness and new
protection scheme designs that require fast response times

Using consensus algorithms to enable distributed computation |

and voting for increased security and resilience

e Not a central point of failure

e Allows us to better analyze impact and potential failures, as well as algorithmic
issues and potential challenges like Byzantine failures



16 ‘ Next-Generation Relay Voting Scheme

Examined existing state-of-the-art for relay voting schemes and introduced new designs for i

communication enabled relays to use consensus algorithms to securely agree on protection
actions

« This extends current voting designs such as 2/3 voting to a distributed system

Final design combines several features, including finding agreement on system state and voting on response
actions to take

e Enables faster response to system failures, as interacting with relays in practice is typically done by hand today

Enabling distributed computation for relay voting helps prevent common failures from

centralized failure points

Algorithm 1 Relay voting with BFT
1) Relay 7 detects under frequency conditions

2) Relay i initiates request Jacobs, Nicholas, et al. "Next-Generation

3) Request for voting multicast to all other relays Relay Voting Scheme Design Leveraging

4) All relays compute protection scheme calculations, de- Consensus Algorithms." 2021 IEEE Power and
termine load to shed Energy Conference at lllinois (PECI). IEEE,

5) Each relay multicasts result to all other relays in group il

6) Each relay waits for f + 1 replies, saves result. I
7) Relay j that needs to shed load acts accordingly




17 I Cyber-Physical Emulation Environment

Have WSCC 9'bUS System model Substation Assignment and Cyber Connfgtiviw b
running in RTDS — _ i J oy }‘"i.,
e Interested in collection of data from =1 k AN 1:,”- *“;":E\:h_lf e
the RTDS at different sampling rates T =a7 ’ — ones
due to non-contingency (low sampling) el [ DCE TR \“"; e
and contingency events (high sampling) i _,_ N f i~
e This data will be used to both train and ARl showitch Cortrol B
analyze the HARMONIE ML algorithms mea/ \
* Also leveraging TAMU testbed and DNP3/c37_ Sub.
related project datasets

SCEPTRE plan —

« Communication network design by TAMU
e Integration currently in-progress

e 9-bus emulation will be used as a
testbed to prototype and test the RTDS
integration
e Leveraging virtual PDC

e Upgraded RTDS to stream PMU data




8 ‘ Cyber-Physica

Emulation Environment

OPC SCADA =
—

server
S Historian
Virtual Field | . . ... Virtual Field
Device Device

N

Simulation data channel

Vv

___ /PowerWorld ™,
(future)
____________________ vy

SCEPTRE

. -
Provider

IPC or APL

A

SCEPTRE Provider VM
CP/IP Socket or
Python API

Virtualized
OpenPDC

PDC records ground truth data,
useful in case comm. network
disrupted during an attack
scenario

C37 or
Modbus

Hardware
PDC
RTDS

Overall HARMONIE-SPS emulation
environment architecture including
SCEPTRE™,

RTDS, and both virtualized and HIL
components



19 ‘ Current Efforts and Future Work

HARMONIE-SPS Approach progress:

e Cyber-physical machine learning framework for classifying disturbances
» Automated corrective action deployment (physical-side)

» Next-generation relay voting scheme

e Cyber-physical emulation environment

Future Work

» Extending SVM framework to deploy cyber corrective actions
» Collecting disturbance data for ML testing from cyber-physical emulation environment
e Cohesive HARMONIE-SPS deployment (e.g., as a tool)




Thanks! Questions?




21 I Cyber-Physical Disturbance Scenarios

Exploring different scenarios with varying cyber-physical impact

Command Injection (MITM

& Data Injection):
tripping command
injection cause single
failure and multiple
failures
4 A

Implementation: Tripping
command could be sent
from the substation-HMI,
or from other nodes
through the routing path

\ J
Data: )

*Cyber: flow data

*Physical: Before and after event
measurements (steady state) or
transient data (5 seconds)

Relay setting change

(Data Injection): changing

settings or disabling

cause single and multiple

failures

( )

Implementation: Change
setting command could
be sent from the
substation-HMI, or from
other nodes through the
routing path

\ J

\ J
Data: )

*Cyber: flow data

*Physical: Before and after event
measurements

DDQOS-1: Block the normal

communication for

collecting measurements

( )

Implementation: Missing

PMU data
\_ /
/Data: A

«Cyber: synthetized flow data
(from CIC-DD0S2019)

*Physical: Before and after event
measurements: unavailable data

DDOS-2: Block the normal

communication for
control (normal and
mitigation)

( )

Implementation: DDOS in
SCEPTRE (single
location/multiple
location) + physical
control command

\ J

/Data: A

«Cyber: synthetized flow data
(from CIC-DD0S2019)

«Physical: Before and after event
measurement

*Note: based on the DDOS
location, the physical mitigation
command may or may not be

\recelved by the targets )




Bus 5

1250Mw
50 Mvar

Substation A

e B :jl Eg-u}.-@ .
L017 pu v NetworkFlow Network Scenario
| umm 10w o Analyzer Topological Tool Generator
\w, ! Substation C (Tshark) (NetworkX) yY———
1.nu‘pu W0MW  Buse 1.012 pu Age“t
35 Mvar
i - - Emulated Network
* é Scenario
Jous + 1025 pu offw Configurator
W fjavar R Regional Data Power System
/ Data Aggregator Simulator
us1 1.040 pu C37.118.2 DS/PW-TS
;;:::r Substation B
Tripping command injection
» Each substation has 5 IEDs (connected to breakers) and 1 HMI connected to the substation
relay
» Base scenarios: 140
 Single Injection (in-substation): 15
* Multiple Injection (in-substation): 30
* Total scenarios: 6300
* Cyber data: flow information (source ip, source port, destination ip, destination port,
time, protocol) I
* Physical data: 1 steady-state data 2 transient data




{t: 0, src port: ..

-}

‘ GNN + RNN ‘

e}

a
{t: 4, skc port: ..}
{t: 5, skc port: ..}
{t: 5, sfgc _port: ..

3, src _port:

{t:

After n iterations of message
passing, each node and edge has its
own vector

A weighted mean of node

vectors encodes structural

) . information
information
< » {t: 0, src port:
‘ ‘ < — €8 3, Sre pomigs
< = (€8 8, SEC POLE S Yo
< [t A S ECl P OB E RN
{€8 O, BEC POETS
< = (s B, SEC POEES o

A weighted mean of edge
vectors encodes temporal

NNY

I




Edge Transformations

Use the fault classifier SVM’s output to add alert edges when violation conditions are "
met

{t: 4, device: XYZ, voltage: 123, ..}

L oA

< =
@; 1

{t: 4, device: XYZ, voltage: 123}, ..} |

{t: 4, device: XYZ, type: voltage-violation-alert, ..}



‘ Forecasting

Impute missing edges using forecasting with Facebook’s Prophet "
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