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Problem Statement2

Goal of the project
• HARMONIE Special Protection Scheme (SPS) is a methodology to process cyber-

physical data and provide effective, automated responses to defend against grid 
disturbances
1) Defend against unpredictable disturbances that do not fit predefined abnormal 

conditions,
2) process digital relay measurements and incorporate out-of-band (OOB) data for 

increased situational awareness, and
3) proactively respond to compromises by deploying cyber-physical corrective 

actions to reduce/eliminate system impact

Impact
• Defend and increase resilience of our nation’s critical infrastructure
• HARMONIE-SPS would enable adaptive, fast, and proactive response to both 

predictable and unpredictable cyber-physical disturbances, reduce/eliminate 
cascading impact



• SPSs are leveraged by utilities to maintain 
stability, acceptable voltages, and loading limits 
during disturbances in the electric grid
• Detect predefined abnormal conditions and 

deploy predefined corrective actions; operate 
in playbook manner

• Can take actions beyond the isolation of a 
fault and include changes to demand, 
generation, and system configuration

• Traditional SPSs are unable to defend against 
unpredictable disturbances
• Resilience and volatile disturbances such as 

EMPs, extreme weather, and malicious events 
threatening national security must be 
considered; cyber-attacks targeting grid 
operations are increasing in frequency and 
intensity

Traditional SPSs
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1) A SPS that can adapt to unpredictable 
events and effectively respond to 

limit/eliminate the disruption quickly; 

2) A SPS that is cyber-physical in 
analyzing collected data and taking 

response actions;

3) A SPS that extends the use of 
protective relays from fault isolation to 

also adaptively learning system 
conditions, preventing cyber-attack 
propagation, and taking proactive 

actions to prevent compromise within 
the relay set itself

A next-generation SPS with the 
following attributes is needed: 

Proposed Solution

Return: Technical Review



HARMONIE-SPS is a strategy to respond to cyber-physical grid disturbances, both predictable and 
unpredictable, that can learn system conditions using relay measurements and OOB data, detect 
abnormal events, and deploy proactive response

• HARMONIE-SPS will be validated using high-fidelity, cyber-physical testing using both virtual and 
hardware relays within dynamic transmission system models (e.g., synthetic Texas 2000-bus 
system)

Proposed Solution4

Coordinates relays to prioritize 
selectivity, speed, and/or security based 

on ML algorithms and deploys cyber-
physical corrective controls

ML algorithms process a combination of 
relay physical measurements, relay host 

data, and OOB data to classify actual 
system conditions, adapting to any 

disturbances

Deployable cyber-physical SPS

Considers inter-relay 
relationships and OOB data, 

including both full and 
reduced-order versions, to 
provide confidence in relay 

actions 

Next-generation relay voting 
scheme

Using RTDS using HIL and 
simulated relays within dynamic 
grid models paired with realistic 
communication infrastructure; 
the environment can benefit 
various existing and future 

projects.

Emulytics™ testing



Emulytics™ Testing of HARMONIE-SPS5
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Overview of HARMONIE-SPS Approach6



A Graph Convolutional Neural 
Network (GNN/GCN/GCNN), 

which applies deep learning to 
the structure of 

interconnected nodes in the 
subgraph, and

A Recurrent Neural Network 
(RNN), which applies deep 
learning to the temporal 

ordering of the edges in the 
subgraph

Approach converts incoming cyber-physical data 
into a graph of interconnected nodes, where each 
edge is a flow of information with an associated 

timestamp
After the whole capture is split into subgraphs 
using 24-second sliding windows, the algorithm 
relies upon two deep learning architectures to 
obtain an overall representation of the system 

state in each window:

Labels were whether a cyber 
disturbance is occurring and 

whether a physical disturbance 
is occurring

This combination of two binary 
labels allows our model to 
categorize the system state into 
four categories:
•1) normal operations, 2) cyber-only 
disturbances, 3) physical-only 
disturbances, and 4) cyber-physical 
disturbances

A classification layer was added onto the 
network that predicts two binary labels

1) denial of service (cyber-
only), 

2) single-line-to-ground fault 
(physical-only), 

3) tripping command injection 
(cyber-physical), and

4) time-delay attack (cyber-
physical)

We have demonstrated that such a network can 
be trained using 50 network and physical data 
captures of various 2-minute scenarios, along 

with ground truth labels for when a cyber and/or 
physical anomaly was occurring            Tested 4 

different disturbances:

Machine Learning Approach7



Initial Machine Learning Results

For the experiments, we partitioned all scenarios into 30 for training, 10 for validation 
and model selection, and 10 for testing --- these were then split into their respective 
sliding windows

We ran experiments varying the size of the training data and comparing the results when 
using a model that has already been pretrained using some basic predefined perturbations 
versus a model that had not been pretrained.

•Used the area under the receiver operator curve (AUC) as our metric because it identifies how well a model’s 
predictions split the two classes apart and does not require a predefined threshold to convert real-valued 
confidence scores into a discrete class prediction
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Initial Machine Learning Results

•From the initial results, we can see that using the full training data, our model can 
differentiate between disturbances and normal behavior
•  The pretraining step seems to either add nothing to or even mildly hiders the performance of 
the model, especially when identifying cyber anomalies

• Could attribute this to a domain shift between the inputs during the pretraining step, where 
perturbed graphs are given to the model, and the training step, where unmodified graphs are 
given to the model

• The current approach is closer to transfer learning than pretraining
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900 training windows with no pretraining

Confusion matrices for identifying cyber and physical disturbances on the test data using a 
threshold of 0.5. Matthew’s Correlation Coefficient (MCC) is used to assess the quality of the 
predictions. Rows correspond to actual classes and columns correspond to predicted classes.



Initial Machine Learning Results

•Also used our best model (trained on all 30 scenarios with no pretraining) to plot the 
predicted anomaly scores for each scenario in the test set. 

•Since our approach uses 24-second sliding windows, all windows ending between 
00:00:59 and 00:01:23 will contain the disturbance which occurs at 00:00:59 (blue 
vertical line). 
• Note that some scenarios have cyber disturbances only in the middle of the capture, which is 
why some cyber anomaly scores drop to nearly 0 after 00:01:24.
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Reported anomaly scores over time for the 10 test scenarios. A value of 1 indicates confidence in an 
anomaly, and a value of 0 indicates the confidence of normal operations. Left: Cyber anomaly score. 

Right: Physical anomaly score.



Next Steps for Machine Learning Framework

•By continuing to improve upon our 
existing approach, we believe this will be 
a viable solution to the problem of using 
machine learning to understand the 
wholistic state of a power system and 
recommend action for our SPS

•Our data is complex and noisy, and 
understanding what our network is 
learning will be a critical step in refining 
it

All in all, our current 
machine learning 

algorithm for identifying 
known disturbances in 
the cyber network or 
physical power system 

shows promise

Gain better insight into 
the model itself by 

inspecting and 
interpreting the GNN’s 

output

Work to improve our 
data by obtaining more 

scenarios to use for 
training, validation, and 
testing, obtaining more 
diverse scenario types 
and improving how our 

data is labeled. 

Plan to incorporate our 
forecasting algorithm for 

imputing missing data 
and the support vector 
machine for identifying 

violations in the 
underlying physical 

system

11



Area 1

Area 2

Machine Learning Approach: Power System Scenarios

For each test case, many scenarios are created to represent a wide 
spectrum of physical system conditions 

•WSCC 9 bus system:
•Over 22,000 scenarios representing different combinations of 5 operational variables 
(area 1 load/gen, area 2 load/gen, area interface flow)

Contingency Analysis for sampled scenarios 

•Unrealistic to execute power system studies on all 22,000 scenarios
•Instead, subset of scenarios is sampled and analyzed to reduce the computation time 
while maintain the results within acceptable accuracy range

•Distributed computing is utilized for the contingency analysis of each sampled scenario

12

Sampled scenarios (500)

All scenarios (22,000)



Machine Learning Approach: Automated Corrective 
Actions

CTG violation elements are clustered as scheme groups; violations within the same cluster can be addressed 
within one corrective action

• The violation elements from the contingency analysis are presented in graphs
• Nodes are unique scenarios and contingencies
• Links are combinations of scenario and contingency that will result in the CTG violation

• Graphic embedding is utilized to compress the graph information as vectors
• The compressed vectors are then used as input to a hierarchical clustering algorithm that determines the 

violations being addressed in one single remedial action scheme  
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Overall Machine Learning Architecture14

GNN: processes cyber-physical structural information 
RNN: processes cyber-physical temporal information
SVM: processes power system violations, automates corrective action deployment
Forecasting algorithm: predicts data flows if comm. lost



Next-Generation Relay Voting Scheme

Examining how to formulate next-gen relay voting schemes with 
far more connectivity and communications enabled devices

• Examining use of communication-enabled digital relays
• Allows new ways to incorporate relays into situational awareness and new 

protection scheme designs that require fast response times

Using consensus algorithms to enable distributed computation 
and voting for increased security and resilience 

• Not a central point of failure
• Allows us to better analyze impact and potential failures, as well as algorithmic 

issues and potential challenges like Byzantine failures

15



Next-Generation Relay Voting Scheme

Examined existing state-of-the-art for relay voting schemes and introduced new designs for 
communication enabled relays to use consensus algorithms to securely agree on protection 
actions

•This extends current voting designs such as 2/3 voting to a distributed system
•Final design combines several features, including finding agreement on system state and voting on response 
actions to take

•Enables faster response to system failures, as interacting with relays in practice is typically done by hand today

Enabling distributed computation for relay voting helps prevent common failures from 
centralized failure points
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Jacobs, Nicholas, et al. "Next-Generation 
Relay Voting Scheme Design Leveraging 
Consensus Algorithms." 2021 IEEE Power and 
Energy Conference at Illinois (PECI). IEEE, 
2021.



Cyber-Physical Emulation Environment17

Have WSCC 9-bus system model 
running in RTDS
• Interested in collection of  data from 

the RTDS  at different sampling rates 
due to non-contingency (low sampling) 
and contingency events (high sampling)

• This data will be used to both train and 
analyze the HARMONIE ML algorithms
• Also leveraging TAMU testbed and 

related project datasets

SCEPTRE plan
• Communication network design by TAMU
• Integration currently in-progress
• 9-bus emulation will be used as a 

testbed to prototype and test the RTDS 
integration
• Leveraging virtual PDC
• Upgraded RTDS to stream PMU data



Cyber-Physical Emulation Environment18

Overall HARMONIE-SPS emulation
environment architecture including 

SCEPTRE™,
RTDS, and both virtualized and HIL 

components



Current Efforts and Future Work

HARMONIE-SPS Approach progress:
• Cyber-physical machine learning framework for classifying disturbances
• Automated corrective action deployment (physical-side)
• Next-generation relay voting scheme
• Cyber-physical emulation environment

Future Work
• Extending SVM framework to deploy cyber corrective actions
• Collecting disturbance data for ML testing from cyber-physical emulation environment
• Cohesive HARMONIE-SPS deployment (e.g., as a tool)
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Thanks! Questions?
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Cyber-Physical Disturbance Scenarios21

Implementation: Tripping 
command could be sent 
from the substation-HMI, 

or from other nodes 
through the routing path

Data: 
•Cyber: flow data
•Physical: Before and after event 
measurements (steady state) or 
transient data (5 seconds)

Command Injection (MITM 
& Data Injection): 
tripping command 

injection cause single 
failure and multiple 

failures

Implementation: Change 
setting command could 

be sent from the 
substation-HMI, or from 
other nodes through the 

routing path

Data: 
•Cyber: flow data
•Physical: Before and after event 
measurements

Relay setting change 
(Data Injection): changing 

settings or disabling 
cause single and multiple 

failures

Implementation: Missing 
PMU data

Data: 
•Cyber: synthetized flow data 
(from CIC-DDoS2019)

•Physical: Before and after event 
measurements: unavailable data

DDOS-1: Block the normal 
communication for 

collecting measurements

Implementation: DDOS in 
SCEPTRE (single 

location/multiple 
location) + physical 
control command

Data: 
•Cyber: synthetized flow data 
(from CIC-DDoS2019)

•Physical: Before and after event 
measurement

•Note: based on the DDOS 
location, the physical mitigation 
command may or may not be 
received by the targets

DDOS-2: Block the normal 
communication for 
control (normal and 

mitigation)

Exploring different scenarios with varying cyber-physical impact



Cyber-Physical Disturbance Scenarios22

Tripping command injection
• Each substation has 5 IEDs (connected to breakers) and 1 HMI connected to the substation 

relay 
• Base scenarios: 140
• Single Injection (in-substation): 15
• Multiple Injection (in-substation): 30
• Total scenarios: 6300
• Cyber data: flow information (source ip, source port, destination ip, destination port, 

time, protocol)
• Physical data: 1 steady-state data 2 transient data



GNN + RNN
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Edge Transformations

 Use the fault classifier SVM’s output to add alert edges when violation conditions are 
met

{t: 4, device: XYZ, voltage: 123, …}

{t: 4, device: XYZ, voltage: 123}, …}
{t: 4, device: XYZ, type: voltage-violation-alert, …}



Forecasting

 Impute missing edges using forecasting with Facebook’s Prophet
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