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,1 Outline

"Disposal concepts

=Waste characteristics affecting disposal and considerations for potential waste forms from
advanced reactors (AR)

"How alternative nuclear fuel cycles might atfect waste forms for deep geologic disposal

"How existing safety assessments inform observations about the impacts of such changes on
repository performance (examples from multiple programs)

=" Conclusions
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Deep Geological Disposal for Spent Nuclear Fuel and

High-Level Radioactive Waste
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+1 Status of Deep Geologic Disposal Programs World-Wide

Finland Granitic Gneiss Construction license granted 2015.
Start of final disposal planned for mid -2020s

Sweden Granite License application submitted 2011
Local municipalities gave approval Oct. 2020
Construction planned to start in mid-2020s

France Argillite Disposal operations planned for 2025
Canada Granite, sedimentary rock Candidate sites being identified
China Granite Repository proposed in 2050
Russia Granite, gneiss Licensing planned for 2029
Germany Salt, other Uncertain
USA Salt (transuranic waste at the Waste ~ WIPP: operating
Isolation Pilot Plant) Yucca Mountain: suspended
Volcanic Tuff (Yucca Mountain)
Japan TBD Candidate sites being identified
Korea TBD Candidate sites being identified

Others: Belgium (clay), UK (uncertain), Spain (uncertain), Switzerland (clay), Czech Republic (granitic rock),
all nations with nuclear power.

Sources: Faybishenko et al. 2016; World Nuclear News 2020; Posiva Oy 2019; ABC News 2020; Wiley Online Library 2020
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;1 How Repositories Work
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Technical Characteristics/Properties of Waste Forms to
*" be Considered for Disposal Strategy

= In general, waste forms (WF) should be disposable in any ot the possible generic
geologic disposal concepts

= Not striving to optimize waste forms for disposal geologies

"Waste form degradation rate (slow vs. very fast - e.g., salt wastes)
= Reliance on WF performance varies by disposal concept

" Deep borehole disposal may accommodate less robust WEF — 1.e., DBH does not rely very
much on WF performance for postclosure safety

= Potential for criticality over repository time scales (e.g., dual purpose canisters; DPC) |

= Current SNF dry storage canisters are designed to prevent criticality over timescales
commensurate with storage and transportation
* DOE investigating

= Consequences of postclosure criticality on repository performance

= Development of advanced neutron absorbers
= Filler material addition to DPC
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Technical Characteristics/Properties of Waste Forms to
’" be Considered for Disposal Strategy (cont’d)

= Thermal output per waste package (e.g., CSNF in DPC)
= Thermal limits per waste package vary by repository concept: geologic media and
repository design
= Options include repackaging, long-term above-ground storage, spacing of waste packages

and drifts
= Whether the WF is vigorously reactive to water (e.g., Na-bonded spent fuel)

" Does WF produce aggressive/deleterious chemistry to engineered system?

= Chemical effects such as rate of gas generation (e.g;, fluoride-based salt from molten
salt reactors)
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Disposal Options Considerations for Potential Waste Forms
1 from Advanced Reactors (AR)

= Some existing DOE SNF are similar to potential advanced reactor fuels and have
been included in US disposal program (DOE, 2008; SNL, 2014)

= Only very minor component of disposal inventory

* Included with very conservative instantaneous degradation rate
= Some not included without treatment (e.g., Na-bonded SNF—-not directly disposable)

= Use experience with DOE SNF from prior similar reactors for strategies

= TRISO tuels — e.g., Fort St. Vrain
" Potential slow degradation rates (Sassani and Gelbard, 2019)
= Possibly directly disposable with consideration of any specific differences: enrichment, etc.

= Metallic Na-bonded fuels — e.g., EBR-II, Fermi

= Need treatment to remove metallic sodium
= Electrometallurgical treatment (EMT) makes metallic WF, salt waste

= ORNL molten salt reactor experiment — final waste form(s) not yet defined
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Disposal Options Considerations for Potential Waste Forms
1 from Advanced Reactors (AR) (cont’d)

= For AR WF unique characteristics consider
= Degradation rate behavior constraints are essential for primary disposal inventory

= Ancillary chemical impacts should be evaluated

= Potential for criticality over repository time scales needs to assess
" Enrichment
" Burn-up specifics
" Packaging (neutron absorbers)

= Thermal output per waste package 1s dependent on

= Fission product content

" Packaging size
" Aging and storage
= Secondary waste streams from operations and treatment
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How Might Alternative Nuclear Fuel Cycles Impact Geological

. D
ol Disposal? &)

= For a given amount of electric power, alternative fission-based nuclear fuel cycles may
result in
= Changes in the radionuclide inventory and materials

= Reprocessing can reduce actinide content of final waste product
" Different materials for AR than in a typical LW'R (e.g., graphite, chloride salts)

= Changes in the volume of waste

= Reprocessing can reduce the volume of waste requiring deep geologic disposal
" Defining final waste form volumes needed for some AR

= Changes in the thermal power of the waste

= Separation of minor actinides can reduce thermal power of the final waste form
= Higher enrichment/ burnup AR fuels

= Changes in the durability of the waste in repository environments
" Treatment of waste streams can create more durable waste forms

" For each potential change, consider
= How will these changes impact repository safety
" How will these changes impact repository cost and efficiency
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11‘ Light-Water Reactor Spent Nuclear Fuel Decay

Example from US Program

00264DC_LA_1283b.ai

100,000 1,000,000

Time (yr)

DOE/RW-0573 Rev 0, Figure 2.3.7-11, inventory decay shown for a single representative Yucca Mountain spent fuel waste package,
as used in the Yucca Mountain License Application, time shown in years after 2117.
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Contributors to Total Dose:
2zl Meuse / Haute Marne Site (France)

Diffusion-dominated disposal
concept: Argillite
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Contributors to Total Dose:
#1 Forsmark site (Sweden)
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Figure 13-18. Far-field mean annual effective dose for the same case as in Figure 13-17. The legends are
sorted according to descending peak mean annual effective dose over one million years (given in brackets
m pusSv).

SKB 2011, Long-term safety for the final repository for spent
nuclear fuel at Forsmark, Technical Report TR-11-01
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Contributors to Total Dose:
Yucca Mountain (USA)

Mean Annual Dose (mrem)
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15‘ Waste Volume and Thermal Power Considerations

Repository thermal constraints are design-specific

Options for meeting thermal constraints include
> Design choices: e.g. waste package size and spacing

- Operational practices: e.g. aging and ventilation
> Modifications to waste forms
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(from Wigeland et al., 2006, Figure 1)

Selection of optimal volume and thermal loading
criteria will depend on multiple factors evaluated across
entire fuel cycle, including cost and operational efficiency
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Waste Volume and Thermal Power Considerations (cont.)

16

" To a first approximation, waste volume and thermal power density have an inverse
correlation without separation of heat-generating radionuclides

= All other factors held constant, reductions in volume increase thermal power density

= Relevant metric 1s disposal volume, i.e., the excavated volume needed per unit volume
of waste, which is a function of repository design as well as waste properties

* Volume of HLW 1s process-dependent

= Existing processes can achieve substantial reductions in disposal volume
" 30-40% of disposal volume relative to spent fuel (including packaging)
= Up to 8% of fuel volume with 100-yr aging period (van Lensa et al., 2010, table 7.1)

= Advanced processes may achieve lower volumes of HLW

* Thermal power density of HLW can be engineered over a wide range

= Waste volume does not correlate to long-term performance
= It does affect cost (excavated volume and, ultimately, total number of repositories)
" Volume of low-level waste also contributes to total cost
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Waste Form Lifetime Example:
-1 Meuse / Haute Marne Site

"HLW

"Base case model: glass “release periods on the order of a few hundred thousand years”
(degradation rate decreases when surrounding medium is saturated in silica: Andra 2005, p. 221)
"Sensitivity analysis assuming rapid degradation (100s to 1000s of yr) accelerates peak
concentrations at outlet by ~200 kyr, modest increase in magnitude of modeled peak dose
= For rapid degradation case, modeled releases are controlled by diffusive transport time in clay

Maximum molar flow exiting Callovo-Oxfordian (mol/yr) and
maximum dates (yrs.)
Reference Sensitivity
1297 8.6.10" 9.1.107
460.000 yrs 250,000 yrs
60 2.2.10" 3.8.10°
' 380.000 yrs 190,000 yrs

Table 5.5-24 SEN - Attenuation "I and °Cl — C1+C2 — comparison between the models V.S
(sensitivity) and the model V.S 2V,

Impact of changes in HLW glass degradation rate on modeled
radionuclide concentrations in groundwater, ANDRA 2005 Table 5.5-24
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Waste Form Lifetime Examples:

s 1 Forsmark Site

="Used fuel

"Hractional dissolution rate
range 10¢/yr to 108/ yr
= Corresponding fuel lifetimes:
~ 1 Myr to 100 Myr

= Dissolution rates for oxidizing
conditions (not anticipated),

up to 107/ yr
*Uncertainty in fuel
dissolution rate can be a
dominant contributor to
uncertainty in modeled total
dose estimates for sites with
relatively rapid transport
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Figure 10-44. Sensitivity of the base case result to the fuel disselution rate. Semi-corvelated hydro-

geclogical DFN model for Forsmark., 1,000 realisations of the analvtic model for each case.

Source: SKB 2006, Long-term Safety for KBS-3 Repositories at Forsmark
and Laxemar—a First Evaluation, TR-06-09, section 10.6.5

Also, SKB 2006, Fuel and Canister Process Report for the Safety
Assessment SR-Can, TR-06-22, section 2.5.5
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19‘ Conclusions

® For all disposal concepts, potential benefits of alternative fuel cycle/AR choices will be
considered in the context of operational costs and benefits

= Alternative fuel cycle/AR choices can reduce waste volume but may have little impact
on thermal load management without century-scale aging of fission products

= Without sesparation or surface aging of fission products, reductions in disposal volume may be
limited to 30-40% of the disposal volume of the unprocessed fuel

= Fission products may need geologic disposal regardless, depending on regulatory criteria

= Use existing DOE SNF to guide disposal options strategies for AR spent fuel/WF
= Advantages to spent fuels that can be directly disposed without treatment
= Specific considerations needed for AR spent fuels/WF unique attributes

* The impact of WF lifetime on repository performance varies with disposal concept
" For some disposal concepts, long-lived waste forms can be important
= Deep borehole concept does not rely much on waste form performance for postclosure safety

= Alternative fuel cycle/AR choices will have little impact on estimates of long-term
repository performance for disposable WE

" Long-term dose estimates in most geologic settings are dominated by mobile species, primarily
I—129g
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