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Abstract—Dynamic load models add significant complexity to
bulk power system time-domain simulations. The complexity
is due to the large number of ordinary differential equations
(ODEs) introduced by the dynamic load components such as in-
duction motors. It is challenging to derive reduced-order models
(ROMs) for dynamic loads due to the nonlinear functions in their
governing equations. This paper applies the discrete empirical
interpolation method enhanced proper orthogonal decomposition
(DEIM-POD) to approximate the full dynamic load model with
the ROM that minimizes the projection error of the nonlinear
functions in dynamic load ODEs onto their dominant modes.
This approach only requires evaluation of nonlinear functions at
selected observation points. The observation points selected by
DEIM also provide information for screening critical load buses
where dynamic load model parameters contribute the most to the
accuracy of ROM across multiple contingencies. The proposed
approach is validated on IEEE 9-bus, WECC 179-bus and 2384-
bus Polish systems.

Index Terms—dynamic load model, reduced-order model, time-
domain simulation, nonlinear function, ordinary differential
equation, bulk power system

I. INTRODUCTION

Time-domain simulation is the essential tool for assessing
power system dynamic security. A large number of differential
algebraic equations (DAEs) need to be solved for different
contingencies under different operation conditions to help
system operators identify contingencies that would cause
instability. With increasing penetration of distributed energy
resources (DERs) and controllable loads, this task has become
more challenging due to the computational burden introduced
by dynamic load models [1] and the difficulty of maintain
accurate parameters for a large number of loads [2].

Dynamic load models are becoming the new focus of
bulk power system dynamic performance studies [3]. Unlike
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generation units, which have relatively accurate parameters for
simulations, dynamic load models are defined in an aggregated
manner, and thus subject to large uncertainties. In fact, it
has been reported that poor dynamic load models could have
system-wide impacts on voltage stability evaluation [4]. As
dynamic load models are becoming more complex than ever, it
is appealing for utilities to have reduced-order models (ROMs)
which would help limit the dimension of parameter space for
model tuning and reduce the time for performing time-domain
simulations.

There have been applications of ROMs to generation units.
For example, generator coherency group based approaches
leverage the insights gained from small signal stability to
perform model reduction [5]. Projection based approaches
focus on identifying a low-dimensional basis that state vari-
ables can project onto [6]-[8]. There are also linearization
based approaches [9], [10]. However, the nonlinear functions
in power system models require the full state space to eval-
uate. Therefore, efficient model reduction technique for the
nonlinear functions in power systems is still an open research
topic. Also, although the ROMs of generation units have
been extensively studied, the investigation about dynamic load
ROM is still scarce. Since in the bulk power system there are
often significantly more load buses than generator buses, it
is important to develop techniques for dynamic load model
reduction.

The recent advancements in ROM have combined the
proper orthogonal decomposition (POD) [11] with the a hyper-
reduction method, discrete empirical interpolation method
(DEIM) [12]. DEIM-POD shares similar idea with the gappy
POD [13] method, which sparsely selects observation points
from the full state space to evaluate the nonlinear functions.
DEIM introduces an optimal selection procedure of the ob-
servation points so that the projection error of the nonlinear
functions is minimized [14]. DEIM provides a great solution
for dynamic load model reduction because it not only effec-
tively reduces the number of nonlinear function evaluations but
also identifies the critical load locations where the parameters
are important for the accuracy of dynamic load ROMs.

The contribution of this work is twofold. First, DEIM is
applied to the nonlinear functions of the dynamic load models
of 3 systems with different scales. Second, this work uses the



observation points selected by DEIM to identify the critical
locations for maintaining dynamic load parameter accuracy.

The remainder of this paper is organized as follows: Sec-
tion II describes DEIM algorithm; Section III describes the
dynamic load model and its model reduction formulation with
DEIM; Section IV describes the setup of the simulation and
system characteristics; Section V presents case studies using
the proposed model reduction approach; finally Section VI
draws conclusions and discusses future work.

II. DISCRETE EMPIRICAL INTERPOLATION METHOD
A. Proper Orthogonal Decomposition

With a dynamical system expressed in ordinary differential
equation (ODE) form,

%X = Ax+ F(x,u) (1

where A € R™*™ is the linear operator on state variables
x € R"; F € R"™ is the nonlinear operator on states x and
input variables u € R™.

A ROM can be constructed using projection based tech-
niques. The orthonormal basis Vi € R™** of the trajectories
of the state variables defined in (1) can be found through
applying singular value decomposition (SVD) to the snapshot
matrix of state variables X = [Xj,...,Xp,]T € R"*"t that
contains n; time snapshots,

X =VZw’” (2)

where the diagonal elements of X = diag(oy,...,0,) €
R, «, can be utilized to determine the dominant modes of
the trajectories. With a chosen threshold o4, mode ¢ with
0; < 0Ohq can be omitted and £ < r modes are kept to
construct the trajectories. This construction requires the basis
Vi = [v1, ..., Vi € R?*E,

The state variables can be projected onto the reduced basis,
i.e. x = Vix. Therefore, using the orthonormal property
VkTVk = I, the ROM model with states variables X € R¥
can be expressed as,

% = ViTAVix + ViTF(Vix, u) 3)

Although the state space dimension in (3) is reduced to
k < n and V' AV can be pre-computed and reused for
each integration step, the inevitable computational complexity
comes with the nonlinear function F(x, u) because its evalu-
ation requires the original state variables x.

B. Discrete Empirical Interpolation Method

To reduce the complexity of nonlinear function evaluations,
DEIM constructs a second basis by applying SVD to the
trajectory of F(x,u). Similar to the way the reduced basis
Vi of the state space is chosen, a threshold can be defined
to only keep the dominant modes of F(x,u). Let U € R**™
be a matrix with orthonormal columns as the vectors in the
reduced basis of the trajectories of F(x,u), then a matrix
P = ley,....ep,,] € R™™ can be constructed to minimize
the projection error of F(x,u) onto U. In P, the i-th column

e, 1s an unit vector with the p;-th element equals to 1 and
all other elements equal to 0. With the constructed P, the
n-dimensional nonlinear function can be interpolated as,

F(x,u) ~ UPTU)'PTF(x,u) 4)

Since DEIM chooses m observation points from the n
nonlinear functions, only m elements of F(x,u) need to be
evaluated, which reduces computational burden of evaluating
the full F(x,u). The way to construct P is detailed in
Algorithm 1 [15].

Algorithm 1: DEIM

Input: U = [uy, ..., u,,] € R™*™
Output: P = [e,,,...,e,, | € R"*™

(9, 1) = max|u |

P = [epl];

for : =2 to m do
solve PTU(1:4i —1,:)c = PTu; for c;
r=w;—-U(l:i-1,:)c;
[p, pi] = max]r[;
P+ [P, ep,]

end

III. DYNAMIC LOAD MODEL

The dynamic load models in this work are represented by
induction motors (IMs) and ZIP loads. The IMs are modeled
by 3-rd order differential equations. The state variables are
rotor slip s, stator d-axis transient voltage v/; and stator g-
axis transient voltage v of all loads. The state space model
of all the IMs in a bulk power system can be written as [16],

X = [s v V&]T (5)
u = Vipus (6)
A = diag(c)/2H, —wsry /Xy, —wsry /Xy) @)

(cq(1 —8)? —vila — v I4)/2H
—wsTr (X — X )Iq /Xy + wesvy (8)
welp(Xs — XDIa /Xy + wssvy

F(x,u) =

where H, X, ry, Xg, X, 1, cq,ws are the rotor inertia, ro-
tor leakage reactance and resistance, stator synchronous and
transient reactances, linear and quadratic load coefficients,
synchronous speed, respectively. Note that in (8), Iq and Ig
are also nonlinear functions of s,

14 +qu = Vlbus/(zre +jzim) 9
where,

Zre = Ts + (sX,/10)(Xs — X1) /(1 + (sX,/rp)?)
Zim = X; + (Xs — X/s)/(l + (SXr/rr)2)



The second component in the load model is a ZIP load,
which is defined by algebraic equations. This component does
not introduce state variables. The constant impedance load is
merged into the admittance matrix of the system. The current
drawn to the constant current I.. and constant power loads
I, are expressed as,

PccO ‘lv ‘ .]QccO \Vo\ + Pch chpO
V*

where Vj is the vector of load voltages at the initialization
stage of the simulation; Pcco, Qcco, Pepo, Qcpo are the vec-
tors of initial real and active powers of constant current and
constant power loads, respectively; V is the vector of load
voltages.

The time evolution of the IM loads’ state variables of the
IEEE 9-bus system with 3 load buses after a 1-cycle 3-phase
fault at bus 1 is shown in Fig. 1. Note that the load state indices
have been rearranged to collect the states of the same IM into
neighboring states for visualization clarity (i.e. rearrange (5)
to [[s1,v)y, 0], s [s3, V)3, 053] 7]T) The repetitive pattern
across different IMs shows that a low-dimensional basis may
exist to represent the full dynamics of all IM loads. This
observation is verified by the SVD of the state variables. As
shown in Fig. 2, the time evolution of the full state space of
dynamic loads can be represented by 6 dominant modes with
a 103 truncation threshold.

I + Icp = (10)
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Fig. 1. Manifold of the state variables of IMs defined by x = Ax+F(x,u)
at 3 load buses of the IEEE 9-bus system.

However, the SVD of state space only provides a linear
approximation of the dynamic loads. To acquire accurate
approximation for the nonlinear components, a separate SVD
needs to be applied to the nonlinear functions F(x,u) of
the dynamic load model. The time evolution of the nonlinear
functions is shown in Fig. 3. The dominant modes are shown
in Fig. 2 alongside those for the state variables. With the same
truncation threshold, the nonlinear functions have 7 dominant
modes, which suggests that the nonlinear functions have a
richer dynamic behavior than the state variables.

After applying Algorithm 1 to the basis acquired from the
SVD of the nonlinear functions, the observation points that
minimize the projection error of the nonlinear functions onto
their basis are selected and highlighted in Fig. 3. It shows that
the time evolution of s; and sy nonlinear functions can be
interpolated by the nonlinear function of s3. Therefore only
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Fig. 2. Normalized singular values of x and F(x, u) for the IMs of the IEEE
9-bus system.

7 out of 9 nonlinear functions need to be evaluated for the
ROM.

Another insight provided by the DEIM algorithm is the
location of those observation points. For a larger power grid
where fine turning all dynamic load models is prohibitively
labor-intensive, DEIM observation points can be utilized as
suggestions for critical locations for maintaining parameter
accuracy. Although for a small system like the IEEE 9-bus
system, the observation points cover all three load buses, for
a larger system, it is possible to limit the number of observa-
tion points to a small number across multiple contingencies.
This helps utilities to focus on tuning the critical dynamic
load models that contribute the most to accurate ROMs. An
example of such benefit is presented in Section V.
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Fig. 3. Apply DEIM to the nonlinear functions F(x, u) representing IMs at
3 load buses of the IEEE 9-bus system.

IV. SIMULATION AND SYSTEM CHARACTERISTICS

The simulation models for the components other than
dynamic load models are 6-th order sub-transient generator
models and 1-st order exciter and governor models similar as
the ones used in [16]. Their models are kept as full models
for all simulations because the subject of model reduction is
load model in this work.

Three systems of different scales including the IEEE 9-
bus, WECC 179-bus and 2384-bus Polish systems are studied.
Their model characteristics are shown in Table I. All the loads
in these systems are represented by IM+ZIP.

V. CASE STUDY

A. IEEE 9-bus

As suggested by Fig. 3, there are 7 state variables whose
nonlinear functions need to be evaluated for the IEEE 9-bus



TABLE I
SYSTEM CHARACTERISTICS

9-bus  179-bus  2384-bus
buses 9 179 2384
generator buses 3 29 327
load buses 3 104 1826
branches 6 203 2728
generator states 18 174 981
load states 9 312 5478

system. The simulation result of these state variables using
DEIM-POD is compared to the result of using the full model in
Fig. 4. It demonstrates a good match for these 7 state variables.

n

full model
— - ‘DEIM

0.5 1 L5 2
time (s)

=1

observation states (p.u.)
(=]
wn

o
n
=1

Fig. 4. Observation states comparison of the IEEE 9-bus system’s full model
and DEIM ROM.

The 2-norm percentage errors of the entire 2-second simula-
tion period for all 9 state variables of the 3 dynamic loads are
shown in Fig. 5. It shows that the observation states’ errors
are minimized as compared to the interpolated states. Note
that state 7 (i.e. s3) has the highest error among all observation
states, because it is the last one chosen among all 7 observation
states.

4 observation states
interpolated states

0.15

0

1 2 3 4 5 6 7 8 9
load state index

Fig. 5. Normalized error of the IEEE 9-bus system load states simulated
using DEIM.

B. WECC 179-bus

The result from WECC 179-bus system demonstrates a
significant reduction of nonlinear functions. As shown in Fig.
6, only 7 states’ nonlinear functions need to be evaluated to
represent the dynamics after a 1-cycle 3-phase fault at bus 1.
The 2-norm percentage errors of all 312 load states are shown
in Fig. 7.

To show the selected observation points for different con-
tingencies, a total of 179 simulations with 1-cycle 3-phase
bus faults applied to each bus in the system are performed.
As shown in Fig. 8, only a small number of load buses
have states that are frequently selected by DEIM across all
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Fig. 6. Observation states comparison of the WECC 179-bus system’s full
model and DEIM ROM.
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Fig. 7. Normalized error of the WECC 179-bus system load states simulated
using DEIM.

contingencies. The load buses that have states selected for at
least 40 contingencies are highlighted in Fig. 9. The selected
locations provide a comprehensive coverage of the system.
It shows that DEIM can indeed be utilized as a means of
selecting critical locations for maintaining dynamic load model
accuracy.
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Fig. 8. Number of contingencies for which each load is chosen as observation
point in WECC 179-bus system.

C. 2384-bus Polish

For the 2384-bus Polish system, there are 3 selected obser-
vation states as shown in Fig. 10 after a 1-cycle 3-phase fault
at bus 1. The 2-norm percentage errors of all 5478 load states
are shown in Fig. 11 and all of them are maintained under
0.6%.

For 300 1-cycle 3-phase bus faults applied at different
locations in the system, the top 3 most frequently selected
observation locations are load 45 (300 times), load 247 (30
times) and load 46 (16 times).

D. ROM Characteristics

The ROM characteristics constructed for the dynamics after
the 1-cycle 3-phase fault at bus 1 of the 3 studied systems are



Zone 1-A

ol 41
o Ocnnlingcnci(:<
17;
contingencies/
= Zone 1-B
56 = i
] = coritingencies g 76 )
| T contingencies

1| Zone 2-A
o Zone 2-B
51 "

/ . 7| F TG
contingencies ; 51

o=} ' o 39 contingencies
el one 1-C
2 e
P il T @ contingencies
pr X : :

43

Fig. 9. Locations of load bus most frequently chosen as observation point in
WECC 179-bus system.
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Fig. 10. Observation states comparison of the 2384-bus Polish system’s full
model and DEIM ROM.

shown in Table II. Although for the IEEE 9-bus system, the
number of avoided nonlinear function evaluation is only 2, for
the 2384-bus Polish system, the number reaches 5475, which
suggests the potential of this approach to large systems.

TABLE 11
ROM CHARACTERISTICS OF STUDIED SYSTEMS

9-bus  179-bus  2384-bus
load state modes 6 3 3
nonlinear function modes 7 7 3
s observation 1 0 0
”;i observation 3 4 2
Vg observation 3 3 1
observation load buses 3 5 2
avoided nonlinear evaluations 2 305 5475
nonlinear evaluations without ROM 9 312 5478

VI. CONCLUSION

This work presents a model reduction method for dynamic
loads modeled as IM+ZIP. The novelty of this approach
is the application of a hyper-reduction method, DEIM, to
the nonlinear functions in dynamic load models to sparsely
select observation points for evaluation. The observation points
can also be utilized to identify critical load locations for
maintaining parameter accuracy. This approach limits utilities’
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Fig. 11. Normalized error of the 2384-bus Polish system load states simulated
using DEIM.

effort in maintaining load parameters from the entire system
to a small number of locations. In future work, this approach
will be extended to construct a library of basis and observation
points so that it can be applied to multiple contingencies.
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