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Stellar opacity research continues to advance experiment, analysis,
and theory towards resolving the solar problem

Motivation: solar models disagree with observations ) Fe
— Can we model solar opacity correctly? §
O o105k
L-shell Fe: Billions of L-shell lines o II
K-shell O: Density effects .ll—l—“---—'

atomic number I

Fe opacity: Data was significantly higher O opacity: Measured for the first time
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. We will measure oxygen opacity at higher T_and n
Student/postdoc involvement: © "

* Dan Mayes (postdoc) was trained under WCAPP and will lead oxygen opacity
* Malia Kao (student) performed excellent cold iron-opacity measurements and joined WCAPP

More students and postdocs will be trained and lead stellar-opacity research to help refine
our understanding of atomic behavior in HED plasmas
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Stellar opacity research continues to advance experiment, analysis, |
and theory towards resolving the solar problem
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Stellar opacity research continues to advance experiment, analysis, |
and theory towards resolving the solar problem

< |
O opacity: Measured for the first time
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Modeled solar structure disagrees with observations

Sandia
National
Laboratories

Simulation: Standard solar model

Inputs:
 Abundance * Opacity
* EOS * Etc.

Measurements: Helioseismology

Analysis of 2D-resolved
pulsation reveals the solar
structure
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Sandia
Modeled solar structure disagrees with observations @ lsborates

Error in modeled density

101]][Tllllllilll'|"|'l'l
8 [ . 3
= ‘-—.
- & 4
— . + -
e 6 . :
" -* .

— +
N . i
— - —
5 4 & -
e - -
L — —
LIJ2_ f -
OF/ .
-J. ]I.LlI.I.I.I.IEIII.l.I.I]-.

[

0 0.2 0.4 0.6 0.8
r/Rg




National

Sandia
Modeled solar structure disagrees with observations @ lsborates

Error in modeled density

101'I'II'T[||'||'IIIII"I'I'I
8 [ . 3
= ‘-—.
- & 4
— . + -
e 6 . :
" -* .

— +
N . i
— - —
5 4 & -
e - -
L — —
LIJ2_ f -
OF/ .
-J. ]I.Lll.l.l.llElll.l.l]-.

[

0 0.2 0.4 0.6 0.8
r/Rg




National

Sandia
Modeled solar structure disagrees with observations @laboraturies

Convection zone | Error in modeled dengity
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10-17% mean-opacity increase in the solar model is needed to @.{%}“.
o . aboratories
resolve this discrepancy

Opacity: K,

* (Quantifies radiation absorption
* x,(T, n,) .. input for solar models
CZB condition:  Opacity models have never been

T.=182 eV
n,=9x10%? cm3 tested

C. Blancard et al., The Astrophysical Journal 745, 10 (2012)
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o . Laboratories
resolve this discrepancy

Fe is a likely suspect:
« 2" |argest contribution
* Quantifies radiation absorption * Most difficult to model
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Fe is a likely suspect:
« 2" |argest contribution
* Quantifies radiation absorption * Most difficult to model

Opacity: K,

* x,(T, n,) .. input for solar models
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Solar mixture opacity at Convection Zone Base (CZB)
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Initial goal: Measure iron opacity at CZB and test the calculated iron

opacity
C. Blancard et al., The Astrophysical Journal 745, 10 (2012)
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The Z machine uses 27 million Amperes to create x-rays () o

Laboratories

P~ 220TW (£10%), V.., ~ 1.6 MJ (£7%)

Sanford, PoP (2002); Bailey et al., PoP (2006); Slutz et al., PoP (2006); Rochau et al., PPCF (2007)



The Z x-ray source both heats and backlights samples to @ anda
stellar interior conditions. Laboratoies

Sample is:
* Heated during plasma implosion spectrometers
* Backlit at plasma stagnation I

— opacity sample

source

P~ 220TW (£10%), V.., ~ 1.6 MJ (£7%)

Sanford, PoP (2002); Bailey et al., PoP (2006); Slutz et al., PoP (2006); Rochau et al., PPCF (2007)



High-temperature Fe opacities are measured using the Z- @ lﬁ:ﬁﬂﬁ?._
Pinch opacity science platform

Requirements

* Uniform heating
* Mitigating self emission

e Condition measurements

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)
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High-temperature Fe opacities are measured using the Z- @ .lﬁ':t?igﬁ'?._
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Half-moon
sample

CH

Requirements

* Uniform heating
* Mitigating self emission

e Condition measurements
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High-temperature Fe opacities are measured using the Z- @ .lﬁ':t?igﬁ'?._
Pinch opacity science platform

-
Cross-sectional view

CH

FeMg
/ y
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Half-moon
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CH

* Uniform heating
* Mitigating self emission

e Condition measurements

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)
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* Mitigating self emission
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High-temperature Fe opacities are measured using the Z- @ .l%:t?i:;'ﬁ'?..
Pinch opacity science platform

Half-moon
sample
Requirements SNL Z satisfies:
hv > 600 e
* Uniform heating » Volumetric heating
* Mitigating self emission
7. * Condition measurements

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)
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High-temperature Fe opacities are measured using the Z- @ lﬁ:t?i?,ﬁ'?._
Pinch opacity science platform

Half-moon |
sample
Requirements SNL Z satisfies:
* Uniform heating » Volumetric heating
* Mitigating self emission ————3 350 eV Planckian backlight
7. * Condition measurements

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



High-temperature Fe opacities are measured using the Z- @ Vot

. . . Laboratories
Pinch opacity science platform

KAP crystal Z-axis
X-ray film A '

Slits

Aperture

Half-moon
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Requirements SNL Z satisfies:
* Uniform heating » Volumetric heating
* Mitigating self emission —————» 350 eV Planckian backlight
7.1 ce * Condition measurements
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Laboratories

Pinch opacity science platform

KAP crystal Z-axis
X-ray film A '

Slits

Transmission

Aperture

Half-moon
sample

1.2 T
1.0 f

0.8 | E
06 F |, r
0.4 — 7 +9/T -9 a

Tv_ ]v /Iv
0.2 Mg Hea
8 o 0 "o 12 13 14

Wavelength [A]

Requirements SNL Z satisfies:

* Uniform heating » Volumetric heating

* Mitigating self emission —————» 350 eV Planckian backlight

e Condition measurements

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



High-temperature Fe opacities are measured using the Z- @ Vot

. . . Laboratories
Pinch opacity science platform
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Opacity models disagree with the Z iron data as the condition @ .l%:t?ig‘:?._
approaches the solar CZB conditions

20 ————————————————————————————————————————
Ng) . z_ I[));Z;astp':;z—_rl% eV, n,=7e2l e/cc Anchorl _z
S rof E
z -
g s 'M”‘h . . -“"f‘,/\'\ ‘\4“ J\ l

Og=———————— o o T

Wavelength [A]

[1] Bailey et al., Nature 517, 56 (2015) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



Opacity models disagree with the Z iron data as the condition @lﬁ:ﬁgﬁ?._
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Opacity models disagree with the Z iron data as the condition @lﬁ:ﬁgﬁ?._
approaches the solar CZB conditions
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If true, it accounts for about % the opacity increase needed to resolve the solar problem

- But, why do they disagree?

[1] Bailey et al., Nature 517, 56 (2015) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)




Opacity disagreement is disturbing and most likely caused by @ e
multiple sources
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Opacity disagreement is disturbing and most likely caused by @ ,lﬁagd,
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Opacity disagreement is disturbing and most likely caused by @ o
mUItiple sources aboratories
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First systematic study of high-temperature L-shell opacities @ .l%:t?i:;'ﬁ'?..
were performed for Cr, Fe, and Ni at two conditions

iron (Z=26) nickel (Z=28)

Closed L-shell | vacancy Wum (Z=24)
= O

Population
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# of bound electrons




First systematic study of high-temperature L-shell opacities @ [i'ag“t.
narrowed down hypotheses for the discrepancies
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[1] Nagayama et al PRL (2019) 2] Badnell et al, Mon. Not. R. Astron. Soc. (2005



First systematic study of high-temperature L-shell opacities @ lﬁ:t?i?,ﬁ'?._
narrowed down hypotheses for the discrepancies

BB: Measured lines are broader

—2 Inaccurate line-shapes OR
- Insufficient satellite lines

Windows: Disagreement happens for Cr and Fe

= Calculation becomes less accurate as # of L-shell
vacancies increases
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Quasi-continuum: Severe disagreement only on Fe Cr
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‘Systematic study results are guiding our current investigations ‘

[1] Nagayama et al PRL (2019)




First systematic study of high-temperature L-shell opacities @ .l%:t?igﬁ'?._
narrowed down hypotheses for the discrepancies
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First systematic study of high-temperature L-shell opacities @ .l%:t?igﬁ'?._
narrowed down hypotheses for the discrepancies

-
Windows: Disagreement happens for Cr and Fe

= Calculation becomes less accurate as # of L-shell
vacancies increases
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[1] Nagayama et al PRL (2019)



First systematic study of high-temperature L-shell opacities @ lﬁ:ﬁﬂﬁ?._
narrowed down hypotheses for the discrepancies
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‘Systematic study results are guiding our current investigations ‘

[1] Nagayama et al PRL (2019)




Over the last few years, we have advanced opacity science in @ lﬁ%‘iﬂ‘ﬁ‘m
. . aboratories
experiments, analyses, and theory for resolving the solar problem

Experiments

* More iron experiments

* Time-resolved spectroscopy

* Oxygen opacity experiments
Analyses

* Opacity analysis

e Background analysis [3]

* T,and n, analysis
Theory

Opacity

* Two-photon opacity [1]
e Spectral line shapes [2]

Wavelength

WCAPP students and postdocs will be trained in HEDP atomic physics and spectroscopy
through state-of-the-art stellar opacity research and will help resolve the solar problem
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More experiments and reanalysis reduced the model-discrepancy — .
o ~ . . @ National
for Anchor 2 iron, but ~ 3-10 o differences remain Laboratories

Quasi continuum discrepancy
2015: ~ 1800 cm2/g; ~4c
2020: ~ 960 cm2/g; ~30c

=
o

(0]

()]

Window discrepancy
] 2015: ~ 2900 cm2/g; ~ 50
2020: ~ 2700 cm2/g; ~ 10c

3(2020)  Ziron data (2

Sl

2 OP model We found similar results for
Fe at anchor3

7 jron dat

iy

Opacity (103 cm?/g)

8 9 2 [A] 10 11 12

New analysis:
e Statistically analyze backlight using large volume of calibration data

* Propagate three sources of opacity uncertainty (backlight, background, areal density)
=>» Opacity probability distribution as a function of wavelength
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Time resolved measurements are attractive for three E

reasons
1. Experimentally test the temporal gradient effects ‘
2. Understand and refine our experiments [

3. Perform time-resolved opacity experiments

I.  Minimize temporal gradient concern
ii. Fe opacity at multiple conditions from a single experiment
iii. Fe opacity at higher temperature and/or density

Let’s adopt Sandia Ultra-fast X-ray Imager (UXI) to our experiments |



‘ Sandia developed Ultrafast X-ray Imagers (UXI) were fielded to E

measure time-resolved FeMg absorption spectral images

UXI 1 UXI 2 Anchor 1 Fe ‘

Earlier

time

Wavelength A i

spectrometers §

|
. Mg spectra = T_(t) and n_(t)
o Fe spectra=> Time resolved Fe opacity

'»’«' X-ray source



‘ Simulations™* predicted that sample temperature goes up E
and down while density monotonically decreases
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Time-resolved measurement suggested different sample

evolution
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Time-resolved measurement suggested different sample

evolution
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Time-resolved measurement suggested different sample

evolution
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Temperature: Monotonically increasing = Is the sample approaching to the Z pinch? ‘
Density: Constantly low - Is the sample expanded much earlier? Preheat?
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Time-resolved measurement suggested different sample E

evolution
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* Experiment refinement: €
160 : : : : oy = ]
- Can we reach higher density by shielding the preheat? 6
Temper h? ‘
Density: Constantly low - Is the sample expanded much earlier? Preheat?

* Nagayama et al PRE (2016)



We successfully measured time-resolved Fe absorption E

spectra; More work needed for time-resolved opacity
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‘ Need to collect more time-resolved calibration data for accurate opacity determination ‘ ‘




Over the last few years, we have advanced opacity science in @ lﬁ%‘iﬂ‘ﬁ‘m
. . aboratories
experiments, analyses, and theory for resolving the solar problem

Experiments

* More iron experiments

* Time-resolved spectroscopy

* Oxygen opacity experiments
Analyses

* Opacity analysis

e Background analysis [3]

* T,and n, analysis
Theory

Opacity

* Two-photon opacity [1]
e Spectral line shapes [2]

Wavelength

WCAPP students and postdocs will be trained in HEDP atomic physics and spectroscopy
through state-of-the-art stellar opacity research and will help resolve the solar problem
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Oxygen x-ray opacity was measured for the first time; @ Sntia
More experiments will be performed at more relevant conditions

Laboratories

P
o

=
o

Opacity contribution [%]

o

atomic number

Why important?
Reasonl: Oxygen is the dominant source of solar opacity
Reason2: K-shell calculation is difficult due different reason, i.e., density effects

WCAPP postdoc, Dan Mayes, will lead this project together with NIF oxygen opacity

Basu and Antia, Phys. Reports 2008; Serenelli, ApJ 2009; Blancard ApJ 2012; Seaton MNRAS 1994



Oxygen x-ray opacity was measured for the first time; @ Sntia
More experiments will be performed at more relevant conditions

Laboratories

— ERCT Data (160 eV, 8e21 electrons/cc) Olyy
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Why important? Wavelength [A]

Reasonl: Oxygen is the dominant source of solar opacity
Reason2: K-shell calculation is difficult due different reason, i.e., density effects

WCAPP postdoc, Dan Mayes, will lead this project together with NIF oxygen opacity

Basu and Antia, Phys. Reports 2008; Serenelli, ApJ 2009; Blancard ApJ 2012; Seaton MNRAS 1994



Over the last few years, we have advanced opacity science in @ lﬁ%‘iﬂ‘ﬁ‘m
. . aboratories
experiments, analyses, and theory for resolving the solar problem

Experiments

* More iron experiments

* Time-resolved spectroscopy

* Oxygen opacity experiments
Analyses

* Opacity analysis

e Background analysis [3]

* T,and n, analysis
Theory

Opacity

* Two-photon opacity [1]
e Spectral line shapes [2]

Wavelength

WCAPP students and postdocs will be trained in HEDP atomic physics and spectroscopy
through state-of-the-art stellar opacity research and will help resolve the solar problem
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Two relevant theories were scrutinized and refined
significantly for resolving the Fe model-data discrepancies

Spectral line broadening [1,2] Two-photon opacity [3]
— Plasma diagnostics —> BB, BF discrepancies ‘
— BB line-width discrepancy
0.12 Cumulative Fe opacity from ions 14+ to 20+
L Obrien-Hooper (MERL) 10000 ¢ I
0.10 | Lee model (MERL) "1 .
- I 1000 |
Iy [ i
8_ 0.08 |- ' 'l 100
o 0:06F NEW L Yo s 10 |
v : 22NN <
C 004 J \ -
— [ ,' \ 04 s
0.02 |- 7 NN e
2 . 0.01
0-00620 1650 1660 1670 1680 Wavelength [A]
Photon energy (eV) What’s new?

What’s new?
* Electron capture [1]

* Remove 3 approximations [2]

* TPO is omitted from existing opacity models
* Performed most complete calculations ever

[1] Gomez et al PRL (2020). [2] Gomez et al submitted to PRL (2021). [3] More et al HEDP (2020)
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‘ Postdoc: Dan Mayes has working knowledge of spectroscopy E
and will work on oxygen opacity research

Dan Mayes: He will work on oxygen opacity ‘

" off CEA
oPAs Fe

e Member of WCAPP* since 2018

e Defended in Dec 2020
University of Nevada, Reno
Advisor: Roberto Mancini

1000

P
=
[

Ne

10:

5 10 15 20 25 0 % 10 atomic number
Working knowledge in: Wavelength (4

o X-ray spectroscopy I F
o SNL Z experiments .

Postdoc hiring has been challenging due to lack of good candidates in atomic physics and I
spectroscopy. Dan is an excellent HED spectroscopist trained through WCAPP.

b
dB/dT
Opacity contribution [26]

Opacity [cm?/g]

* Joined opacity team in Jan 2021
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‘ Student: Malia Kao successfully measured room-temperature E

Fe transmission within a few percent Fe @ 1924 eV
0.550 A Data
Manson 0545 1
source
t & S 0.540
é 0.535 - I
2 0.530 ~
o i
|_
normal %2257
‘ D o _Rntat_ion angle (0) |
* Also measured at 1012 eV and 1188 eV
* Biggest source of opacity uncertainty
= Sample thickness (i.e., areal density)
 Works with target-characterization labs at SNL and GA for accurate opacity ‘
 Recently joined the center of our academic collaborator WCAPP*

* Wootton Center for Astrophysical Plasma Properties




‘ Student: Malia Kao successfully measured room-temperature E
Fe transmission within a few percent
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* Also measured at 1012 eV and 1188 eV
* Biggest source of opacity uncertainty
= Sample thickness (i.e., areal density)
 Works with target-characterization labs at SNL and GA for accurate opacity ‘
 Recently joined the center of our academic collaborator WCAPP*

* Wootton Center for Astrophysical Plasma Properties




Over the last two years, we have continued scrutiny in experiment@ lﬁ:ﬁﬂ‘ﬁ‘m
. aboratories
analyses, and theory for resolving the solar problem.

Experiments

* More iron experiments

* Time-resolved spectroscopy

* Oxygen opacity experiments
Analyses

* Opacity analysis

e Background analysis [3]

* T,and n, analysis
Theory

Opacity

* Two-photon opacity [1]
e Spectral line shapes [2]

Wavelength

WCAPP students and postdocs will be trained in HEDP atomic physics and spectroscopy
through the stellar opacity research and will help resolve the solar problem




Exciting stellar-opacity research is on the horizon |

Measure oxygen opacity at solar interior conditions for the solar problem |
................................. e
__ 1000 = opas Fe
"E 100 solar mixture = a Ne AnChorl » AnChOrZ ‘
£ S 5. (160 eV, 8e21 cm™3) (180 eV, 3e22 cm™3)
& 10 £
| , ] N i L 1 ] ¢ E,IIIl -I-II.--_ N I
] 10 15 20 25 30 35 40 atomic number
Wavelangth (A)
[ ] [ ) [ ) ] .
Transform opacity science on Z using novel time-resolved spectroscopy
N Without preheat shield With preheat shield?
Te(t) Te(t) e Opacity as a function of temperature or
density from a single experiment
* Minimize temporal-gradient concern :
> >
time time I
WCAPP students and postdocs will be trained in HEDP atomic physics and spectroscopy ‘
through the stellar opacity research and will help resolve the solar problem




Stellar opacity research continues to advance experiment, analysis,
and theory towards resolving the solar problem

Motivation: solar models disagree with observations ) Fe
— Can we model solar opacity correctly? §
O o105k
L-shell Fe: Billions of L-shell lines o II
K-shell O: Density effects .ll—l—“---—'

atomic number I

Fe opacity: Data was significantly higher O opacity: Measured for the first time

................................................... )
Data " Mﬂ,\ J(L L Re-scrutiny in: -> Showmg mterestmg dlsagreements
' PR o Experiments

I
Ay

> T,=160 eV
= Data Modell
sk“me resolved measure. 5§ Viodei2. Model3 1, =8e21 e/
e ©  Data analysis S
O
S ¢ Theory - -
wavelengths Wavelength
. We will measure oxygen opacity at higher T_and n
Student/postdoc involvement: © "

* Dan Mayes (postdoc) was trained under WCAPP and will lead oxygen opacity
* Malia Kao (student) performed excellent cold iron-opacity measurements and joined WCAPP

More students and postdocs will be trained and lead stellar-opacity research to help refine
our understanding of atomic behavior in HED plasmas
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Analysis method is refined in (1) determining

unattenuated spectrum, (2) propagating errors

KAP crystal Z-axis
) i . X-ray film ;
Two challenges in opacity analysis: Q _go | 490 A ‘
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y !
/ _ , slits. WA LE |
/ j i

" i unatt
L 150 20% random error
=2 B
. 100
=
G Aperture
2 50
9 10 11 12 13 14
Wavelength [A]
Half-moon
sample o
2. Propagating multiple errors
* Unattenuated spectrum ]
* Background subtraction |
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* Areal density Z-pinch _ |
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Analysis method is refined in (1) determining
unattenuated spectrum, (2) propagating errors

Solution:
Calibration shot stats = Unattenuated PDF*

Two challenges in opacity analysis:

1. Determination unattenuated spectrum

|
! unatt
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100

Intensity [J/str/A]
Intensity (J/str/A)
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Wavelength [A]

o

Wavelength (A)
2. Propagating multiple errors
e Unattenuated spectrum
* Background subtraction
* Areal density

* PDF = probability distribution function




Analysis method is refined in (1) determining
unattenuated spectrum, (2) propagating errors

Solution:
Calibration shot stats = Unattenuated PDF*

Two challenges in opacity analysis:

1. Determination unattenuated spectrum

|
! unatt
150 Bosaaiars / 20% random error

100

Intensity [J/str/A]
3

Intensity (J/str/A)

8 2] 10 11 12 13 14
Wavelength [A]

o

Wavelength (A)

2. Propagating multiple errors Monte-Carl '
* Unattenuated spectrum onte-Lario sampling

«  Background subtraction This can easily handle multiple
*  Areal density sources of errors and non-linearity.

* PDF = probability distribution function




New analysis returns asymmetric non-Gaussian opacity
PDF* as a function of wavelengths

1. Determination unattenuated spectrum

Two challenges in opacity analysis: i
i

- 3
":;,E 150 oo Hank / 20% random error Opacity probability distribution function
E_ 100 ™
5 5

Wavelength [A]

2. Propagating multiple errors
e Unattenuated spectrum
* Background subtraction
* Areal density

Analysis accuracy is confirmed through synthetic-data tests and calibration-shot data‘

* PDF = probability distribution function




New-analysis method revealed experiment reproducibility is Sandi
better than we belleved (0-20%—)10%) ) =

- Old analy5|s method
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New-analysis method revealed experiment reproducibility is Sandie
better than we belleved (0-20%—)10%) @ laora

Laboratories
- Old analy5|s method I New anaIyS|s method
12 I Three iron experiments C Five iron experiments (preliminary)
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10 | T e 4
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New-analysis method revealed experiment reproducibility is

better than we belleved (0-20%—)10%)

Sandia
National
Laboratories

12

10

Opacity (103 cm?/g)

- Old analy5|s method
~ Three iron experime

o At Y M

nts
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- J Vo e Y
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New anaIyS|s method
1L Nine iron experiments (preliminary)

9 10
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Anchor 2:
T,.~ 184 eV
n, ~ 3x10%2 cm3

Areal Densities
x10!8 Fe/cm?

1.047

1.91 + 2014
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1.31"_ 2015
1.31 |
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2.38 2018
2.78 2019

‘ We are collecting more Fe data to re-scrutinize the Fe results‘



New experiments and analysis reduced the model-discrepancy for

Anchor 2 iron, but ~ 3-10 ¢ differences remain

Sandia
National
Laboratories

10

Opacity (103 cm?/g)

*))

~10c

&;ﬁ

11

12

Quasi continuum discrepancy
2015: ~ 1800 cm2/g; ~4c
2019: ~ 960 cm2/g; ~30c

Window discrepancy
2015: ~ 2900 cm2/g; ~ 50

2019: ~ 2700 cm2/g; ~ 10c

We found similar results for
Fe at anchor3




‘ Sandia developed Ultrafast X-ray Imagers (UXI) were fielded to E

measure time-resolved FeMg absorption spectral images

UXI 1 UXI 2 Anchor 1 Fe ‘

Earlier

time

Wavelength A i

spectrometers §

|
. Mg spectra = T_(t) and n_(t)
o Fe spectra=> Time resolved Fe opacity

'»’«' X-ray source



‘ Sandia developed Ultrafast X-ray Imagers (UXI) were fielded to E
measure time-resolved FeMg absorption spectral images

Anchor 1 Fe
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‘ Simulations™* predicted that sample temperature goes up E
and down while density monotonically decreases
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Time-resolved measurement suggested different sample

evolution
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Time-resolved measurement suggested different sample

evolution
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Time-resolved measurement suggested different sample

evolution
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Time-resolved measurement suggested different sample E

evolution
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We successfully measured time-resolved Fe absorption E

spectra; More work needed for time-resolved opacity
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‘ Need to collect more time-resolved calibration data for accurate opacity determination ‘ ‘




Time-resolved opacity measurements can transform our |
stellar opacity research in a few important ways |

1. Minimal gradient concern ‘

2. Multiple opacity measurements from a single experiment

* Great leverage for HED experiments
* We can study how opacity changes with T, and n_?

3. Iron opacity at more extreme conditions |

* Density effect is not tested at solar-interior density
]

|Time-resolved opacity determination requires a large volume of time-resolved calibration data |‘







