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Abstract—We present a procedure for randomly generating realistic
steady-state contingency scenarios based on the historical outage data
from a particular event. First, we divide generation into classes and fit a
probability distribution of outage magnitude for each class. Second, we
provide a method for randomly synthesizing generator resilience levels in
a way that preserves the data-driven probability distributions of outage
magnitude. Finally, we devise a simple method of scaling the storm effects
based on a single global parameter. We apply our methods using data
from historical Winter Storm Uri to simulate contingency events for the
ACTIVSg2000 synthetic grid on the footprint of Texas.

Index Terms—contingency, inverse transform sampling, maximum
likelihood estimation, Monte Carlo method, power generation, power
system planning, scenario generation, winter storms, Winter Storm Uri

I. INTRODUCTION

Natural disasters such as hurricanes, fires, and winter storms are
increasing in frequency, and their effects are motivating investment
in power system resilience. Winter Storm Uri, which occurred in
February 2021, was particularly devastating to the state of Texas
and, at its peak, resulted in approximately 10 million Texans losing
access to electricity [1]. Texas now faces the task of overseeing
winterization investments. These low-probability high-consequence
events are difficult to assess in risk-averse decision-making. This
two-part paper addresses this problem in the context of winter storm
planning. This paper serves as Part I and its purpose is to quantify the
uncertainty of a winter storm event by creating probabilistic scenarios
based on historical data. Part II uses these scenarios to formulate and
solve a risk-averse scenario-based two-stage stochastic optimization
problem [2].

The unprecedented cold, snow, and ice brought on by Winter Storm
Uri in February 2021 induced similarly unprecedented consequences
for the infrastructure and people of Texas. The Electric Reliability
Council of Texas (ERCOT) anticipated 14 GW of generation outages
and peak demand of 67.2 GW in its extreme winter planning scenario
[1]. At the peak of Uri, generator outages exceeded 50 GW and
demand rose to an estimated 76.8 GW. However dire, these circum-
stances were far preferable to the possibly months-long blackout that
ERCOT officials described as being “seconds and minutes” away.

Researchers have identified several causes of this catastrophic
failure. Those include insufficient winterization of grid components,
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compounding failures between natural gas and power grid infrastruc-
ture, and the isolation of the Texas Interconnection from the rest of
the United States and Mexico [1]. Moving forward, policymakers
may seek to be informed by system-level models that account for
these factors, and this should motivate researchers to develop such
models and moreover identify data to drive them. Unfortunately,
comprehensive data for actual power grids are typically kept private
for sake of security. To remedy this problem for researchers, Gegner
et al. developed a collection of realistic synthetic power grids
spanning the conterminous United States [3].

Synthetic grids serve well as surrogates for actual grids in model
development and validation, but it is challenging to develop realistic
natural hazard contingencies for a synthetic grid. The reasons for this
include the complexities of weather and resilience modeling, the lack
of data due to the infrequency of extreme weather events, and the
general difficulties that arise in applying real-world effects to ficti-
tious elements. Some examples of contingency scenario generation
are the use of fragility curves to model the effects of strong winds
on the IEEE 118-bus grid [4] and the use of hydrological modeling
to assess the effects of hurricane flooding on the ACTIVSg2000 grid
[5], [6]. Related to extreme winter storms, there is also the work of
Pierre et al. which employs synthesized probability distributions for
the failure rates of lines, transformers, buses, and generators in the
RTS-96 grid [7].

In this work, we describe a method for randomly generating sets
of mutually consistent winter storm scenarios. Our method is not
grounded in weather modeling like the examples just mentioned, but
rather on empirical outage data. The remainder of this work is orga-
nized as follows. In Section II, we describe a scheme for generator
classification and a means of modeling an outage distribution for
each class from empirical data. In Section III, we propose a method of
synthesizing winter storm resilience information for each generator to
ensure consistency across scenarios. We present a method for scaling
the severity of storm effects in Section IV. Section V describes an
application of our method to produce scenarios for the synthetic
ACTIVSg2000 grid using empirical data from Winter Storm Uri.
Finally, Section VI summarizes potential research directions.

II. MODELING GENERATOR OUTAGES/DERATES

For sake of brevity, the term “outage” is overloaded in this work to
encompass both outage and derate events, and the term “magnitude”
is used to describe an amount of lost generation capacity. We assume
that the magnitude of a generator unit’s outage is a function of three
primary factors: fuel type, local temperature, and resilience to cold
weather. In general, generator fuel type and historical temperature
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data are readily available. As a first step, we partition the generator
units into a set of classes C based on fuel type and temperature.
Public data pertaining to generator resilience is more elusive, and
it is difficult to quantify resilience anyway using such data. Though
we consider cold weather resilience a primary factor, we handle it
differently in the uncertainty model as discussed in Section III.

Following classification, we fit a distribution of generator outage
magnitude for each class. We limit our scope to modeling generator
unit outages at the time of the peak system outage. As a means
of normalization, we divide the absolute outage magnitude of each
generator unit by its maximum capacity to obtain relative outage
magnitude. In choosing the form of distribution to estimate, we
consider that each generator unit has two natural thresholds: the
ability to withstand weather conditions up to some limit before
suffering an outage and the inability to lose more than its maximum
capacity. These thresholds differ unit to unit, so it reasons that a
considerable number of units experience either no outage or total
outage at the peak of a winter storm. For each class c P C, we model
the relative outage uncertainty as a mixed random variable Xc. The
distribution of Xc has probability pc of no outage and probability
qc of total outage with partial outages following a density function
Gcpxq. With Hp�q denoting the Heaviside step function, the CDF for
Xc is

Fcpxq � pcHpxq � p1� pc � qcqGcpxq � qcHpx� 1q (1)

which is characterized by pc, qc, and the parameters of Gcpxq. The
choice of Gcpxq and exact means of estimating the parameters are
left for the modeler to decide, though we provide an example in
Section V.

III. MODELING GENERATOR RESILIENCE

It reasons that a generator’s resilience to winter storms should be
an important factor in our uncertainty model, but the distributions
developed in the previous section are unconditional with respect to
resilience. Treating each unconditional distribution as the marginal of
a joint bivariate distribution whose second dimension is resilience, we
remedy this problem by decomposing each distribution into a discrete
set of (weighted) conditional distributions. In so doing, we establish
a basis for randomly assigning a resilience level and associated
conditional distribution to each synthetic generator. Importantly, our
scheme ensures the conditional distributions preserve the original
unconditional distribution through the law of total probability. Though
we treat generator resilience as a random variable, we do so solely
for the sake of modeling. We do not view resilience as being random
from a practical perspective, and if we were to study a real grid,
then we would use the known resilience details to support the
development of generation classes described in Section II. However,
we are studying synthetic grids with unspecified resilience details.

Recall that our intention is to use the manufactured scenarios in
a stochastic programming optimization model meant to inform win-
terization investments. In that context, modeling generator resilience
adds value – it allows us to assess if the optimal investment strategy
focuses more on generators of higher or lower resilience.

A. Abstract Model of Generator Resilience

For each generation class we model generator resilience as a second
random variable Y and suppose the existence of a joint distribution
with PDF fpx, yq and CDF F px, yq. Our proposed method of
resilience synthesis is based on the following observation. Let X be a
generic random variable with support Ω and CDF F pxq and consider
a function T pzq nondecreasing on the unit interval and satisfying

T p0q � 0, T p1q � 1. Then T pF pxqq is likewise a valid CDF for
some other random variable.

For sake of simplicity, we assume the support of Y is a discrete
set N . Following the aforementioned observation, we synthesize
conditional CDFs as transformations of the marginal CDF of X , i.e.,

F pX |Y � iq � TipFXpxqq (2)

for all i P N such that the likelihood of sampling certain events is
perturbed according to generator resilience. The synthesized condi-
tional CDFs should preserve the marginal through the law of total
probability, and this requires mutual consideration of the marginal
probabilities πi � fY piq where fY is the marginal PDF of Y . Letting
T pzq be the probability-weighted sum of transformations, we seek to
select Ti and πi such that

T pFXpxqq �
¸
iPN

πiTipFXpxqq � FXpxq, (3)

for all x P Ω which is equivalent to requiring

T pzq �
¸
iPN

πiTipzq � z (4)

for all z P r0, 1s. Of course, the constraints
°

iPN πi � 1 and πi ¡ 0
for all i P N must also hold.

B. Concrete Model of Generator Resilience

Any set of CDFs each with unit interval support that satisfy (4) may
comprise the set of transformations. However, it is desirable for the
transformations to also be strictly monotonic. This property ensures
that any generator, regardless of its resilience level, may realize
any outage outcome from the unconditional distribution. Intuitively,
transformations that are not strictly monotonic attribute too much of
the outage uncertainty to generator resilience. For example, a planned
outage might cause a grid’s most resilient generator to be completely
offline when a storm occurs. For this reason, we do not want to
prohibit generators from experiencing certain outcomes.

We propose using a particular set of beta CDFs since they satisfy
all the required conditions and are moreover each strictly monotonic
on the unit interval. The beta distribution is characterized by two
parameters α and β, and for integer-valued α, β ¡ 0 its PDF is

fpz;α, βq � pα� β � 1q

�
α� β � 2

α� 1

�
zα�1p1� zqβ�1. (5)

Now for fixed n, we let N � t0, . . . , nu be the set of n � 1
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The third equality follows from applying the binomial theorem to
p1 � zqi, the fourth from a combinatorial identity, the fifth from
the constant of integration being zero given the known condition
T p0q � 0, and the sixth from another combinatorial identity.

It remains to verify the selection of Tipzq from (6) and πi �
1

n�1

preserves distributions per (4). Indeed,
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This verification hinges on switching the order of the sums. In so
doing, we obtain an inner sum in the second-to-last equality that is
an alternating sum of binomial coefficients. That sum is identically 0
for 0 ¤ j ¤ n� 1 (i.e., the coefficients of zn�1, zn, . . . , z2 in T pzq
are all 0). For j � n, the inner sum is either -1 or 1 for n odd or
even, respectively, and its product with the other expressions in the
outer sum is 1. Thus, the coefficient of z in T pzq is 1.

IV. MODELING SEVERITY OF STORM EFFECTS

Our model of uncertainty does not explicitly capture the severity of
the storm but rather its effect on generator outages. This is sufficient
for our purposes and perhaps even ideal since, under some measures
of storm severity, more severe storms might not induce worse outages.
We propose modeling the severity of storm effects relative to those
of the storm from which the outage distributions are constructed.

More specifically, for generation class c let λc be the vector of
parameters for the distribution of Xc. We use a single scalar r to
model severity and a function Scpr,λcq for each class c to model its
effects on the distributions. That is, we define pλc � Scpr,λcq to be
the parameters of a perturbed random variable pXc corresponding to
severity r. We further propose having r be a realization of a random
variable R representing the uncertainty of storm effects. This is not
a necessary measure, and one could produce a set of scenarios of the
same severity by choosing R to be a degenerate random variable.

Our proposed approach is simple in that the perturbation of each
class of generation is a function of the single parameter r. The
approach is also deliberately abstract so that a modeler may embed
his or her own beliefs about severity through R and Scp�q for c P C.
For example, one might want the mean of the resulting distribution
to be monotonic in r or for r � 1 to represent no change in severity.

In many cases, winter storms also affect demand – households
with electric heaters are likely to use more energy to keep warm as
temperatures drop. In Section V, we present a specific implementation
of R and Scp�q, c P C and additionally discuss a method for modeling
the system load as a function of r.

V. APPLICATION

In this section, we walk through an application of the methodology
outlined in Sections II, III, and IV to the ACTIVS 2000-bus synthetic
grid on the footprint of Texas. The first three subsections that
follow correspond to each of those three sections. In the fourth and
final subsection, we discuss a Monte Carlo sampling approach and
properties of the scenarios we sampled.

Fig. 1. The geographical zones we used to classify generation. The panhandle
zone is colored red, the coastal zone blue, and elsewhere green. Dark shades
indicate counties with generators on the ERCOT grid. Light shades indicate
the manually labeled counties in which the synthetic grid has generators but
the ERCOT grid does not.

A. Generator Outages/Derates

Following Winter Storm Uri, ERCOT published data on the gener-
ator outage events that occurred during the event [8]. We filtered the
outage samples to only those in effect at the time of the peak system
outage, February 15 at 7:35AM, then normalized the samples to make
them proportions of the generator nameplate capacities. Using fuel
type directly and location indirectly as a rough proxy for temperature,
we devised a set of classes C in which to partition the generators.
Fig. 1 illustrates the geographical zones we used for classification,
and the eight classes we devised are listed in Table I.

To finish assembling the data needed to fit the outage distributions,
we estimated the number of generators that did not experience an
outage using data from ERCOT’s December 2020 Capacity, Demand,
and Reserves (CDR) report [9] and ERCOT’s report on the causes
of generator failures during Uri [10]. We accounted for generators
already offline prior to Uri in this estimation.

We let Gcpxq from Section II be a Johnson’s SB-distribution. The
distribution has four parameters – two to define the boundaries of the
open support interval, and another two parameters ac and bc to define
the shape. Fixing the support set to the unit interval and heeding its
openness, the CDF may be represented for x P R as

Gcpxq �

$''&''%
0, x ¤ 0

Φ
�
ac � bc log

�
x

1�x

		
, 0   x   1

1, 1 ¤ x

(8)

where Φp�q is the standard normal CDF. The corresponding Fcpxq
from (1) is characterized by λc � ppc, qc, ac, bcq. From our complete
set of relative outage samples, we estimated these parameters for each
class c P C. We present our estimates in Table I and illustrate the
distributions in Fig. 2. We computed pc and qc exactly as proportions
of generators experiencing no outage and total outage, respectively,
and we computed ac and bc using the maximum likelihood estimation
(MLE) tools from the SciPy statistics module [11].

B. Generator Resilience

To synthesize the conditional CDFs, we applied the transformations
from (6) with weights πi �

1
n�1

for N � t0, 1, 2, 3u. We illustrate
these transformations and their application to the non-panhandle wind
marginal distribution in Fig. 3. In this example, we see from the
marginal CDF in the lower right subplot that a non-panhandle wind



TABLE I
ESTIMATED DISTRIBUTION PARAMETERS BY GENERATION CLASS

c pc qc ac bc

Gas, Non-Coastal 0.5171 0.2976 0.7346 0.9005
Gas, Coastal 0.1389 0.7778 0.8418 0.7608
Wind, Non-Panhandle 0.3000 0.1963 -0.8647 0.5429
Wind, Panhandle 0.5143 0.0000 0.9381 0.7892
Coal, All 0.4444 0.2778 0.4648 0.9325
Nuclear, All 0.7500 0.2500 - -
Solar, All 0.8118 0.0235 -0.4329 1.0771
Hydro, All 0.9091 0.0909 - -
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Fig. 2. The empirical distributions of Winter Storm Uri outages are shown
in blue and our estimated mixed distributions in orange.

generator in general has a 39.8% probability of having up to a 50%
outage. As evidenced by the synthesized conditional CDFs shown
in the upper right subplot, the conditional probabilities of the same
event are 86.8%, 52.1%, 17.6%, and 2.5% for increasing resilience
levels i P t0, 1, 2, 3u, respectively.

C. Severity of Storm Effects

In Section IV, we described a deliberately abstract approach to
modeling the severity of storm effects, and now we present a specific
implementation. To capture the severity of storm effects, we modeled
each Scp�q by the following perturbations:

p̂c � 1�mintr, 1
1�pc

up1� pcq, (9)

q̂c � mintr, 1
1�pc

uqc, (10)

âc � ac, (11)

b̂c � bc. (12)
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Fig. 3. A set of four beta CDF transformations are shown in the upper left.
The lower right plot shows the marginal distribution for non-panhandle wind
outages, and the upper right plots show the application of the transformations
to that distribution. The lower left plot illustrates that the probability-weighted
sum of the transformations is indeed T pzq � z for 0 ¤ z ¤ 1.

These perturbations affect only the probability of no outage, the
probability of total outage, and consequently the probability of partial
outage. We were motivated to use these perturbations for two main
reasons. First, pλc � λc when r � 1. Second, ErxXcs � 0 and more
precisely pXc � 0 when r � 0. Finally, the perturbations ensure that
Er pXcs is monotonic and moreover piecewise linear in r for each
generation class. The piecewise linearity follows from the pointwise
minimums which serve to ensure the perturbed parameters remain
valid. The parameters p̂c and q̂c are linear in r for 0 ¤ r ¤ 1

1�pc

and constant for r ¡ 1
1�pc

.
Establishing r � 1 as having no change in effect allowed us

to control the probability of realizing a winter storm more severe
than Uri. To model a wide variety of winter storm effects, we chose
for R to follow a beta prime distribution with P pR ¡ 1q � 0.01
and a mode of r � 0.50. Since we devised eight classes each
with a distinct pc, the expected system-wide outage is a piecewise
linear function of r with nine intervals. The “left-most” interval is
r P r0,mincPC

1
1�pc

s � r0, 1.1613s which accounts for more than
99.8% of the severity distribution.

D. Sampling

We applied the synthesized conditional distributions to the AC-
TIVSg2000 synthetic grid on the footprint of Texas [3]. The grid
features 432 in-service generators sited at 168 of the total 1250
substations. In lieu of generator coordinate data, we associated each
generator with the coordinates of the substation to which it connects.
Using this information, we assigned a class c P C to each of the
synthetic generators.

Synthesizing the conditional CDFs as proposed permitted straight-
forward sampling via inverse transform method. We outline the
complete generic procedure for generating scenarios in Fig. 4. In
that procedure, C denotes the set of generator classes, Ω the set
of scenarios to produce, and Gc the number of class c generators
in the grid. We add indices to the marginal CDF F pxq, the set of
resilience levels N , the weights πi, and the transformations Tipzq
to indicate they may vary by generation class. Those are otherwise
as generically defined in Section III. Additionally, r, R, λc, pλc, and
Scp�q are as generically defined in Section IV. Finally, by Up0, 1q we
denote the uniform continuous distribution with unit interval support.
The outputs are a vector of sampled severities rrωs, a vector of
sampled generator resilience levels rygs, and a matrix of sampled
relative outage magnitudes rxgss.



1: for ω P Ω do
2: rω Ð random sample from distribution of R
3: end for
4: for c P C do
5: for g P Gc do
6: yg Ð random sample from tπi,c, i P Ncu
7: for ω P Ω do
8: pλc Ð Scprω,λcq
9: u Ð random sample from Up0, 1q

10: z Ð T�1
i,c puq

11: xg,ω Ð F�1
c pz; pλcq

12: end for
13: end for
14: end for

Fig. 4. The procedure for generating scenarios via inverse transform sampling
of the synthesized conditional CDFs.
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Fig. 5. The joint distribution of severity and system-wide operational
generation capacity from 10000 Monte Carlo simulations. The green and red
lines, respectively, represent the expected system-wide operational generation
capacity and system-wide load as a function of severity.

In addition to steady-state case study parameters, the AC-
TIVSg2000 grid dataset supplies time series data for dynamic anal-
ysis [12], [13]. Particularly, it supplies hourly load data for each bus
for a full a year. For this grid specifically, we also scaled the load
at each bus according to the sampled severity to capture customers
demanding more power to heat their homes. To do this, we identified
the winter peak load in the time series and associated it with severity
r � 0. The projected peak demand during Uri was approximately
equal to ERCOT’s peak summer demand in 2020 [1], [9]. Considering
this, we scaled the winter peak load of 53.96 GW to match the
summer peak load of 66.28 GW in magnitude and associated this
amplified load with a severity of r � 1. For severities other than
r � 0 or r � 1, we linearly extrapolated the magnitude of the load
from these two points. We illustrate the relationship between severity
and system-wide operational generation capacity and load in Fig. 5.
The figure also illustrates the 10000 sample storms we use for model
optimization and validation in Part II of this work [2].

VI. FUTURE WORK

We have identified three directions of improvement for winter
storm scenario generation. First, our method depends partly on

empirical data and partly on fabricated data. It would be ideal to
eliminate the dependence on fabricated data by acquiring a suitable
generator resilience data source from which the bivariate distributions
could be directly estimated. Second, recall from Section II that we
employed generator unit location as a proxy for weather in our
classification scheme. We are interested in alternatively performing
classification based on generator fuel type alone, and introducing his-
torical temperature data as a third dimension in the joint distribution
for each class. While there are more factors to consider in fitting
a multidimensional joint distribution, we expect that the historical
temperature data at least could be easily obtained. Third and finally,
our method is limited in that it focuses on a single instant in time,
but it is common in resilience studies to incorporate a time factor.
The ERCOT outage data indicates that Uri caused many generators to
experience intermittent outages, and it would be interesting to study
a stochastic model in which the scenarios capture such behaviors.
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