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Abstract—We propose a two-stage scenario-based stochastic
optimization problem to determine investments that enhance
power system resilience. The proposed optimization problem
minimizes the Conditional Value at Risk (CVaR) of load loss to
target low-probability high-impact events. We provide results in
the context of generator winterization investments in Texas using
winter storm scenarios generated from historical data collected
from Winter Storm Uri. Results illustrate how the CVaR metric
can be used to minimize the tail of the distribution of load loss
and illustrate how risk-aversity impacts investment decisions.

Index Terms—Stochastic Optimization, Risk Metrics, Condi-
tional Value at Risk, Power System Resilience

I. INTRODUCTION

Natural disasters such as hurricanes, fires, and winter storms
are increasing in frequency, motivating investment in power
system resilience. Winter Storm Uri, which occurred in Febru-
ary 2021, was particularly devastating to the state of Texas and,
at its peak, resulted in approximately 10 million Texans losing
access to electricity [1]. Texas now faces the task of overseeing
winterization investments. These low-probability high-impact
events are difficult assess in risk-averse decision-making. This
two-part paper addresses this problem in the context of winter
storm planning. Part I quantifies the uncertainty of a winter
storm by creating probabilistic scenarios based on historical
data [2]. This paper represents Part II and uses the scenarios
to formulate and solve a risk-averse scenario-based two-stage
stochastic optimization problem.

Although the definition of power system resilience is not
established precisely, previous work suggests that it should
include the the ability to prepare for and withstand low-
probability high-impact events [3–5]. Furthermore, various
risk metrics exist that specifically target low-probability high-
impact events [6]. For example, reference [5] suggests possible
risk measures to characterize resilience in a probabilistic
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setting such as Value at Risk, Conditional Value at Risk
(CVaR), and maximum value. However, no previous works
in investment optimization for power system resilience have
utilized these risk metrics.

Previous works on the topic of power system investment
optimization to improve resilience use an objective function
that represents the expected value of some loss quantity, which
usually represents load loss. Indeed the expected value metric
is often referred to as risk-neutral and does not focus on the
low-probability high-impact events [6]. Reference [7] provides
a scalable stochastic optimization method that considers proac-
tive redispatch and transmission line hardening to mitigate
resilience. Reference [8] analyzes the impact of considering
the AC power flow equations in the restoration stage of the
investment optimization problem. Reference [9] accounts for
initial system transients as well as long term restoration in
response to an event.

This paper proposes a risk-averse investment optimization
problem that minimizes the CVaR metric. Intuitively, the ε-
CVaR of the loss represents the expected value of the loss
given that the loss lies above the 1 − ε quantile [10]. As
compared to other risk metrics we choose to incorporate
CVaR because it has been demonstrated to exhibit favorable
computational and probabilistic properties [11]. CVaR is also
easily adjustable by varying the parameter ε, which intuitively
specifies the size of the tail to be optimized.

Accurately representing the CVaR metric requires thorough
sampling of the tails of the loss distribution and so our
proposed problem must be scaleable to accommodate a large
number of scenarios. To facilitate efficient computation we do
not include the novel features suggested in the aforementioned
references, which are computationally burdensome, allowing
us to accommodate thousands of scenarios. This will be done
in future work while maintaining scalability using progressive
hedging methods similar to those used in [7] and using
importance sampling techniques to reduce the number of
scenarios required to accurately represent the CVaR metric.

This paper is organized as follows. Section II explains how
to incorporate the CVaR metric into a general scenario-based
two-stage stochastic investment optimization problem. Section
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III provides a specific formulation that decides winterization
investments to target winter storms using scenarios sampled
from [2]. Section IV provides results illustrating the risk-
aversity of our formulation using out-of-sample scenarios.

II. GENERAL FORMULATION

This section presents a general risk-averse two-stage
stochastic investment optimization problem that incorporates
the CVaR metric into the objective function. A practical
reformulation of this optimization problem is also provided.

Notation is established separately from the companion pa-
per [2]. In this paper we denote the interval of integers between
a and b as [a, b]. The n-dimensional set of real numbers and
non-negative real numbers are denoted Rn and Rn+. A random
variable that represents a general disturbance to the system is
denoted e and a specific realization of this random variable
is denoted e. The expected value taken with respect to the
distribution of e is denoted Ee and the ε-CVaR taken with
respect to the distribution of e is denoted CVaRεe. The ith

element of a vector v is vi and the transpose is v†.

A. General Two Stage Investment Optimization

The first stage represents the investment stage and deter-
mines the investment decisions years in advance of a winter
storm. The second stage represents the restoration stage and
represents the response to a winter storm.

1) Investment Stage: The investment stage chooses invest-
ment decisions denoted x ∈ X , where X represents constraints
on the investments such as budget constraints. The investments
depend on a random variable e that represents a general
disturbance to the system and is distributed over a discrete
support set of [1, E]. We denote the associated probability
mass function as φ(e), which is a scalar value that represents
the probability that e = e.

To focus on low-probability high-impact events, we choose
to minimize the ε-Conditional Value at Risk metric of a loss
function ˜̀(x, e) taken with respect to the distribution of e. We
denote this metric as CVaRεe[˜̀(x, e)]. Intuitively, this metric
represents the expected value of the loss function given that
the loss lies above the 1 − ε quantile. This metric focuses
on the right tail of the distribution of losses and is further
explained in [10], [11]. Furthermore, if we choose ε = 1, then
the resulting CVaR1

e metric is equivalent to the expected value.
The investment stage optimization problem is as follows:

min
x∈X

CVaRεe[˜̀(x, e)], (1)

where the first stage loss function ˜̀(x, e) represents the
optimal objective value of an optimization problem in the
restoration stage.

2) Restoration Stage: The restoration stage is modeled as
a general optimal power flow problem. During this stage the
random disturbance has already been realized. For this reason
the restoration stage is deterministic and is as follows:

˜̀(x, e) = min
y∈Y(x,e)

`(y, e). (2)

The second stage loss function is denoted `(y, e) and is a
function of the restoration decision variables y and the realized
random variable e. The restoration decision variables y fall
in a feasible set denoted Y(x, e), which is a function of the
investment decision x and the realized random variable e.

B. Practical Reformulation

Reference [10] provides an expression for CVaR that allows
the objective function in (1) to be expressed as follows:

CVaRεe[˜̀(x, e)] = inf
β∈R

β +
1

ε
Ee[max{˜̀(x, e)− β, 0}]. (3)

Since the random variable e is discretely distributed among
the integers [1, E], we can write out the expectation in (3)
explicitly. Furthermore, placing the expression (3) back into
(1) allows for the inf and min to be combined and yields the
following investment optimization problem:

min
x∈X ,β∈R

β +
1

ε

E∑
e=1

φ(e) max{˜̀(x, e)− β, 0}. (4)

We now arrive at the following practical reformulation by
introducing variables t ∈ RE+ that intuitively represent the
values max{˜̀(x, e) − β, 0}, by replacing the first stage loss
function ˜̀(x, e) with the expression in (2), and by denoting
the restoration decision variables for each e ∈ [1, E] as ye:

min
x∈X ,β∈R,t∈RE

+

ye∈Y(x,e) ∀e∈[1,E]

β +
1

ε

E∑
e=1

φ(e)te (5a)

st: `(ye, e)− β ≤ te ∀e ∈ [1, E]. (5b)

This is a practical implementation of the CVaR objective
because the objective function is now linear in the decision
variables and the constraint (5b) is convex in decision variables
under the assumption that `(ye, e) is convex in ye,

III. SPECIFIC FORMULATION

This section provides a specific example of the general for-
mulation. In this example, the investment decisions represent
the winterization of generators, making them immune to any
winter storm. The following subsections define specific sets X
and Y(x, e), the second stage loss function `(ye, e), and the
random variable e. These definitions result in a risk-averse
investment optimization problem (5) that represents a Mixed-
Integer Linear Program.

A. Probabalistic Model of a Winter Storm

Part I of this paper [2] constructed a probability distribu-
tion that represents a random winter storm. This probability
distribution is used in the investment stage and represents a
distribution of generator outages for the next winter storm. As
a result, the investment optimization problem aims to improve
resilience to the next winter storm that will occur.

Part I of this paper also provided a method of sampling
the proposed probability distribution to determine scenarios
of relative capacity loss for each generator during a winter



storm. In this section we empirically construct the distribution
of generator outages by evenly weighting the samples provided
by Part I of this paper. In this context the random variable e
represents the random index of a winter storm scenario, where
the scenarios are indexed [1, E] and each scenario will occur
with probability φ(e) := 1

E . This type of distribution is often
referred to as an empirical distribution.

We will denote the total number of generators by g and the
generators will be indexed by [1, g]. Each scenario e ∈ [1, E]
will correspond to a set of relative capacity loss fractions αe,j
for each generator j ∈ [1, g], where 0 ≤ αe,j ≤ 1 and g is the
total number of generators in the network. Under scenario e
each generator j is limited to produce at most 1− αe,j of its
typical generation capacity. (Note: the relative capacity loss
αe,j is denoted xg,ω in reference [2]).

B. Investment Set X
The vector x ∈ {0, 1}g will represent integer variables

where xj is one if generator j is chosen for winterization
investment, protecting it against any possible winter storm.
The investment cost for each generator is denoted c ∈ Rg ,
where the cost of winterizing generator j is cj . We will be
constrained by a budget for investments. The budget is denoted
b and the set of feasible investments is written as follows:

X =
{
x ∈ {0, 1}g

∣∣c†x ≤ b} . (6)

C. Restoration Set Y
The restoration decisions for each scenario e ∈ [1, E]

are denoted ye = Le where Le ∈ Rn+ represents the load
loss at each bus. The restoration stage is modeled using
DC Optimal Power Flow (OPF). We introduce intermediate
variables Ge ∈ Rg+, which represent the generation for each
generator. We denote the total number of buses by n and the
buses are indexed by [1, n]. The matrix M is a sparse matrix
used to map generators to buses. Only one element in each
row of M ∈ Rn×g is non-zero and is equal to 1. Generator j is
located on bus i if Mji = 1. Furthermore, De ∈ Rn represents
the fixed demand at each bus. The matrix of shift factors is
denoted S and maps the net power injections to the power flow
along each transmission line. The transmission line limits are
denoted F̄ and F . The generator capacities are denoted Ḡ.
The constraints defining the set Y(x, e) are as follows:

1†(Ge + Le −De) = 0 (7a)

F ≤ S(MGe + Le −De) ≤ F̄ (7b)

0 ≤ Le ≤ De (7c)

0 ≤ Ge,j ≤ xjḠj + (1− xj)(1−αe,j)Ḡj ∀j ∈ [1, g]. (7d)

Constraint (7a) represents the overall power balance con-
straint. Constraint (7b) represents the transmission line limits.
Constraint (7c) places bounds on the load shed variables L.
Constraint (7d) represents the generator limits. If a generator
is invested in, then its capacity is Ḡj . If a generator is not
invested in, then its capacity is (1− αe,j)Ḡj ≤ Ḡj .

The set Y(x, e) can now be formally defined as follows:

Y(x, e) :=
{
ye = Le ∈ Rn+

∣∣∃Ge ∈ Rg+ st: (7a)-(7d)
}
. (8)

Future work may consider alternative definitions of Y(x, e)
and ye that account for the AC transmission network.

D. Second Stage Loss Function

The loss function in the restoration stage will simply
represent load shed. That is, the loss function in the second
stage is defined as `(ye, e) = 1†Le. Future work may consider
alternative loss functions that prioritize the shedding of certain
loads through a weighted sum.

IV. NUMERICAL RESULTS

This section provides results from the risk-averse investment
optimization problem explained in Section III using winter
storm scenarios explained in the partner paper [2] and using
the ACTIVSg2000 test case that intends to represent the Texas
system and is created from publicly available data [12]. This
test case has 432 active generators with a total generation
capacity of 81,201 MW and a total demand of 53,964 MW.

The winter storm scenarios are sampled from the winter
storm probability distribution explained in Part I of this
paper [2]. Reference [2] explains how the relative capacity loss
αe,j was sampled and how the load was scaled proportionally
to the severity of the storm. The costs of each generator
investment is assumed equal to the generators’ capacities
cj = Ḡj . As a result, the budget b limits the MW capacity
of total investment. With a budget b in units of MW we can
increase the winter resilience level of b MW of capacity and
we can not partially harden a generator.

We solve the risk-averse investment optimization problem
using 5,000 randomly sampled winter storm scenarios. Of the
5,000 winter storm scenarios considered in the optimization
problem 1,446 scenarios result in zero load loss when no
investments are made. These scenarios are represented as a
single scenario in the optimization problem that results in zero
load loss, e.g. ˜̀(x, e) = 0, and occurs with probability 1,446

5,000 .
As a result, we only need to optimize over 3,554 scenarios,
easing the computational burden. This scenario reduction
approach is accurate given that winterization investments do
not increase load loss for any of the scenarios.

The risk-averse investment optimization problem is solved
using Pyomo and Gurobi. Gurobi’s MIP solver was used with
a MIP gap stopping criterion of 0.1%. The DC OPF constraints
that define the restoration set (8) were imported from the
Electrical Grid Research and Engineering Tools (EGRET)
software package [13]. This DC OPF model efficiently handles
Power Transfer Distribution Factors, which represent matrix
S, allowing us to efficiently scale up to a large number of
scenarios. Each problem required approximately 15 minutes
to build in Pyomo and less than than 15 minutes to solve.

It is important to analyze the optimal investment decisions
on out-of-sample scenarios to ensure the chosen investments
are not tailored specifically to the scenarios used for optimiza-
tion. We analyze the load loss of 5,000 validation scenarios



that were randomly sampled separately from the scenarios
used in the optimization problem. To determine the load loss
of each of these validation scenarios, we solved the load loss
minimization problem for each individual scenario.

Fig. 1 illustrates the histogram of load loss for each of
the 5,000 validation scenarios. Three histograms are shown,
each representing an investment optimization problem with
a different budget and with a risk metric of CVaRεe with
ε = 0.025, which will be denoted CVaR0.025

e . The histograms
are transparent and overlaid on top of each other. The budgets
of 0, 10,000 MW, and 25,000 MW are shown. When the
budget is 0, there are no investments and the distribution
exhibits a peak around 10,000 MW of load shed. An increased
budget significantly decreases the load shed and shifts the
distribution to the left. All budgets result in a significant
amount of scenarios with zero load shed, represented as a
peak at the origin. A budget of 25,000 MW results in 84% of
the validation scenarios having zero load loss. In comparison,
making no investments results in 33.48% of the validation
scenarios having zero load loss.

Fig. 1. Three overlaid histograms of load loss with varying budget. The
investment optimization problem minimizes the risk metric CVaR0.025

e . Purple
represents overlap between the red and blue histograms, cyan represents
overlap between the blue and green histograms, and gray represents overlap
between all histograms.

Fig. 2 illustrates two overlaid histograms of load loss for
each of 5,000 validation scenarios. One histogram is con-
structed by optimizing the risk metric CVaR0.025

e and the other
is constructed by optimizing CVaR1

e, which represents the
expected value. Both histograms fix the budget to b = 25,000
MW. The CVaR minimization chooses investments that reduce
load loss for the most severe scenarios. Indeed each of the bins
that represent load loss greater than 12,500 MW are either
reduced in size or remain the same size when minimizing
CVaR0.025

e as compared to minimizing expected value CVaR1
e.

This demonstrates risk-aversity. In contrast, the expected value
minimization chooses investments that increase the number of
scenarios located in the first bin, which contains a load loss
of 0.

Fig. 2 also shows the measured values of CVaR0.025
e and

CVaR1
e on the validation scenarios, which are represented as

solid and dotted lines. The red lines correspond to invest-
ment optimization over CVaR1

e and the blue lines correspond
to investment optimization over CVaR0.025

e . The measured
CVaRεe value is lower when optimizing CVaRεe directly in the

Fig. 2. Two overlapping transparent histograms of load loss with different
values of ε. The budget is b = 25,000 MW. Histogram overlap is purple.

investment optimization problem for ε = 1 and ε = 0.025.
This validates that our investments are having the intended
impact on out-of-sample scenarios.

Fig. 3 illustrates the CVaRεe of load loss as measured on the
validation scenarios for different values of ε when optimizing
four different objective functions. The CVaRεe measurements
are illustrated as colored tick marks where different colors
represent different values of ε. The vertical axis represents
load loss in MW and the horizontal axis represents each
of the four different objective functions in the optimization
problem. The objective functions considered are CVaRεe where
ε is 1, 0.05, 0.025, and 0.001. The scenario with the largest
load loss lies between 24,500 MW and 25,000 MW for each
objective function and this value is illustrated by a black tick
mark. Furthermore, the vertical axis is cut in three locations
and scaled to visualize the differences between each objective
function.

Fig. 3. CVaRεe of load loss as measured on the validation scenarios for
different values of ε when optimizing four different objective functions.

As illustrated in Fig. 3, optimizing over the expected value
CVaR1

e results in the lowest measured value of CVaR1
e on the

validation scenarios, which is illustrated by the red tick mark.
Similarly, optimizing over CVaR0.05

e and CVaR0.025
e result

in the lowest measured value of CVaR0.05
e and CVaR0.025

e

respectively, which are illustrated by the green and blue



Fig. 4. Number of generators chosen for investment by generator type. The budget is b = 25,000 MW and the risk metric is CVaRεe for varying values of ε.

tick marks. This indicates that the investment optimization
problem is working as intended on out-of-sample scenarios
by minimizing the CVaRεe value that appears in the objective.
Furthermore, the tails of the distribution are improved when
optimizing over CVaR0.05

e and CVaR0.025
e as compared to

CVaR1
e. This is because they focus more on the tail of the

distribution as compared to CVaR1
e. Indeed they both reduce

the measured CVaR0.05
e and CVaR0.025

e and reduce the worst
case load loss illustrated by the black tick mark.

As shown in Fig. 3, optimizing over CVaR0.001
e does not

result in the lowest measured value of CVaR0.001
e on the

validation scenarios. This is because such a low value of ε
causes the investment optimization problem to heavily focus
on the worst few scenarios and thus the corresponding invest-
ments are heavily dependent on the specific random samples
used in the investment optimization problem. As a result the
investments chosen when optimizing over CVaR0.001

e do not
perform well on out-of-sample scenarios.

Fig. 4 illustrates the generator classes that were chosen for
investment when optimizing over CVaRεe for epsilon values
of ε = 1, ε = 0.05, and ε = 0.025 with a budget fixed
to b = 25,000 MW. For all values of ε we see significant
investment in the generator classes that experienced the most
failure during Winter Storm Uri, namely, Gas-Coastal, Gas-
Non-Coastal, and Wind-Non-Panhandle. We do not see sig-
nificant investment in generator classes Hydro-All, Solar-
All, Nuclear-All, or Wind-Panhandle for any values of ε.
Furthermore, we see a trend where smaller values of ε shift
away from Gas-Non-Coastal and Coal-All investments and
shift toward Gas-Coastal investments. Indeed the total number
of generators chosen for winterization investment also tends
to increase as ε becomes smaller as illustrated in Table I. In
this context, the CVaR metric invests in more generators with
smaller capacities, which effectively diversifies investments.
This observation may be an artifact of our assumption that
investment costs are proportional to generator capacities.

TABLE I
OPTIMAL INVESTMENT WITH BUDGET b = 25,000 MW.

Optimized Risk Metric CVaR1
e CVaR0.05

e CVaR0.025
e

Number of Investments 133 141 148

Average Gen. Capacity (MW) 187.96 177.26 168.90

V. CONCLUSIONS

This paper presented a scenario-based stochastic optimiza-
tion formulation to determine investments that target power
system resilience. We proposed minimizing the ε-CVaR metric
to focus on low-probability high-impact events and illustrated
the effect of varying the degree of risk-aversity by adjusting

the parameter ε. With application to winter storms in Texas,
we illustrated that our risk-averse formulation determines
investments that reduce the tail of the distribution of load
loss as compared to the risk-neutral formulation. This result
was validated using out-of-sample scenarios. Assuming that
generator winterization investment costs are proportional to the
capacity of the generator, we found that risk averse investments
tend to winterize more generators with smaller capacities as
opposed to fewer generators with larger capacities.
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