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Solar energy is available and inexpensive
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165°W 150°W 135'W 12000 05°W 90w T5W 60°W 45"W 30°W 5W o 15°E 30°E 45°E 60°E T5°E 90°E 105°E 120°E 135°E 150°E 165°F

— - el L]
T g

!
45°N : 45°N
30°N 30°N
g 15°N
0¢ o
15°8 15°§
S 0°S
58 & i

©2019 The World Bank
Source: Global Solar Atlas 2.0
Solar resource data; Solargis

Long-term average of photovolaic power potential (PVOUT)
Daily totals: 20 2.4 2.8 32 36 4.0 b4 4.8 5.2 56 6.0 6.4

me S /e

Yearly totals: 730 876 1022 1168 1314 1461 1607 1753 1899 2045 2191 2337

This map is published by the World Bank Group. funded by ESMAP. and prepared by Solargis. For more information and terms of use, please visit http://globalsolaratlas.info.

% of solar generation in each country

£ =BT o - -
P o Coges TTE
;%%Q,S‘S < =
¥ Y
o]

er

Mo data 0% 0.1%: 0.2% 0.4% 0.6% 0.8% 1% =1.2%
|

Souwrca: Our World in Data based on BP Statistical Review of World Enengy (2020) .
Mote: Primary energy is calculated wusing the “substitution method” which takes account of the nefficiences energy production from fossil fuels.




Long duration storage is needed to firm solar and other sources of renewable
generation

Maximum required storage duration
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Energy storage is competitive in some cases with conventional generation

Advantages of solar generation
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Battery technologies take time to develop

45 M Lead-Acid
40 M Li-ion
35 M Alkaline Primaries
30 B Others
S 25
<
aQ 20

15

10

5 |
L1 Mo i

2000 2005 2010

o

2015 2016 2017 2018

Source: Avicenne Energy

Battery manufacturing

* Growing Li-ion market (EV, Portable)

* Stable and mature Lead-Acid market

* Established primary Alkaline market

e Other battery technologies are not well developed
*  Supply chains take decades to develop




Several options for energy storage are available
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Lead Acid is used for UPS and for solar firming

Simple & standardized construction
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Transportation

The zame neswork that
distributes mew batteries also
safely callects and returns
used batteries for recyeling

At the recycling facility, used
batteries are broken apart and
seperated into companents to
b=gin the recycling process

battery grids, oéher battery

parts (.. pﬂx and terminals)

and lead-ouide are used to

manufacture lead for new grids,

parts, and lead axide

&

Electrolyte: Option 1
Sodium sulfate crystals

seperated from used electralyie

(dilute sulfuric acid) is
recycled and sold for use in
textiles, glass and detergent
manufacturing

&

Electrolyte: Option 2
At some recylers, used
electrolyte is reclaimed and
reused in manufaciuring new
batteries. Al others, it is
neutralized and sent to a
water treatment plant

u
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The lead-acid industry has an established recycling infrastructure
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Recycling centers in the US and Mexico

E . T T =5 = I
ﬁv 3\ NaL™ L
A s ;
¢ ? e - X @
. r L (13 |
/ =k r
o e T s “
o -]
@ ¥ r
& ? ¢ . o
i 0 & “f-'!l' g, o 3
/ *} ‘I_ " o e
L ) . 5 5 {
- o l
S f'
i ° 1 o LS
ey ] \
LGN (57 “
<+ b
[ 8 e
A N g

Lead battery market 2010-2030

I | aad balterias

500000
450000
400000
350000
000
250000
20000
150000
100000
50000
13

210 205 2020 2025
Year

https://batteryinnovation.org/resources/lead-battery-market-data/



Recycle of lead-acid batteries in imperfect by recycling of Li-ion batteries is harder

Recycling concerns are not unique to lead-acid batteries
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Zn-based batteries are an environmentally friendlier alternative to lead acid

More complex construction

Oflan A
w1 |
\-
\
siFakaicR—" [ | e EPARATOR
L T "k
\
LEP A A —
o B AL
- VERSrEC CARDE LOREW 12 RS ERLET CRA CAS
'l' vALYE "~y Cn, TR PR ——
A « L b
] w X

Zn-Ni at 1C charge/discharge

Cupachty (A}

Source: Design and Performance of Large Format Nickel-Zinc
Batteries E. Listerud and A. Weisenstein ZAF Energy Systems

L] 5000 000 7000
" 1]

Zn-MnO, batteries

100

90%,..

70¢

60F

Energy Efficiency (%)

S0f

40

SOMRY.

5% DOD, 1 hour rate

10% DOD, 2 hour rate

20% DOD, 4 hour rate

* X

0

1000

2000 3000 4000
Cycle Number

5000

Source: http://www.joshuagallaway.com/?p=265

I I Em B



Zn-based batteries can replace lead-acid batteries

Gear Box
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Data for the Zn-MnO, batteries used with converters designed for lead-acid batteries
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Zinc-based batteries can operate

under solar panels
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Container-based ZnMnO, system built in India using Li-ion BMS and power converter
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Flow batteries allow decoupling of energy and power

Charging Load/ Discharging Benefits:
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Figure 2. Photograph of vanadium RFB (VRFB) test bed developed at Pacific Northwest National

Laboratory for RFB evaluation. A zoomed in In:ln::tnftm electrochemical cell stack is provided at Figure 3. Ph raph of E ault Corp.’s 250kW/1MWh Fe-Cr RFB in Turlock, California.

Electrolyte is held in the four tanks in the lower right [34].
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Hydrogen has high energy density but no established supply chain

Elactron Flow Benefits:
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Summary

Specifications

Solar technology is mature and inexpensive

The existing grid infrastructure will evolve

Developing countries can take advantage of new decentralized technologies

The competition for Li cells will increase as the penetration of EV’s goes up

Lead-acid and new Zn-technologies can hit low price points and be easy to manage
Other, non-modular options, like flow batteries and H, systems are coming to market
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