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Problem Statement3

https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/us-states-face-uneven-paths-in-movement-for-100-clean-energy-53419260

1LDES market is nascent
2Stability, reliability, resilience

https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/us-states-face-uneven-paths-in-movement-for-100-clean-energy-53419260


Energy Storage Capacity and Duration

Adapted from Moller, K.T., T.R. 

Jensen, E. Akiba, and H.W. Li, 2017, 

Hydrogen - A sustainable energy 

carrier, Progress in Natural Science-

Materials International, 27(1), p. 34-40

Thermal/ 

thermochemical 

storage



Li-Ion vs. Thermal Energy Storage Capacity5
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Battery data from U.S. Energy Information Administration (June 5, 2018)
CSP data from https://solarpaces.nrel.gov/projects

Nevada Arizona

~10,000 MWh is required to power a large city 

(e.g., Los Angeles or New York) for one hour.

5

CSP = concentrating solar power
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Thermal Energy Storage - Overview7

• Sensible (single-phase) storage
• Use temperature difference to store heat

• Molten salts (nitrates <600 C; carbonates, 
chlorides 700 – 900 C)

• Solids storage (graphite, concrete, ceramic 
particles), >1000 C

• Phase-change materials
• Use latent heat to store energy (e.g., 

molten salts, metallic alloys)

• Thermochemical storage
• Converting thermal energy into chemical 

bonds (e.g., decomposition/synthesis, 
redox reactions)

Molten-salt storage tanks at Solana CSP 

plant in Arizona. Credit:  Abengoa

https://www.sandia.gov/ess-ssl/wp-content/uploads/2021/LDES/Torbj%C3%B6rn_Lindquist.pdf

Azelio

Molten Aluminum Alloy Phase Change

https://www.sandia.gov/ess-ssl/wp-content/uploads/2021/LDES/Torbj%C3%B6rn_Lindquist.pdf


Molten-Salt Thermal Storage



Concentrating Solar Power and Thermal Energy Storage

9

9



Molten Salt Storage with CSP

• Nearly 30 GWhe of  global capacity using concentrating solar power (CSP)
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Crescent Dunes Solar Tower, NV

110 MWe with 10 hrs storage (1.1 GWhe)

futurenergyweb.es

Solana Parabolic Trough Plant, AZ

(280 MWe with 6 hrs storage (1.5 GWhe)

http://futurenergyweb.es/solana-la-planta-termosolar-de-tecnologia-cilindro-parabolica-mas-grande-del-mundo/?lang=en


Moving Particle Thermal Storage
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High-Temperature Particle-Based CSP

Moving Particle Thermal Storage with CSP



Moving Particle Thermal Storage with CSP9
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Moving Particle Thermal Storage with CSP9
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tank 
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High-Temperature Particle-Based CSP

• Higher temperatures (>1000 ˚C) 

than molten nitrate salts

• Direct heating of  particles vs. 

indirect heating of  tubes

• No freezing or decomposition

◦ Avoids costly heat tracing

• Direct storage of  hot particles



Gen 3 Particle Pilot Plant

• ~1 – 2 MWt receiver

• 6 MWht storage

• 1 MWt particle-to-sCO2

heat exchanger

• ~300 – 400 micron 

ceramic particles 

(CARBO HSP 40/70)

K. Albrecht, SNL

Gen3 Particle Pilot Plant (Sandia)

Brantley Mills, SNL
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Next-Generation High-Temperature Falling 

Particle Receiver



Gen 3 Particle Pilot Plant

• ~1 – 2 MWt receiver

• 6 MWht storage

• 1 MWt particle-to-sCO2

heat exchanger

• ~300 – 400 micron 

ceramic particles 

(CARBO HSP 40/70)

K. Albrecht, SNL

Gen3 Particle Pilot Plant (Sandia)

Brantley Mills, SNL
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High-Temperature Particle Storage Bin

(Allied Mineral Products, Matrix PDM, Sandia)



Gen 3 Particle Pilot Plant

• ~1 – 2 MWt receiver

• 6 MWht storage

• 1 MWt particle-to-sCO2

heat exchanger

• ~300 – 400 micron 

ceramic particles 

(CARBO HSP 40/70)

K. Albrecht, SNL

Gen3 Particle Pilot Plant (Sandia)

Brantley Mills, SNL
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https://www.solexthermal.com/our-technology/cooling/

High-Temperature Particle-to-sCO2 Heat Exchanger

(VPE, Solex, Sandia)

https://www.solexthermal.com/our-technology/cooling/


NREL (Z. Ma) – Moving Particle Thermal Storage
“ENDURING” Long Duration Energy Storage – ARPA-E DAYS program

https://www.nrel.gov/news/program/2021/nrel-options-a-modular-cost-effective-build-anywhere-particle-thermal-energy-storage-technology.html

Electrical resistive 

heating of moving 

particles

https://www.nrel.gov/news/program/2021/nrel-options-a-modular-cost-effective-build-anywhere-particle-thermal-energy-storage-technology.html


Fixed-Bed Thermal Storage



Solid Particle Storage – Fixed Bed20

Siemens Gamesa Electric Thermal Energy Storage pilot demonstration with thermal 

storage capacity of 130 MWh at temperatures of 750 °C (image from website).

https://www.siemensgamesa.com/products-and-services/hybrid-and-storage/thermal-energy-storage-with-etes


THERMS – Terrestrial Heat Repository for Months of Storage

THERMS provides low-

cost, large-capacity, 

long-duration energy 

storage for a carbon-

free electrical grid

and high-temperature 

process heat.

21

1

Energy/heat 
source

Power 
generation

Process 
heat

2

3

4

6

1. Porous storage layer: E.g., gravel, rock, 
sand, lava rock, bauxite, sintered 
bauxite

2. Same as 1 (alternate materials)
3. Low permeability cap layer: E.g., clay, 

sand, recycled glass, firebrick, perlite, 
bauxite

4. Low permeability layer
5. Primary well for high-temperature 

(400-800 C) charging/discharging
6. Auxiliary wells for trickle charge and 

low temperature discharge (100-400 C)
7. Adjustable well liner to control flow in 

desired layers
8. Optional reuse of warm air
9. Annulus with filler to induce radial flow

8

5

7

Atm air

Atm air

Atm air
8

8

Hot air

9

Gravel or rock

NM Small Business Assistance Program with CSolPower, 2020

DOE Energy I-Corps, Cohort 12, Team 137 (March – May, 2021; C.Ho, H. Laubscher, K. Guin, S. Willard, G. Ho)



Customer Discovery – Needs / Pain Points22
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Thermal Storage vs. Li Ion Storage

Error bars represent +/- 1 standard deviation

= Highly valued by utility
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Customer/Market Discovery (DOE Energy I-Corps)23

Electric utilities & all 
thermoelectric power 

plants

Thermoelectric plants 
close to retirement

Coal plants close to 
retirement with useful 

life

• Coal

• Natural gas

• Nuclear

• Save costs on existing 
infrastructure

• Turbomachinery

• Steam generation

• Transmission

• Coal plants operate at 
temperatures in THERMS sweet 
spot (~600 C)

• Access to low-cost renewable 
electricity for charging THERMS

TAM

SAM

SOM

TAM = Total Available Market 

SAM = Serviceable Available Market

SOM = Serviceable Obtainable Market



Customer Discovery – Use Case for THERMS+24

Coal plant image source:

https://www.power-

technology.com/comment/us-

clean-coal-research/

Replace burning of coal with “dirt-cheap” heat storage in the ground

https://www.power-technology.com/comment/us-clean-coal-research/


Customer Discovery – Use Case for THERMS+25
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Industrial Decarbonization

https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions

Total U.S. Emissions in 2019 = 6.6 billion metric tons of  CO2 equivalent.

Nearly a quarter of all greenhouse 

gas emissions in the U.S. are from 

Industrial Processes and 

Manufacturing

Cement 

and steel 

production

Petroleum refining

ChemicalsFood processing and drying

Electrification/automation

27

https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions


Untapped Potential for Industrial Heat28

Source:  Solar Heat for Industry (2017), www.solar-payback.com

[4] European Solar Thermal Industry Federation (ESTIF), Solar Heat for Industrial Process Heat – a Factsheet, www.estif.org

http://www.solar-payback.com/
http://www.estif.org/


Untapped Potential for Industrial Heat29

Source:  Solar Heat for Industry (2017), www.solar-payback.com

[4] European Solar Thermal Industry Federation (ESTIF), Solar Heat for Industrial Process Heat – a Factsheet, www.estif.org

http://www.solar-payback.com/
http://www.estif.org/


Untapped Potential for Industrial Heat30

Source:  Solar Heat for Industry (2017), www.solar-payback.com

[4] European Solar Thermal Industry Federation (ESTIF), Solar Heat for Industrial Process Heat – a Factsheet, www.estif.org

http://www.solar-payback.com/
http://www.estif.org/


Untapped Potential for Industrial Heat

“Overall, renewable heating 
potential remains vastly 
underexploited and deployment 
is not in line with global climate 
targets, calling for greater 
ambition and stronger policy 
support.”

-International Energy Agency
https://webstore.iea.org/renewables-2019

31

https://webstore.iea.org/renewables-2019


Summary



Summary

• Thermal storage technologies can 
provide long-duration energy storage 
(GWh) – market is nascent

• Moving particles and fixed-bed 
storage (CSP and electrical heating)
◦ Very low cost, “dirt cheap”

• Untapped potential to address industrial 
decarbonization
◦ High-temperature process heat

◦ Hydrogen

◦ Solar thermal

◦ Electrification

33

Solana Parabolic Trough Plant, AZ
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Costs and Competition36

• Ho and Gerstle (2021, ASME ES2021)

• https://www.energy.gov/eere/solar/downloads/advancing-concentrating-solar-

power-technology-performance-and-dispatchability

• Wang et al., Energies, 10, 991 (2017) 

• Wang et al., Energies, 10, 991 (2017) 

• Mayyas et al., 2020, International Journal of Hydrogen Energy, 45, 16311-16325; 

Wang et al., Energies, 10, 991 (2017)

• https://www.cooperative.com/programs-services/bts/Documents/Reports/Battery-

Energy-Storage-Overview-Report-Update-April-2019.pdf

Initial Capital Cost

Unit cost of basalt gravel $/m3 20 20

Unit cost of excavation $/m3 20 20

Cost of electric heater and air fan million $ 1.00 1.00

Cost of controls million $ 1.00 1.00

Cost of ducting million $ 1.00 1.00

Cost of land million $ 0.00 0.00

Site improvement cost million $ 0.10 0.10

Connection to heat recovery steam 

turbine, etc. million $ 2.00 2.00

Cost of engineering million $ 0.34 1.33

Cost of construction contracting million $ 0.51 1.99

Cost of owner activities million $ 0.11 0.44

Gross Receipts Tax on Direct Costs percent 6.25 6.25

Initial Capital Cost million $ 7.10 27.54

CAPEX capital expenditure per kWh $/kWh 31.68 2.93

Cost of Financing

Lifetime of facility years 30 30

Nominal interest rate, R per year 0.06 0.06

Inflation rate, i per year 0.02 0.02

Real Interest rate, r (discount rate) per year 0.04 0.04

Capital Recovery Factor (CRF) per year 0.06 0.06

Annualized Capital Cost = CRF*Initial 

Capital Cost million $ 0.41 1.58

Operation and Maintenance (O&M) Cost

Number of employees - 2 2

Loaded cost of employee per year Million $/yr 0.10 0.10

Total cost of employees per year Million $/yr 0.20 0.20

Cost of repairs per year Million $/yr 1.0 1.0

Annual Operating and Maintenance Cost

Million $ per 

year 1.2 1.2

Cost of Purchased Electricity

Cost of electricity for charging $/kWh 0.03 0.03

Cost per year to charge for environmental 

losses Million $ 0.04 1.56

Cost per year to charge for electricity 

produced Million $ 3.99 1.64

Annual Cost of Purchased Electricity

Million 

$ / yr 4.03 3.2
THERMS cost parameters (Ho and Gerstle, 2021)

4 hr 168 hrs

https://www.energy.gov/eere/solar/downloads/advancing-concentrating-solar-power-technology-performance-and-dispatchability
https://www.cooperative.com/programs-services/bts/Documents/Reports/Battery-Energy-Storage-Overview-Report-Update-April-2019.pdf


Market Incentive – Cost Avoidance for Coal Plants

• Average cost of  pumped hydro, 
CAES, hydrogen, or long-
duration battery storage = 
~$0.20/kWh1

• Average cost of  THERMS+ = 
~$0.10/kWh2

• Annual cost savings for utility:
◦ ~$10B/year in U.S.*

◦ ~$100B/year globally

◦ On average, each major utility can 
save ~$100M per year using 
THERMS+ relative to other 
storage options**

37

>10% of coal plants in U.S. have >20 years of 

useful life and will be retiring within 10 years 

due to emission-reduction mandates

https://www.eia.gov/todayinenergy/detail.php?id=30812

In 2019, 241 coal plants with capacity of 236 GW

*236 GW x 10% x 1e6 kW/GW x 8760 hours/year x 0.5 (capacity factor) x $0.10/kWh (savings) = $10B/year 

**Assumes ~100 – 200 major utilities; additional savings to utility possible by using existing transmission

1Wang et al., Energies, 10, 991 (2017); Mayyas et al., 2020, International 

Journal of Hydrogen Energy, 45, 16311-16325; Wang et al., Energies, 10, 991 

(2017); Ahlen et al. (2019)
2Ho and Gerstle, ASME ES2021, 2021

https://www.eia.gov/todayinenergy/detail.php?id=30812
https://www.cooperative.com/programs-services/bts/Documents/Reports/Battery-Energy-Storage-Overview-Report-Update-April-2019.pdf


Revenue Potential

• For every $0.01/kWhe we charge 
for profit after ~$0.10/kWhe to 
build THERMS+, we will earn 
$44M profit per retrofitted 1 GW 
coal plant*

• SOM ~$1B in the U.S.
◦ ~20 plants x $44M = ~$1B

38

*1 GW x 1e6 kW/GW x 8760 hours/year x 0.5 (capacity factor) x $0.01/kWhe = $44M



Thermal Energy Storage (Sensible) - Specifications39

Metric
Values

Solid Particles Molten Nitrate Salt

Levelized Cost 

($/MWhe)
10 - 13 11 - 17

Round-trip efficiency >98% (thermal in/out) >98% (thermal in/out)

Energy density (MJ/m3) ~400 - 900 ~600 - 900

System life 30 yrs (>10,000) 30 yrs (>10,000)

Toxicity/

environmental impacts
N/A Reactive with piping materials

Restrictions/

limitations

Particle/fluid heat transfer can 

be challenging
decomposes above ~600 °C

Ho, 2016, Applied Thermal Engineering, 109 (2016) 958–969; Siegel, 2012, Wiley Interdisciplinary Reviews: Energy And Environment, 1(2), 119-131.



Summary of Advantages and Challenges40

Storage Technology Advantages Challenges

Pumped Hydro

 Mature technology

 Demonstrated large capacity (~GWh); >90% of U.S. 

grid energy storage

 Good reliability

 Unique geologic resources and water 

availability

 Improved turbines and electrical systems

 Small modular pumped hydro systems

Compressed Air

 Demonstrated capability at large scales

 Moderate round-trip efficiency

 Good potential for long-duration storage

 Unique geologic resources 

 Well integrity

 Repository integrity

Hydrogen

 Can be stored in large capacities for long periods of 

time

 Can be used for both grid and transportation

 Environmentally friendly

 Low round-trip efficiency of hydrogen 

production and storage

 High cost

 Leakage and safety of hydrogen gas

Thermal (Sensible)

 Mature technology

 Demonstrated large capacity with concentrating solar 

power (~GWh)

 Low cost

 Heat loss

 Large volumes required

 Heat exchanger performance and cost

Thermochemical
 Large energy density

 Potential for long-duration storage

 Low maturity

 High cost

 Material durability and kinetics



Heat Generation Contributes Significantly to CO2

Emissions

41

Total Emissions in 2018 = 6,677 Million 

Metric Tons of CO2 equivalent.

In 2018, heat accounted for 

• 50% of global end-use 

energy consumption  

• 40% of global CO2

emissions 

-International Energy Association

https://www.iea.org/reports/renewables-2019/heat

https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#colorbox-hidden
https://www.iea.org/reports/renewables-2019/heat

