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ABSTRACT

In recent years, infections and damage caused by malware have increased at exponential rates. At
the same time, machine learning (ML) techniques have shown tremendous promise in many
domains, often out performing human efforts by learning from large amounts of data. Results in
the open literature suggest that ML is able to provide similar results for malware detection,
achieving greater than 99% classification accuracy [49]. However, the same detection rates when
applied in deployed settings have not been achieved. Malware is distinct from many other
domains in which ML has shown success in that (1) it purposefully tries to hide, leading to noisy
labels and (2) often its behavior is similar to benign software only differing in intent, among other
complicating factors. This report details the reasons for the difficultly of detecting novel malware
by ML methods and offers solutions to improve the detection of novel malware.

We propose to detect malware by detecting behaviors commonly exhibited by malware such as
DLL injection, and process hollowing. This is based on the assumption that there is a set of
behaviors that are common to most malware samples and detecting them will generalize to novel
malware. Additionally, detected behaviors point analysts toward appropriate handling and
mitigation strategies, which is not the case with a binary benign/malicious classification. A
behavior labeling method was developed and was used to label an existing malware dataset.
Results show that detecting malicious behaviors is much more difficult than simply classifying
malware and goodware—achieving 80% accuracy compared to reported 99% accuracy from
classifying malware and goodware. This drop is due to several reasons which are detailed in the
report.

We also propose to evaluate the performance of detecting novel malware by holding out a
malware family for testing and training on the other families. Traditional ML evaluation will
shuffle the data and then split the data into training and testing. Our method addresses the
use-case when novel malware families are encountered and they require more than just a
malicious or benign designation. Our results suggest that this type of evaluation is much more
difficult than traditional methods and provides more realistic results, albeit, significantly worse.
For our behavior detection, accuracy decreases from 80% to 68% across all behaviors when
holding out a malware family from training.

We show that the degradation in performance is because each malware family has distinct
characteristics resulting in high extrapolations by an ML model. Here, an ML model should
return an "I do not know" response and request further analysis from an analyst. We run a number
of experiments that compare novel malware families to the training data using different feature
representations including a genomics-inspired distance measure and features extracted by deep
learning. Generally, held-out families are significantly different from the training data, resulting
in unpredictable results. This has been observed generally in the ML community [22, 9]. We
empirically demonstrate this in the domain of malware detection.

In an attempt to improve the detection of malware behaviors, we examine the impact that
additional synthetic data has on the performance of an ML model in detecting behaviors in novel
malware families. We find that while synthetic data does improve the performance of ML models,
often simpler methods perform better than more complicated ones. Two generative modeling
techniques were examined to produce synthetic malware samples such that the behaviors present
are able to be specified externally. The difficulty is due to finer grained analysis of the executable



and modifying the problem from a binary classification problem to a multi-label problem. The
addition of synthetic data increases the overall accuracy from 68% to 70%. While far less
accurate than measures presented in academic analyses, we believe that this is more
representative of real-world performance and allows models to be properly placed within a
malware detection system. We suggest that in highly dynamic environments ML pipelines should
determine whether an ML model is competent in the area of new data and should involve
mechanisms to improve over time with a human in the loop.
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1. INTRODUCTION

Malware poses a significant threat to computer networks, privacy, and safety. The threat of
malware continues to increase as more domains incorporate automated components into their
systems. Domains such as health care [120], critical infrastructure [77], self-driving cars [82], and
IoT devices [143] are experiencing significant increases in malware attacks. Further, sophisticated
actors are able to by pass detection—often with trivial effort despite considerable resources that
are provided for defense. In reponse, machine learning (ML) and deep learning (DL) methods
have been investigated to detect malware with high hopes of attaining the similar success
experienced in other domains, where these methods achieve better than human performance

[38].

Recently, ML performance has improved significantly—particularly in DL, a class of ML
algorithms that uses multiple layers in a neural network. State-of-the-art performance has been
achieved in computer vision [123, 42], medical diagnosis [30], machine translation [127, 92], and
game play [71, 106]. This creates hype for similar success in different applications including
malware detection. ML and DL in malware detection promises to reduce manual labor by orders
of magnitude, reduce errors, work at scales and speeds previously unobtainable, and detect novel
malware [32, 93]. As such, many anti-virus (AV) companies are turning to ML and DL to
improve malware detection and mitigation.

Many research efforts in ML have reported impressive results in malware detection and malware
family classification—achieving better than 99% accuracy [74, 100, 4]. Despite the success of
ML and DL based malware detection in controlled settings, the models often do not perform as
well once deployed. The reasons vary, but include data quality, label quality, and adversarial
adaptation to the models. We hypothesize that a semantic gap exists between the ML and
malware analysis (MA) communities. MA typically identifies malware based on observed
malicious or unintended behaviors requiring manual examination (e.g. DLL injection and
disabling security tools.). MA has yet to establish meaningful behavioral categories or create
realistic and challenging benchmark datasets. ML blithely uses easy benchmark datasets,
focusing merely on malware classification and is easily satisfied by its artificial success. We
believe that aligning the two communities by focusing on detecting behaviors in an executable
will facilitate the development of ML and data processing techniques specific for MA, and
improve its performance in identifying novel malware. We do so by focusing the predictive
capabilities of ML to predict behaviors in executables.

Key limitations of previous work include (1) the limited availability of behaviorally labeled data
and the manually intensive process required to label malware samples with behaviors, and (2)
evaluation methods of ML-based malware detection that are not representative of deployed
environments. We propose that the current evaluation methods are insufficient for detecting novel
malware and show that malware families not used for training (representing novel malware) are
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often significantly different from the other families. Thus, an ML model is forced to extraploate
and its classification is not credible.

We manually label an initial dataset with behaviors and propose a more realistic evaluation of MLL
models for detecting novel malware (Chapter 3). While detecting behaviors aligns more closely
with MA, it is a challenging problem.

Additionally, we examine the creation of synthetic novel malware (Chapter 5) to improve
detection rates using DL generative models. We seek to build off of the success experienced in the
image processing domain by using synthetic data from generative models. In the image domain,
the field has advanced such that synthetic data often cannot be distinguished from real data [76]
and has improved detection methods [38]. Originally, generative models could only specify which
class of images to generate (e.g. faces) but could not control the attributes of the faces (e.g. hair
color, eye shape, facial hair). Recent work has emerged that conditions the generation process on
certain characteristics that should be exhibited [55, 54]. We examine these approaches in
generating novel malware. Results on behavioral detection improve the overall balanced accuracy
from 60.5% to 63.7% with the largest increase being in recall, improving from 40.1% to 58.4%
(using one method).

Our primary contributions include:

» Adaptation of traditional malware analysis to examine behaviors, which is more naturally
aligned with MA (Chapter 3),

* An initial behaviorally labeled dataset (Chapter 3),

* An automated approach for labeling threat reports that can be used for labeling executables
(Chapter 4)

* Adaptation of two generative modeling techniques to produce malware with specific
behavioral characteristics (Chapter 5),

* A three-pronged approach to validating that a specified behavior is present within a
generated data point representing malware (Chapter 5),

* A demonstrable increase in overall performance in behavioral detection in ML-based
detectors (Chapter 5), and

* An examination of why ML performs poorly when deployed by examining the percentage
of samples are significantly different from the training data including novel distance
measures for executables based on genomics (Chapter 6).

The report is compiled as many stand alone reports, many of which have been published
previously. For this report, we include additional details that were omitted from published works
due to space constraints or tangential interests by the publishing venue.
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2. DETECTING MALWARE WITH MACHINE LEARNING

The ML culture generally emphasizes demonstrated performance improvements on benchmark
datasets [107]. This approach has driven significant improvements but is completely dependent on
an appropriate dataset. We suggest that ML-based MA can be improved by aligning the data used
by ML with the goals of the MA community—specifically incorporating behavioral information.
With the end goal of aligning the two communities and improving the identification of novel
malware, we 1) provide ML perspectives that have led to success in other domains but may be
lacking in MA, 2) survey current datasets that are used by ML for malware detection, 3) develop a
method for behavioral annotations aligned with the MITRE ATT&CK® Matrix [122], 4) annotate
the Microsoft Malware Classification Challenge dataset [100] with behaviors, and 5) train ML
models for behavioral identification. We find that behavioral identification is a more difficult and
interesting problem for ML than generally realized. A simple image-based DL model achieves
slightly over 50% accuracy, transfer learning from malware family identification achieves 57% -
84% depending on the malware family while a majority class predictor outperforms both models.
The results suggest that behavioral classification can generalize to novel samples from malware
families not included in training but that MA-specific ML techniques are needed.

2.1, Machine Learning Background

We focus on supervised ML that learns by example from labeled data points. We denote the
inputs as X and the labels or outputs as Y. Observed variables are represented in lower-case.
Therefore, the i’ observation of X is written as x; which can be a vector or a scalar. Following
Friedman et al. [31] to more formally describe supervised ML, let

Y =f(x)+¢ (2.1)

describe the data where the noise € has E(€) = 0 independent of X. The goal of an ML algorithm,
then, is to find an approximation f(x) to f(x) that preserves the predictive relationship between X
and Y. The approximation f(X) is learned from a training set .7 of N observed input-output pairs
(X,',y,'), i= 1,. ..,N.

An ML algorithm modifies the input-output relationship f (x;) in response to the difference
between the prediction f (x;) and the observation y;. Each learning algorithm has an associated set
of parameters 6 that can be modified to alter (x) and many are maximum likelihood estimators
assuming that the most likely values for 0 provide the largest probability of observing ¥ given

X.

The values of 6 are found by minimizing a loss function L that measures the “goodness” of the
model fit as a function of 8. For example, one loss function minimizes the residual
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sum-of-squares (RSS), and another, the cross-entropy (CE) loss when Y is a vector of K possible
classes. Minimizing the loss function on the training data minimizes training error; however, the
goal is to minimize error on unobserved data points (the test or generalization error). The
expected generalization error can be decomposed as:

Err(x) = E[(Y - f(x))’]
= (E[f(x)] = f(x)* +E[(f(x) — E[f(0)])*] + 0 (2.2)

which is a sum, respectively, of the bias, variance, and the irreducible error. The irreducible error
(6?) represents the inherent noise in the data (€ in Equation 2.1)—no matter how good the model
is, there will be some amount of error. The bias is the difference between the average model
prediction and the actual value. High bias refers to models that focus less on the training data
risking oversimplification of the model. High variance models, on the other hand, focus more on
the training data risking overly complex models. As the complexity of a model increases, the
training error tends to decrease. The performance on training data is usually not a good indicator
of how the model will generalize or how well it will perform on new data points. Thus, a trade-off
between bias and variance is needed to achieve a model that generalizes the best to test data. For
more details, see Friedman et al. [31].

There is an explicit dependence between training data, f (x), and the generalization error.
Gathering, cleaning, and processing data requires large amounts of effort. An observed data point
x; needs to be represented in a format that an ML model can operate on. Most ML algorithms
operate on vector representations. However, many interesting problems are not easily represented
as vectors without discarding significant amounts of information. If the representation of the data
does not contain the information required for the question that is being asked (e.g. is the behavior
of this executable benign or malicious?) then this falls within the irreducible error (62 from
Equation 2.2). Additionally, an ML algorithm optimizes the loss on the labels and, therefore, the
label needs to be aligned with the application. Better representations and labels of the phenomena
can, thus, mitigate the irreducible error.

2.1.1. Overlooked Caveats of ML Successes

ML success is often built on decades of previous research and understanding of a given domain.
For example, the success of convolutional neural networks (CNNs) [59] builds on decades of
research in signal processing and data representation. The convolution is a mathematical operator
that expresses the overlap between functions and can be thought of as blending one function with
another. The convolutions in CNNs are a codification of convolutions where a function is based
on the data instead of being explicitly defined. One key reason for the success of convolutions is
their translational invariance, which is inherently important in object recognition because an
object may be anywhere in the image. An analogous operator does not yet exist for binary
executable analysis.

Success of ML in other domains has also been enabled by large amounts of labeled, relevant data.
Li revolutionized computer vision and object detection by providing labels for relevant images
[26]. Corresponding datasets do not yet exist for malware detection. Further, ML models do not
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always learn the intended concepts. For example, CNNs are biased towards learning texture rather
than shapes and objects [34, 113]. This can make them susceptible to adversarial attacks and
brittle to noise [105].

Additionally, the data in MA is significantly different from other domains in that it lacks
proximity relationships, continuity, and ordinality, which are assumed by many ML algorithms.
For example, pixel values of 123 and 122 are close in value and neighboring pixels have an
assumed proximal relationship. Code blocks can jump to various locations in a binary, and values
next to each other in numerical space can have significantly different meanings. Additionally, in
real-world systems, goodware significantly outnumbers malware—Iess than 1% of all executables
were reported as malware [132]. This class imbalance has been shown to exacerbate other issues
in ML algorithms [116]. The combination of these issues makes applying ML to MA difficult.

2.2. Program Analysis Background

Program analysis (PA) consists of several processes that are used to reason about the behavior of a
computer program and are leveraged in MA. PA is ultimately interested in program optimization
and correctness. We highlight a subset of areas related to extracting features that could be used as
input to ML algorithms.

In PA, a distinction is made between the syntax and the semantics of a program [41]. For
programs, syntax is concerned with the form of expressions that are allowed (i.e. the sequences of
symbols that are accepted by a compiler or interpreter). Semantics describe the effect of
executing syntactically correct expressions (behavior). The semantics of a program require a
defined syntax, at least at an abstract level. Identifying syntax is much easier than semantics. As
shown in Section 2.1, an ML model depends on training data. If training data does not relate to
behaviors, then expecting an ML model to learn them is unreasonable. Generally, extracting
syntactic features is significantly simpler than extracting semantic features.

2.2.0.1. Static Analysis Techniques

In static analysis, a program is analyzed in a non-runtime environment. The analysis is generally
performed on a version of the source code, byte code, or application binaries. Static analysis is
used frequently for optimization, such as dead code elimination, or for verification such as
identifying potentially vulnerable code and run-time errors. Generally, static analysis
approximates all possible executions of a program through abstract interpretation or data-flow
analysis. One challenge for static analysis is that behavior is limited to what happens internal to
the program, and the environment is not analyzed.

Several static analyses techniques capture semantic information. However, many datasets used for
ML favor syntactic features that are easier to capture. For example, data flow analysis (DFA)
collects information about the possible states at various points in a program [112] by constructing
a control flow graph (CFG) that represents the program. Each node in the CFG represents a basic
block or a sequence of consecutive instructions. Control can only enter at the beginning of the
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chunk of code in a node and leaves at the end. Directed edges in the graph represent jumps
between one chunk of code to another. CFGs can capture significant semantic information.
However, it is not in a form that most ML algorithms can easily digest, and there are no obvious
means to transform it without significant semantic loss.

Abstract interpretation [20, 21] is a theoretical framework to formalize the approximation of
computing abstract semantics. Here semantics refer to a mathematical characterization of
possible behavior of a program. The most precise semantics describe accurately the actual
execution of a program and are called concrete semantics. Small-step, or structural oriented,
semantics [90] describe a program in terms of the behaviors of its basic operations. The behavior
of a program is a current state (program point and the environment) given a starting state and
series of operations. For example, consider the simple code below.

1: n=0

2: while n < 500 do
3: n = n+l;

4: end

5: exit

Analyzing the program would yield:

<lin=Q>-<2n=0>-<3n=0>—-><4n=1>—
<2n=1>=><3n=1>=><4n=2>---<5n= 500>

Operational semantics, such as small-step semantics, combine logical conclusions about program
syntax in order to derive semantic meaning. Assuming the interpretation of syntax is correct, this
also allows for the construction of proofs about program behavior.

Big-step, or natural, semantics [48], like small-step semantics, define basic components to
describe the semantics of a program. Rather than using the basic operations like small-step,
big-step analytics defines the semantics of functions. Both are techniques that derive semantic
meaning from a program and could be looked to as inspiration for features as opposed to
techniques derived from computer vision or other domains. It is worth noting that both of these
techniques limit behavior to what happens internal to a program or segment. They do not take into
account the effects on the full environment as this is inherently intractable and represents a key
difficulty in modeling malware for ML and MA.

Another key static analysis approach over programs is symbolic execution. Symbolic execution
techniques build a mathematical representation of a program based on the input and output of
various subroutines or functional blocks [3, 68]. In this representation, independent variables
represent key input values. Constraint solvers, for example, can then solve for the variables,
identifying what kinds of inputs are required for a particular output state [101, 44]. From a
vulnerability analysis perspective, this can allow analysts to identify input that can potentially
lead to system failure states, which may be exploitable. Symbolic execution techniques suffer
from state explosion proportional to the size and complexity of a given program [58]. Other static
analysis techniques provide disassembly and intermediate representations (from binary to
machine code). However, care needs to be taken to preserve semantic information.
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2.2.0.2. Dynamic Analysis Techniques

Dynamic analysis executes a program and precisely analyzes a single or limited number of
executions of a program. The coverage of dynamic analysis is dependent on the test inputs, which
for malware analysis, can be variants of the operating environment. Often, a subset of the
interactions with the underlying operating system are analyzed such as system calls, or memory
reads and writes. Dynamic analysis is often used to ensure program correctness and find errors in
code [72].

Most dynamic analysis techniques use instrumentation to insert code into a program to collect
run-time information. The instrumentation will vary based on the type information that is desired
and the type of code that is available (e.g. source code, static binary, and dynamic binary). Most
tools track function calls (including system calls), capture the input parameters, track application
threads, intercept signals, and instrument a process tree. The output from dynamic analyses has
often been heralded by ML practitioners for modeling behavior as it captures observed effects on
the environment. However, because of a lack of context and the challenges outlined previously,
the representations that are suitable for ML often lose the semantic information.

2.3. Motivating Case Studies

To help motivate the semantic gap between ML and MA, we walk through a case of using ML to
identify malware persistence in registry keys, highlighting the difficulty in generating an
appropriate dataset and extrapolating results to real-world scenarios.

Briefly, the registry is a hierarchical key-value database that stores configurations, program
settings, and user profiles. The registry is capable of storing commands to execute when the
system is loaded and is commonly used for maintaining persistence on the Windows operating

system [70]. In addition to system software, malware takes advantage of the the registry to ensure
that it is loaded as needed. As an example, a key can have the format:

\HKEY\_LOCAL\_MACHINE\System\...\...\ImagePath

and a value that can take multiple formats such as:

C:\Windows\System32\svchost.exe -k netsvcs

The example represents a path to an executable, but the values are capable of storing many
complex data types (e.g., binary data, scripts, etc.). Thus, even with this relatively simple
example, representing this data in a format suitable for ML is non-trivial.
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2.3.1. Data Collection & Parsing

As with most use cases, collecting data is not challenging, but obtaining labels and properly
representing the data is. Registry data was collected from Windows machines across a corporate
network for two years, resulting in approximately 20 million (host, registry key, timestamp)
tuples, with roughly 136,000 unique registry entries. Registry data was collected from executing
publicly available malware in a sandbox environment producing 200 registry entries.

Despite capturing effects on the environment, the raw registry data is not suitable for ML
algorithms due its variability. As there are a finite number of keys, they are represented as a
1-of-N encoding. The value portion is more complex and describes what is being executed.
Ideally, the value consists of a path and a file that can be parsed into its relative components.
However, in some cases one program will launch another such as when services are launched
using svchost . exe. For these situations, a parser that found the launching program (e.g.,
svchost) as well as the program that is being launched. Each launching program is parsed
according to the expected syntax (e.g., svchost should have a —k flag), and when found, these
launching programs constitute another categorical variable. Additionally, different file types exist
which are represented as categorical variables per file type including any associated options (e.g.,
command-line flags).

After the aforementioned parsing, the specific folders in a given path are used as terms in a
traditional bag-of-words model. The resulting data is high-dimensional (over 12,000 terms) and
extremely sparse with few unique observations (i.e., the number of unique rows is close to the
number of columns). Principal Component Analysis (PCA) was performed to reduce the
dimensionality while preserving as much information about the original space as possible.
Several assumptions and trade-offs were made to produce a format suitable for ML which
discarded some information.

2.3.2. Experimental Analysis and Bias

Labels are needed to identify which registry keys are associated with malicious or benign activity.
Initially, any key that occured on a large number of hosts was labeled benign and those that were
modified by the malware as malicious. Experimentation with this setup resulted in a
cross-validated area-under-the-curve (AUC) score of 0.99. Performance this high should suggest
that the ML problem is too simple and thus will not be practically useful. Upon closer inspection,
the malicious examples came from specific hosts and identifying the malware labels was a simple
process. Registry keys that occur on a large number of systems tend to be associated with
programs and drivers in the system space (e.g., in C: \Windows\system32). However, the
majority of the malicious keys are associated with the user and program space. A simple weak
indicator that looks for absence of the keywords “windows”, “system”, or “program” to determine
maliciousness provides an AUC of 0.85. Thus, the model inadvertently distinguishes system
space keys versus other keys and is not likely to generalize well.

Only labeling keys modified by malware as malicious and all others as benign results in an AUC
of 0.96 for ML and an AUC of 0.53 for the weak indicator—not significantly better than random.
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This result is promising as the gap between ML and a simple indicator increased significantly.
However, this correction is likely still optimistic. Cross-validation tends to be optimistic in
general, due to the fact the errors are not independent. Also, this data is not likely to contain all
possible examples of malware that uses legitimate software registry for persistence. Creating a
generalizing principle beyond a signature is challenging. Another confounding factor is that
malware can execute behavior that is not malicious to avoid detection, and, thus, make it difficult
to derive ground-truth labels.

2.3.3. Other Examples

This paper is not the first to recognize the gap between the research and actual deployments.
Sommer and Paxson [119] point out the discrepancies in network intrusion detection. They
observe that the task of intrusion detection is fundamentally different from other applications,
making it more challenging. They identify six key challenges: 1) ML is better for finding
similarities rather than differences, 2) very high cost of classification errors, 3) a semantic gap
between detection results and their operational interpretation, 4) enormous variability in what is
“normal”, 5) difficulties in sound evaluation of the results, and 6) operating in an adversarial
setting. In the context of detecting malware, other work noted discrepancies particularly with
respect to the precision of malware—indicating a large jump in false negatives when deployed in
real-world settings stemming from the difference in the proportion of malware and the difficulty
on modeling “normal” in executables [114].

2.4. Current Datasets

In this section, we briefly discuss the importance of benchmark datasets historically in ML
research and the challenges in curating a benchmark dataset for malware, and we review existing
datasets. Despite several attempts, a benchmark dataset for malware classification has yet to be
widely adopted and have a high impact for ML-based malware classification.

2.4.1. The Utility of Benchmark Datasets

The progress of any research field depends on reproducible comparisons between methods to
quantify progress on a given task. For ML, benchmark datasets facilitate comparisons between
learning algorithms. In addition, benchmark datasets drive ML success and guide research in
several application areas such as object detection [26], facial recognition [88], handwriting
recognition [60], recommender systems [36], and question and answer systems [95].

Benchmark datasets facilitate research that would not otherwise be possible. A benchmark dataset
dictates several important characteristics of the research that uses it. First, it determines which
features are used based on data representation. Second, it determines the impact of ML models
developed using the data. If the dataset misrepresents the real-world settings or is ill-suited for the
task, the ML model will perform poorly despite performing well on the benchmark dataset.
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2.4.2. Challenges in Curating a Malware Dataset
2.4.21. Dynamic Environment

Malware classification is a dynamic problem in which the target is constantly changing and
evolving. In ML parlance, this is concept drift where the distribution of the target changes over
time from what was used for training [33]. In cases with concept drift, performance often
degrades and has been shown to be significant in malware detection [53]. Additionally, malware
authors intentionally alter malware to avoid detection using several obfuscation techniques
including polymorphic code and garbage code insertion. In many other domains, the attempt to
deceive is not as prevalent. Malware authors can purposefully alter their malware to subvert an
ML model trained on a given dataset.

24.2.2. Releasing Data

Many AV companies hold their collection of malware samples as proprietary. As mentioned
above, malware authors could also use this information to thwart existing architectures built on
this data—risking their clients’ systems. Another consideration is that each collection service
may be biased to certain demographics, location, network infrastructure, political ties, etc. that
may attract certain types of attacks.

2.4.2.3. Feature Representation

Distributing live malware samples is a security risk, especially for those not accustomed to
handling malware. As a result, most recent datasets first extract predetermined features from a set
of malware examples limiting the representation.

24.2.4. Obtaining Labels

Many of the current datasts use tools like VirusTotal', which provide the output from multiple
antivirus tools, to create labels. Often only samples that are identified as malware by a majority of
the tools are labeled as malware and others are discarded providing a biased sample that uses the
most popular examples. This is not representative of the data that will be encountered in
real-world deployments. Using the most popular malware and goodware examples can create
easily separable training data, and overly optimistic performance expectations [63, 86]. Several
works have proposed methods for improving the labeling and not discarding as many of the
“unpopular" samples [50, 108].

24



Table 2-1. Summary of malware datasets used for ML

Dataset Year  Cite Representations # Samples Labels  Labeling Max Acc
Highly Cited
VX Heaven! 2010 ? Live executables Varies Varies Curated N/A3
VirusShare? 2011 >300 Live executables Varies Varies  Curated N/A3
Mallmg [73] 2011 417 Gray-scale images 9,458 25 Families MSSE  99.80%
MS Malware Classification [100] 2015 76 Disassembly and hexadecimal 10,868 9 Families MSSE  99.97%
EMBER [4] 2017 46 Parsed and histogram counts 1,100,000  Good, Bad, ? VirusTotal 99.90%
MalRec [110] 2018 11 System calls, memory contents* 66,301 1,270 families VirusTotal’ N/A!
Less Cited
Malware Training Sets [97] 2016 2 Counts from analysis reports 4764 4 families Curated -
Mal-API-2019 [14] 2019 1 System call traces 7,107 8 families VirusTotal -
Meraz’ 18 Kaggle [43] 2018 ~1 Parsed features 88,347 Good v Bad Curated  91.40%°

1 http://vxheaven.org/

2 https://virusshare.com/

3 There is no established dataset making comparisons between studies difficult.

4 Also provides full system replays of malware execution, however the authors note non-trivial efforts to get them to work on other systems.
5 Uses AVClass [108] which leverages VirusTotal.

6 Reported accuracy on the Kaggle challenge leader board.

2.4.3. Review of Datasets

There are currently several proposed repositories for ML-based malware detection that either

identify malware families or discriminate malware from goodware; these are summarized in Table
2-1.

2.4.3.1. Live Malware Repositories

There are several repositories containing live malware—posing a threat to inadvertently infecting
one’s system and providing malicious software to adversaries. However, the malware samples
provide a valuable resource enabling MA and research. VX (Virus eXchange) heaven? with the
mantra: "Viruses don’t harm, ignorance does!" seeks to provide information about computer
viruses including articles, source code, malware samples, and books to help educate whomever is
interested. Several similar repositories exist including theZoo (a.k.a. the malware DB)? and Virus
Share* for free, or Virus Total® which is available for a fee and also contains benign samples.

Ideally, a researcher has access to the raw data. Even with access to the entire malware sample, as
discussed previously, getting the samples into a format suitable for ML is challenging. Often only
simple features are extracted such as metadata from the PE header, imported DLLs, and byte
counts (more details on extracted features are given in Section 2.4.4). Using simple features
resulted in high detection rates (98.8%) [129] leaving little room for improvement. With live
malware repositories, studies are difficult to compare as each selects different subsets of malware
samples to analyze and there is no common base publication to trace attribution. However, the

Mttps://www.virustotal.com/gui/home/upload
’http://vxheaven.org/
3https://thezoo.morirt.com/
‘https://virusshare.com/
Shttps://www.virustotal.com/gui/home/upload
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Figure 2-1. Examples of malware represented as gray-scale images from a)
Fakerean and b) Dontovo.A malware families [73].

amount of malware samples is impressive. On Virus Share, there over 34 million samples as of
this writing.

2.4.3.2. Mallmg

The Mallmg dataset [73] was motivated by the success of deep learning (DL) in image processing.
In Mallmg, binary values from an executable were converted to 8-bit unsigned integers, organized
into a 2-dimensional array and visualized as a gray-scale image (Figure 2-1).

The authors observed that malware belonging to the same family were visually similar in layout
and texture. In their preliminary analysis, the authors extracted texture features from the
generated gray-scale images using GIST [124]. On a dataset with 9,458 malware samples from 25
different families, a 3-nearest neighbor classifier® achieved 97.18% accuracy and 99.2% when
variants of a malware family were combined. Follow-up work achieved accuracy of 98.52% when
using a convolutional neural network [49] and 99.80% with principal component analysis and a
support vector machine [35].

2.4.3.3. MS Malware Classification

The Microsoft Malware Classification Challenge [100] was developed as a Kaggle competition to
classify malware samples into one of nine malware families. It was released in 2015 and has since
been used in several studies, being cited more than 70 times at the time of this writing. The
hexadecimal representation of the binary content without the PE header as well as
meta-information (function calls, op codes, strings, etc.) from the IDA disassembler was provided
for each malware sample. Current reported performance on the dataset claims 99.70% [35] and
99.97% accuracy [49] using image-based features.

®A classifier that predicts the majority class of the 3-closest examples
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Table 2-2. Reported accuracy, precision, recall and F1-score on the EMBER
dataset [128].

Model Accuracy Precision Recall F1

MalConv [93] 98.8% 99.7 979 98.8
GBDT [4] 97.5% 99.0 96.2 97.1
KNN 95.1% 95.5 94.6 95.1
DT 96.9% 97.1 96.7 96.9
RF 97.0% 98.6 953 96.9
SVM 96.1% 96.4 95.7 96.1
DNN 98.9% 99.7 98.1 98.9

Modified MalConv [128]  99.9% 99.7 100.0 99.9

2.4.3.4. EMBER

The Endgame Malware BEnchmark for Research (EMBER) dataset [4] is a collection of extracted
features from 1.1 million executables divided into 900k training and 200k test samples and has
emerged as one of the most popular datasets. EMBER provides features that are consistent with
previous work and has been used in several studies. The authors of EMBER achieved a 98.2%
detection rate with a 1% false positive rate. This was further improved to a 99.4% detection rate
with an AUC value of 0.9997 [87]. Further, Vinayakumar et al. [128] modify a DL technique
aimed at malware detection (MalConv [93]) and achieve nearly perfect performance.

2.4.3.5. Malrec

Contrary to the other datasets, Malrec provides system-wide traces of malware executions that
can be replayed. It is intended to address the danger of releasing live malware and the limited
amount of data that can be collected when running in a sandbox. The replays capture the state of a
system that is executing malware and thus captures the behaviors of malware while not releasing
actual malware and provides the ability to retrospectively extract features that were not
considered relevant when the malware was first executed. There are currently 66,301 malware
recordings collected over a two-year period. The major downside is the very large size of the data
(currently 1.3TB) and the complexity in setting up the system to extract a dataset.

The authors extracted multiple datasets from the system-wide recordings including bag-of-word
counts for textual data in memory, network activity, system call traces, and counts of data
instruction mnemonics. They examined a use case in which they extracted features to use for ML.
They created a word list of all words between 4 and 20 characters long from the English
Wikipedia—resulting 4.4 million terms. They then monitored memory reads and writes looking
for byte sequences that matched words in their list. Terms were removed that appeared in a
baseline of running goodware as well as frequent terms that appeared in more than 50% of the
samples and rare terms that appeared in less than 0.1% of the samples resulting in ~460,000
terms. The dimensionality was further reduced to 2048 input features using PCA. DL on this data
achieved a median F1-score of 97.2% across all of the malware families.
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Despite having system-wide information, the PCA summary was sufficient for their dataset to
achieve high accuracy. This presents somewhat of a paradox in the claims of ML and what is
observed in deployed systems. Analyzing the memory contents in a bag-of-words fashion loses
context, and we argue, that it is akin to learning a signature. We conclude that the ML model is
able to quickly learn an effective signature-based malware detection system.

2.4.3.6. Other Datasets

Other datasets have been created, often by other security companies and hobbyists [97, 14, 43].
These datasets have not been widely adopted nor is it apparent how much maintenance they
receive. We include them here for completeness, but they do not provide any new feature
representations.

2.4.3.7. ML Perspectives

From an ML perspective, achieving such high classification accuracy is somewhat concerning as
there is fear that the model has either overfit the training data (will have high generalization error)
or the training data is easily separable. Thus, the dataset may not represent real world conditions
well and lead to unrealistic performance expectations. For EMBER, the authors point out that the
classes were easy to correctly classify and have attempted to make the task more challenging
[103] in addition to other modifications [102]. The baseline on the updated data is 86.8%.
Unfortunately, there are few results on the updated dataset.

2.4.4. Analysis of Datasets and Features

In this section, we examine which features contribute to the performance of an ML model across
the datasets. We find that 1) the most useful features vary across datasets and 2) very few papers
attempt to extract semantic features and are careful to maintain semantic information. We suggest
that the ML models operate on patterns in the data not used by the MA community and that
syntactic features are useful for discriminating between existing malware classes similar to how
non-intuitive textures in images are useful for object detection. Similar to object detection in
images, the models should not be expected to detect novel forms of malware based on their
behavior as there is a semantic gap between the data and the task.

Raman [96] examined which features are the most discriminative between malware samples from
VX Heaven and software that comes installed by default on Windows operating systems. They
were able to achieve a true positive rate of 98.6% with a false positive rate of 5.7% by only
extracting seven features from the files. Further examination revealed that the ML algorithm
learned to discriminate between Microsoft and non-Microsoft executables. As the dataset does
not represent the real-world problem well, it affects the robustness of an ML model trained on that
data. A high false negative rate would be expected with a broader set of goodware.
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Ahmadi et al. [1] extracted a large number of features that are commonly used in ML models
from the hexadecimal representation and disassembled files from the Microsoft Malware
Classification Challenge dataset with the intent of identifying features that are the most
discriminative. The examined features include:

1. byte counts (BYTE).

the size of the hexadecimal representation and the address of the first byte sequence (MD1).
byte entropy (ENT).

image representation using Haralick features (IMG1) and Local Binary Patterns (IMG?2).
histogram of the length of strings extracted from the hexadecimal file (STR).

the size of, number of line in the disassembled file (MD2).

the frequency of a set of symbols in the disassembled file (-, +, *, ], [, 7, @) (SYM).

e A

the frequency of the occurrence of a subset of 93 of possible operation codes in the
disassembled file (OPC).

9. the frequency of the use of registers (REG).

10. the frequency of the use of the top 794 Window API calls from a previous analysis of
malware (API).

11. characteristics of the sections in the binary (SEC).

12. statistics around using db, dw, and dd instructions which are used for setting byte, word,
and double word and are used to obfuscate API calls (DP).

13. the frequency of 95 manually chosen keywords from the disassembled code (MISC)

Table 2-3 shows the classification accuracy on the training set and from using 5-fold
cross-validation for each subset of extracted features using gradient-boosted decision trees. There
are several feature groups that achieve over 99% accuracy including MISC which counts the
occurrence of a set of hand-selected keywords. Surprisingly, MD1 and MD?2 (i.e. file size)
achieve about 85% and 76% accuracy respectively (random is 11.11%). This highlights a concern
that there are features which may be discriminative but are an artifact of the dataset and can easily
be manipulated adversarially.

Oyama et al. [81] examine which features have the largest impact on the EMBER dataset.
EMBER contains several feature groups:

1. General file information from the PE header such as virtual size of the file, thread local
storage, resources, as well as the file size and number of symbols.

2. Header information from the COFF header providing the timestamp, the target machine,
linker versions, and major and minor image versions.

3. Import functions obtained by parsing the address table.

4. Exported functions.
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Table 2-3. The reported accuracy on the training set and using 5-fold cross-
validation on the Microsoft Malware Classification Challenge dataset [1].

Train 5-CV Train 5-CV
Feature # Features Acc Acc Feature # Features Acc Acc
Hexadecimal file Disassembled file

ENT 203 99.87% 98.62% | MISC 95 99.84% 99.17%
BYTE 256 99.48% 98.08% OPC 93 99.73%  99.07%
STR 116 98.77% 97.35% SEC 25 99.48% 98.99%
IMG1 52 97.18% 95.50% REG 26 99.32% 98.33%
IMG2 108 97.36% 95.10% DP 24 99.05% 98.11%
MD1 2 85.47% 85.25% API 796 99.05% 98.43%
SYM 8 98.15% 96.84%
MD2 2 76.55% 75.62%

Table 2-4. Reported accuracy and number of features for each feature set in
the EMBER dataset [81].
Feature set ~ Number of features Accuracy

imports 1280 77.8
section 255 68.2
histogram 256 68.1
byte entropy 256 61.8
strings 104 61.4
general 10 56.0
header 62 529
exports 128 17.2
All 2,351 92.7

5. Section information including the name, size, entropy virtual size and list of strings
representing section characteristics.

6. Byte histogram representing the counts of each byte value.

7. Byte-entropy histogram approximating the joint distribution of entropy and a given byte
value.

8. Simple statistics about printable strings that are at least five characters long. Specifically
providing information on strings that begin with “C:\", “http://", “https://" or “HKEY_".

Table 2-4 shows the accuracy for each feature group. The imports, which also have the largest
number of features, has the highest accuracy as 77.8%. Oyama et al. report that header, imports,
section, and histogram feature groups (together) achieve about 90% accuracy. The remaining
2.7% comes from the other feature groups.

Other work makes similar observations on various datasets further indicating a needed change in
data representation:
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* Count features (histograms) promotes overfitting and, combined with the labels, produces
overly optimistic results [94].

¢ PE headers are the most discriminative [135].

* On VX Heaven, PE-Miner [111] achieves a detection rate greater than 99% only using
structural information (PE and section header information), DLLs and object files.

Despite the impressive results, none of the features capture behaviors, as the data is not tailored to
provide that information and the ML task is to detect malware—not identify behaviors.
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3. BEHAVIORAL LABELS!

As we have shown, most datasets have focused on the features which do not contain behavioral
information or it is lost when extracting features. As a first step to modeling behaviors, we take an
alternative approach and provide labels for the behavior expressed in malware so the ML model
can search for behavioral artifacts. Extracting behavioral information from an executable is a
challenging problem that is a current research area for MA. We offer a process using threat
reports for malware families to gather behavioral information.

We propose that behaviors consist of 1) a high-level intent and 2) low-level “primitives” that
accomplish the behavior. A primitive is a sequence of ordered or partially ordered (i.e., one step
depends on the previous step(s)) steps that must occur for the behavior to be successful. It is
possible that primitives may contain conditional statements that are represented better by a
directed graph than a sequence. These primitives vary by representation, malware family, or
malware toolkit. They may also involve multiple systems (e.g., network and host). Thus, the
feature representation is non-trivial. Additionally, the high-level intent of the executable is often
not in the data. Further, multiple primitives may exist that accomplish the same behavior. For
example, persistence is a common behavior for malware. This same outcome can be achieved
variously by copying the malware to the starfup folder or modifying the registry.

To label the behaviors, we leverage the MITRE Malware Behavior Catalog (MBC) [18]. MBC
supports MA mapping behavior onto the MITRE ATT&CK Matrix [122]. ATT&CK documents
common tactics, techniques, and procedures that advanced persistent threats use against Windows
enterprise networks. The behaviors are organized according to the objective of the malware such
as Anti-Behavioral Analysis, Command and Control, or Persistence. Each objective contains
behaviors and code characteristics (techniques) that support that objective. For Persistence some
of the techniques include Application Shimming, DLL Search Order Hijacking, and Scheduled
Task. Each technique has an explanation for what it covers and can belong to multiple
objectives—the Hidden Files and Directories technique could be under the Defense Evasion or
Persistence objective.

We label the behaviors of a malware family using open-source threat reports and map the reported
behaviors to the objectives and techniques outlined by MBC. In some cases, judgment has to be
made about which category is the most appropriate. We label each family multiple times and use
a peer review style to come to conclusions. The behavioral labels for each family are then
extrapolated to individual examples. The current process is subjective and time intensive, and
errors can be made based on variations of a malware family. Despite these limitations, the

"Much of this chapter comes from: Michael R. Smith, Nicholas T. Johnson, Joe B. Ingram, Armida J. Carbajal, Brid-
get 1. Haus, Eva Domschot, Ramyaa Ramyaa, Christopher C. Lamb, Stephen J. Verzi, and W. Philip Kegelmeyer.
Mind the gap: On bridging the semantic gap between machine learning and malware analysis. In Proceedings of
the 13th ACM Workshop on Artificial Intelligence and Security, pp. 49-60. 2020
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behavioral labeling helps align the data to the desired task of identifying novel malware samples
based on its behaviors. The labels would allow an ML model to directly learn the behaviors that
may be not be discernible using only the family name. Future work includes the use of natural
language processing tools to help automate the process. As new malware is analyzed, behaviors
could be mapped into the MBC directly, bypassing the need for this method.

We label the Microsoft Malware Classification Challenge dataset which includes seven malware
families, (Ramnit, Lollipop, Kelihos, Vundo, Simda, Tracur, Gatak).2 The result of this process
is a hierarchical behavioral labeling of each malware family as shown in Table 3-1. The compiled
version is accessible at https://gitlab.com/malgen/behavior_labels/. The
hierarchical structure captures both the high-level objective and employed technique(s) to meet
that objective. By providing this labeling, an ML model will learn features that are associated
with behaviors across all included malware families. By adjusting the target of the ML
algorithms, better features and models can be developed that will improve the deployment of
ML-base malware detectors.

Table 3-1. Malware Behavior Label Example for Microsoft Malware Classifica-
tion Challenge

Objective: Collection Credential Access Defense Evasion
Technique: Local Man in the Steal Web  Credential in  Credentials Disable  Process
System  Browser | Hooking Session = Web Browser  in Files Masquerading  Sec Tools Injection
Gatak X - X - - - X - X
Ramnit X X X X X - - X X
Lollipop X - - - - - - -

Kelihos X - - - - - - -
Vundo X - - - X X X X
Simda X - - - - X X -
Tracur - - - - - - -

We are not the first to suggest the addition of behavioral labels; however, our process provides
richer behavioral annotation at the cost of manual process and, as shown below, is a more
challenging problem. Semantic Malware Attribute Relevance Tagging (SMART) [28] uses the
output from anti-virus suites and parses keywords from the output providing a richer potential set
of technical feature information than other approaches [142]. For example, the output could be
Win32.Virlock.Gen.8 or TR/Crypt.ZPACK.Gen and the key words extracted are
Virlock, and Crypt and ZPACK respectively. This provides information that the malware is
respectively ransomware and packed. The keywords align with the objectives in our process but
do not provide consistent information on how the behavior is implemented, which our method
provides. They report an accuracy of 95% on 11 possible tags. Our motives are similar to those if
SMART, but the finer grained labeling that our method provides facilitates improved analysis and
forces a ML algorithm to learn to distinguish behaviors that are important to MA.

High-level additional information was shown to improve the performance of an ML model [104].
We anticipate similar improved results as well as adjustments in follow-on studies that focus on
behaviors.

2Kelihos versions 1 and 3 were combined because the threat reports did not distinguish between versions and we
dropped Obfuscator.ACY as it was a bucket for obfuscated malware for which the family could not be determined.
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3.1. Experiments on Behavioral Labels

We examine the ability of ML to generalize to novel malware on two initial behavior classifiers
trained on the behavioral annotations using a binary image representation of the malware. As a
malware family can have a combination of behaviors, we treat the problem as a multi-label
classification problem and use a binary cross-entropy loss to encode this multi-label objective.
Behavioral labels are consistent across malware families, allowing the identification of behavior
in novel malware samples. In the following experiments, we hold out one family, train the models
on the remaining malware families, and calculate the average accuracy for all of the behaviors on
the held-out class. This allowed us to test the model’s ability to reason about behaviors for a
malware family it hadn’t seen before. We compare the performance of the ML models with a
simple majority class predictor that predicts a behavior is present if it was present in the majority
of the training samples.

We establish a baseline model with a simple convolutional architecture, used for image
processing, based on [91]. Using the input size of that architecture, we selected the first 1024
bytes from our malware samples as a (32,32) black and white image. This is a limited snapshot of
malware but we saw accuracies above random chance when evaluating the model on family
classification.

To develop a more robust model for predicting behaviors from malware binaries, we used the
MalConv architecture [93], leveraging the code and model pre-trained on the EMBER dataset
described in [4]. For consistency with the baseline model, we used the first megabyte of the
malware sample represented as a flattened malware binary image as input. Additionally, we
replaced the final fully connected layer to provide outputs for each of our behaviors, changing the
output size to 56. This allowed us to fine-tune the model to evaluate the ability of transfer learning
to classify malware behaviors based on features extracted for malware detection.

In Figure 3-1, we present the average accuracy across all behaviors for each variant of the
experiment. Our transfer learning approach (MalConv)? outperforms our baseline model but the
Majority Class classifier achieves better performance than both of them. This highlights the
challenge ML faces when classifying behaviors for MA and the work that still needs to be
performed. Since all of our test samples are from the same family, (i.e. labeled with the same
behaviors), the perfect classifier would predict the same labels for each sample. If we had more
families and could hold out multiple families for evaluating generalizability, then a naive classifier
might not be as successful. Further, we examined the correlation of extracted features with the
behavioral annotations. We used the features that were used by the winning team of the 2015
Kaggle Microsoft Malware Classification Challenge [130] (7600 features in total). Pearson
correlations were calculated between the extracted features and the behaviors. Only 70 of the
features had correlation » > 0.7 with any behavior. 64 of the 70 features that are strongly
correlated with a behavior are 4-gram byte counts. Raff et al. concluded that n-byte grams were
most often picking up string features [94]. One of the behaviors with a strong correlation with
byte-grams is “rootkit”, which often inserts malicious code into commonly used processes such as

3See Al Kadri et al. [47] for a more focused approach of applying transfer learning to MalConv for predicting
malware families.
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Figure 3-1. Classifying Behaviors for Unseen Families

DLLs which are often in disassembled string information and are one type of information in the
4-gram byte counts that could be correlated with behaviors. The behavior “access credentials” has
a strong correlation with the instruction used to shift the bits in the register or memory, and is
often used to encode or decode information.

The initial results presented here are not fully optimized but highlight a semantic gap between
ML and MA based on the data used for analyses. There are several aspects that could be
examined including balancing the behaviors, data generation, and hyper-parameter tuning. The
results suggest that generalized behavior classification may be a more difficult problem than
classifying malware families. They highlight the need for a dataset with behavioral labels and that
simply using techniques that work well in other domains does not directly transfer to behavioral
identification.

3.2. Automatic Executable Labeling

We examine the impact that a more robust set of malware binaries that are labeled with automatic
executable labeling techniques has on the malware behavior classification model. One method of
automatically labeling malware binaries with behavior labels is CAPA. CAPA is a tool developed
by Mandiant that utilizes reverse engineering expertise by developing rules that use repetitive API
calls, strings, and other features to automatically identify the capabilities in a piece of malware.
CAPA is available for public release at https://github.com/mandiant/capa. Some of
the CAPA rules provide a mapping from the identified capability to a behavior in the Malware
Behavior Catalog (MBC). We found that, as of 2021-10-21, 255 CAPA rules have a mapping to a
behavior in MBC.

Behaviors that are generated by CAPA are not a complete substitute in terms of fidelity for
ground-truth behavior labels developed by a reverse engineer using hand labeling techniques.
Nonetheless, these labels are generated quickly and can automatically label a large repository of
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executable binaries. We were unable to test CAPA on the Microsoft Malware Classification
Challenge dataset as CAPA requires the input binary to be in an executable format and the
Microsoft Malware Classification Challenge dataset has been modified such that the binaries are
no longer executable. Instead, we tested out CAPA using the Malpedia dataset, an invite-only,
curated set of malware binaries found at
https://malpedia.caad.fkie.fraunhofer.de.

We obtained a version of the Malpedia dataset from 2021-06-07. The Malpedia dataset contains a
variety of binaries from different operating systems along with corresponding metadata. We had a
total of 3684 binaries, grouped into 1235 malware families, after pulling out only the windows
executables from the Malpedia dataset. The final, processed Malpedia dataset did contain samples
from malware families contained in the Microsoft Malware Classification Challenge dataset:
kelihos (3 binaries), simda (4 binaries), and ramnit (21 binaries).

We ran the final Malpedia dataset through the capa tool and processed the CAPA output to
generate behaviors from MBC for each binary. In total, 2968 binaries had at least one behavior
label from capa. We found the highest behavior count to be 50 unique MBC behaviors for a single
binary.

We found that the automatic executable labeling techniques such as CAPA effectively generate
behavior labels for a large set of binaries relatively quickly compared to hand-labeling. Although
these labels are not as accurate as hand labels produced by a reverse engineer during analysis,
these labels could potentially improve the performance of malware behavior classification models
such as MalConv by increasing the size of the training dataset, especially when combined with
hand labels. Additionally, automatic executable labeling provides behavior labels that are specific
to each executable, rather than labels that are specific to a malware family and then generalized to
an executable within that family, as is the case with the Microsoft Malware Classification
Challenge dataset.

We made some initial progress towards incorporating the labels produced by running CAPA over
the Malpedia dataset into the MalConv behavior classification model. However, we did not finish
training MalConv on a dataset labeled with automatic executable labeling tools. Rather, this work
spun off into the CAPC Seedling project MAGNI, funded under the VANAHEIMR task.
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4. FEATURE SELECTION FOR INFORMATION-SECURITY
NATURAL-LANGUAGE PROCESSING TASKS: AUTOMATED
LABELING OF ATT&CK TACTICS IN MALWARE THREAT
REPORTS'

4.1. Introduction

Malware continues to represent a significant threat to many domains, causing trillions of dollars
of damage every year. It is estimated that 2.9 million dollars is lost every minute from the global
economy due to cyber-attacks [66]. A principal problem is that traditional ways of defining
malware are very limited in scope. Up until recently, antivirus companies like Comodo,
Kaspersky, Kingsoft, and Symantec have provided software to detect malware that relies on
signature-based methods [137]. These signatures are short sequences of bytes that are unique to
each malware executable, which produces brittle malware detectors with little capability of
classifying new malware files. However, by the time they identify the new signature as malicious,
malware generally has a large infection rate and often has already morphed into a new variant
(polymorphic malware). The average length of time it takes to identify the new malware samples
with traditional detection techniques is around 54 days, and it is estimated around 15% of
malware is still undetected after 180 days [137].

In order to fix the above problem, a concerted effort by the research community has resorted to
using machine learning (ML) methods to detect malware. These methods follow a process of
feature extraction of the malware executable, followed by classification or clustering of the
malware samples [137]. Feature extraction of malware involves using static analysis, dynamic
analysis, or some hybrid of the two. Static analysis involves extracting features without actually
executing the malware, generally from the malware binaries. Dynamic analysis involves actually
running the malware and analyzing what it does while it runs, generally through the use of a
debugger while the malware is contained in some sort of controlled simulation environment. Ye et
al. provide a survey of ML results and show that many ML methods achieve classification rates
well above 90% for identifying malware samples. However, while the ML methods do quite well
on samples of malware they have already learned, these models are often easily evaded in practice
with a variety of obfuscation techniques. Further complicating the issue of detecting malware
with ML is adversarial learning. Adversarial learning allows attackers to perturb malware
samples enough so that when they are inputted into machine learning networks, the networks are
fooled into labeling them as benign [25]. Many of these adversarial samples are examples of

ICitation of work: Eva Domschot, Ramyaa Ramyaa, and Michael R. Smith. Feature Selection for Information-
Security Natural-Language Processing Tasks: Automated Labeling of ATT&CK Tactics in Malware Threat Re-
ports, in submission 2022
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polymorphic malware, and it is not well understood why these networks are so easily
misled [25].

Recent work has began to identify new ways in which zero-day malware can be identified without
relying on signatures, instead working to identify malicious behaviors [115]. Here behaviors refer
to actions taken by the malware such as DLL injection or process hollowing. Additionally, while
behavioral analysis in information security typically refers to dynamic analysis, here we mean the
labels that a malware detector predicts and can be used with inputs from static or dynamic
analyses. This work focuses on labeling malware samples with behavioral labels through the use
of malware threat reports following Smith et al. [115]. Malware threat reports are reports written
by malware analysts, giving in-depth descriptions of how different kinds of malware behave.
Unfortunately, there is often inconsistency between different authors and organizations in how
these reports are written and terms that are used, making the process of labeling malware from
them a manual, laborious task. Automating this process would significantly reduce analyst time
and aid in labeling malware samples from threat report to executable, giving new ways in which
malware could be detected. In 2020, Legoy et al. used a labeled dataset of malware threat reports
that had been labeled with MITRE ATT&CK tactics and techniques [62]. As this is a multi-label
dataset, each label was given an individual classifier. In order to summarize the results, they
reported both the micro and macro averages of the precision, recall, and Fs-score, averaging over
the results for every label. The macro average is a standard average, where every label is treated
equally [126]. In contrast, the micro average weights each sample equally, meaning it is able to
capture any imbalance of the distribution between labels, which can be important when working
with many labels, all with different distributions of classes. A macro average may overestimate or
underestimate the average if some of the labels have many more positive samples than other
labels. This differs from other ML problems not dealing with multi-label or multi-class datasets.
In summation, the work done by Legoy et al. illustrates the challenges with using natural language
programming (NLP) techniques that are not specific to the information security domain, their best
model achieving a macro average Fs-score of 27.52% for techniques and 59.47% for tactics.

The work in this paper focuses on the task of automating this process of labeling malware threat
reports. Our contributions to this task include an examination of word embedding techniques that
have commonly been used for NLP tasks, as well as feature selection methods which are not
commonly used as a part of the pipeline of NLP related tasks. We demonstrate that word
embedding methods that are not domain specific are insufficient for information security tasks,
requiring a large amount of data in order to perform well. In response, we offer a novel feature
selection approach, which shows improved performance in the labeling of MITRE ATT&CK
tactics in threat reports. This work indicates that, although feature selection has not been used as
commonly for NLP tasks, it may be useful for information security tasks, where more traditional
methods are not able to pick out the relevant domain specific terms. We improve over the work
done by Legoy et al., who used non-domain specific NLP methods. Our work shows an F'5-score
of 65% for the prediction of tactics when using feature selection techniques in order to create a
feature set of the most relevant information security terms for each label, compared to 59% from
Legoy et al. All of the code used for this project, as well as the lists of low frequency words, used
to improve mutual information, can be found at our Git repository 2.

Zhttps://gitlab.com/dummylink
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4.2, Background

In this section, the background of the main methods utilized in this research will be explained, as
well as the MITRE ATT&CK framework and past work done to label malware threat reports.

4.2.1. MITRE ATT&CK

The MITRE ATT&CK framework is a knowledge base of adversary tactics and techniques, taken
from observations of attackers and malware [62]. In recent years it has gained prominence, as a
way of creating a standardized language around discussing cyber threats. The MITRE ATT&CK
framework can be divided into three different different domains, namely Enterprise, Mobile, and
ICS. Enterprise describes behaviors on standard IT systems, such as Linux or Windows; Mobile
describes behaviors on mobile devices, using operating systems such as Android; and ICS
describes behaviors carried out against industrial control system networks. The Enterprise
domain, which this work focuses on, can be divided into tactics and techniques. Tactics represent
the goal of the attacker or malware sample, and a list of the twelve MITRE ATT&CK tactics is
given in Table 4-1. Every tactic has multiple techniques, which are ways in which the tactic can
be achieved. In this work, the behaviors align with the techniques. Despite the creation of the
MITRE ATT&CK framework, its adoption has yet to be universal.

4.2.2. Related Work

In 2017, Lim et al. [64], created an annotated set of malware threat reports by hand, using the
Malware Attribute Enumeration and Characterization (MAEC) vocabulary, a system defining
malware behaviors, malware capabilities, malware families, malware instances, and malware
collections. In the end, they created a labeled dataset of 39 malware threat reports by mapping
malware actions and behaviors to MAEC labels. They then used a support vector machine (SVM)
and naive Bayes to predict these MAEC attribute labels, achieving an F1-score of 40% for
defining malware capabilities, which were the most successfully predicted. Malware capabilities
most closely align with MITRE ATT&CK tactics, with equivalent labels such as exfiltration and
privilege escalation.

Then, in 2020, Legoy et al. [62], attempted to automate the prediction of MITRE ATT&CK
tactics and techniques on a dataset of malware threat reports . Their work differed from the work
of Lim et al. who annotated malware threat reports by hand. Instead, they used MITRE ATT&CK
tactics and techniques to create a labelled dataset. To do this, they used the references to threat
reports that MITRE ATT&CK has for each tactic and technique. Their best performing method
was Linear SVC using term frequency-inverse document frequency (TF-IDF), a bag-of-words
(BOW) representation that ensures that terms which appear across the majority of documents
have a lower weighted representation. For the prediction of tactics, they obtained a macro average
precision score of 60.26%, a macro average recall score of 58.5%, and an F 5-score of 59.47%.

39



4.2.3. Feature selection

Feature selection has often been applied to text categorization as a way of improving
performance, as well as the accuracy of the baseline classifier [140]. Text often contains many
words that are distractors or do not add any information within a dataset, reducing overall
accuracy of the classifier. As a result, feature selection methods are used in order to find the best
set of words to use as features that convey the most amount of information and remove distractor
words. The two feature selection methods we used for this research, mutual information and the
Chi-squared statistic, are discussed below. For a broader discussion of possible NLP feature
selection, see, for example, the survey presented by Kumbhar and Mali [57].

4.2.3.1. Mutual Information (MI)

Mutual information (/) measures the mutual dependence between two random variables and
indicates how much one can determine from knowing the state of the other random variable.
Mutual information can be defined as shown in Equation 4.1, where ¢ represents the term and ¢
represents the category [134].

I(t,c) = logz—c “4.1)

Mutual information compares the joint probability of ¢ and ¢ occurring together with the
probabilities of ¢ and ¢ occurring independently. When ¢ and ¢ are dependent, P(z,c) should have
a much higher probability than P(z)P(c), and I(t,c) should be greater than zero [134]. When
independent, (¢, c) is equal to zero. Mutual information has been shown to have a bias towards
terms with a low frequency [136].

Mutual information has been shown to aid in feature selection with NLP tasks. Mutual
information was combined with a Bayesian algorithm to classify the topics of news documents,
showing much improved results [78]. In addition, mutual information has been used for
information security tasks. In the work by Amiri et al., they used mutual information to reduce
the feature set for intrusion detection on network information [2]. Mutual information did well on
this task where intrusions are anomalous behaviors, perhaps due to mutual information picking
out rare features. This is similar to the problem being focused on in this research where many
labels are small portions of the text.

4.2.3.2. Chi-square Statistic (CHI)

The chi-square metric measures the independence between two events using statistical testing.
The equation for the metric can be seen below in Equation 4.2 where N is the number of
documents, 7 is the term, ¢; represents the i"category, 7 represents the absence of the term, and ¢;
represents non-membership of the category [140].
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Chi-squared is a normalized metric, which can be compared across features of the same

category [136]. However, it is known that this normalization does not work well for
low-frequency terms in the feature set, unlike mutual information, which places emphasis on rare
terms [136]. Chi-squared has been proven to do very well for text classification tasks, often
outperforming other feature selection metrics [99].

4.2.3.3. Feature Selection for Imbalanced Datasets

Feature selection has been shown in the past to achieve better results when used on imbalanced
text datasets [140], similar to the dataset utilized for this research. Instead of attempting to
balance the training data, feature selection metrics are used in order to pick the most useful words
out of the text, obtaining the optimal set of negative and positive features. Zheng et al. [140]
showed that using feature selection that only focuses on the presence of the positive class does not
achieve great benchmarks against not using feature selection. However, taking the absence of the
class into consideration does have a noticeable impact in terms of the result. In addition, they note
that two-sided feature selection methods such as chi-squared are not as good at this task as they
seem. Two-sided feature selection methods are those which take both positive and negative
features into account. In contrast, one-sided feature selection methods only take the positive
features into account, meaning the classifier only has features that represent the presence of a
label. These methods tend to be biased towards terms correlated with the positive label, especially
when the dataset is imbalanced because the positive features occur less in the dataset and are
usually scored more highly due to that fact. Instead, they found that one-sided feature selection
methods could achieve better results if the best terms were picked first from the positive feature
set and next, from the negative feature set. Our work differs in that no one-sided metrics were
used. However, the weaknesses that this work exposes in two-sided metrics do aid in
understanding the work that was done to improve mutual information.

4.24. Word Embeddings

Word embeddings, which map terms as vectors, are one of the key breakthroughs for NLP
because they allow words with similar meanings to have similar representations. This is different
from the traditional BOW models, which do not have a good way of showing that words may be
related. There are several different kinds of word embeddings which include continuous
bag-of-words (CBOW), skip-gram, and GloVe [85]. We focus on GloVe, which has achieved state
of the art performance in many NLP tasks [10, 85].

GloVe produces term embeddings using a deep neural network based on matrix factorization
techniques and is created through a least squares model trained on global word co-occurrence
counts [85]. This differs from a skip-gram model, often used to implement Word2Vec, which
trains on separate local context windows. For this reason, skip-gram poorly utilizes the statistics
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of the corpus. Research has shown that GloVe outperforms other word embeddings on benchmark
tasks, such as the word analogy dataset, as well as on named entity recognition (NER) [85].
GloVe embeddings are often used as the embedding layer of long short-term memory (LSTM)
algorithms for text classification tasks because LSTM networks are able to capture sequential
patterns in text that BOW feature sets are not able to capture [10]. In 2017, Barry showed that an
LSTM network using GloVe had better results with sentiment classification than either a BOW's
approach or using Word2Vec [10].

4.3. Data

We examine feature selection and the performance of assigning behaviors defined by the MITRE
ATT&CK framework to threat reports. The dataset comes from the rcATT repository, produced
by Legoy et al. 3. The data contains 1490 malware threat reports, labeled with MITRE ATT&CK
tactics and techniques. While our end goal is to label the malware techniques in threat reports,
this work focuses mainly on the ATT&CK tactics, mainly for reasons of computing power
because there are 200 techniques that would require feature selection methods to first be used
over them, a task that could take several days to finish. However, this work is extendable to the
techniques as well, given more compute power. It should also be stated that feature selection only
needs to be run once so long as the feature sets are stored, making the issue of processing speed a
one-time problem. The threat reports come from a variety of sources, which means they do not
have any explicit structure. The data is also multi-label with twelve different labels for the tactics.
Furthermore, this dataset is also imbalanced, with some tactics having as few as 75 samples, as
shown in Table 4-1. Both class imbalance and multi-label problems create more difficult
problems for ML.

For data pre-processing, all punctuation, non-letters, and NLTK English stop words were removed
from the text. Additionally, the text was lemmatized, using the NLTK lemmatizer. [65].

44. Approach

The next sections discuss how our feature selection and GloVe methodology were set up. All
methods were tested using five-fold cross validation. Because this is a multi-label dataset, every
text document can have multiple independent tactic labels. This is different from other MLL
problems where a data point can only have one label. To handle this problem, a separate classifier
was trained for every single tactic label when feature selection was used. However, the BILSTM
model we used with a GloVe embedding did not need separate classifiers and instead outputted a
one-hot encoding of twelve neurons, one for each tactic.

3https://github.com/vlegoy/rcATT
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Table 4-1. Tactics Breakdown

Tactics Number of Reports
Credential Access 306
Execution 488
Impact 75
Persistence 590
Privilege Escalation 403
Lateral Movement 343
Defense Evasion 768
Exfiltration 123
Discovery 356
Collection 236
Command and Control 406
Initial Access 202

4.4.1. Feature Selection

Many of the threat reports in the dataset contain upwards of 60,000 words; however, the mention
of a MITRE ATT&CK tactic may only be a single sentence out of the entire document, which
means most of the text is not useful when trying to predict the correct labels. This is one
motivating reason to use feature selection methods to help remove the distracting words from the
feature set. First, both mutual information and chi-squared were applied across the training set in
order to reduce the features. After using feature selection, a TF-IDF approach was used to
transform the dataset. Finally, Linear SVC, the best performing method used by Legoy et al., and
Logistic Regression were applied to make predictions on the dataset.

4.41.1. Mutual Information

First, mutual information scores were generated for the training set for each individual tactic label
i.e. the mutual information scores were first generated for each of the terms in the dataset for each
tactic. As discussed above, a mutual information value of zero indicates independence, with
higher values indicating dependence. After scoring each term in the dataset with a mutual
information score, the terms that had the highest mutual information score were used in order to
set the threshold. This is because mutual information was scoring all of the most informative
words with the same score (the highest score). Using a lower threshold did not add any valuable
features, in terms of making better predictions. Thus, any word, with a mutual information score
lower than the terms that had the highest mutual information score, was removed from the feature
set.

The results of this method can be seen in Table 4-2 for method MI SVC and MI Reg. It can be
noted that when mutual information was applied to Linear SVC (MI SVC) the precision dropped
by one percentage point from the baseline L. SVC classifier, and there is a slight improvement in
the score of the recall. The same can be seen when mutual information is applied to Logistic
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Table 4-2. Feature Selection Results. Mutual information provides the op-
timal results when considering both precision and recall. GloVe, despite
achieving state of the art results in many domains, is not able to do so for
information security threat reports.

Method Macro Avg Prec. Macro Avg Recall Macro Avg F5
L.SVC 0.628 0.436 0.577
L. Reg. 0.668 0.266 0.513
MI SVC 0.617 0.457 0.576
MI Reg. 0.565 0.300 0.480
MI2 SVC 0.677 0.574 0.654
MI2 Reg. 0.667 0.399 0.588
CHISVC 0.667 0.414 0.594
CHI Reg. 0.559 0.242 0.443
GloVe Pre-trained 0.412 0.218 0.350
GloVe Weighted 0.379 0.685 0.416
GloVe InfoSec-trained 0.395 0.698 0.433

Regression (MI Reg). The precision drops by close to one percentage point from the baseline
Logistic Regression classifier (L. Reg.) and improves slightly for recall. These results do not
indicate any substantial improvement; however, taking note of the weaknesses of mutual
information (described below) indicates areas where the feature selection may be improved
upon.

The work by Yang et al. shows that mutual information is heavily biased towards low frequency
terms, which can create too much noise in the dataset [136]. In addition, the work by Zheng et al.,
discusses the weakness of using two-sided metrics for feature selection, which tends to place
higher relevance on positive features, especially when used for imbalanced datasets [140]. Mutual
information, which takes into consideration both negative and positive features, is a two-sided
metric. Positive features refer to features that are highly correlated with the presence of a label in
a document (positive class). Negative features are those that represent the absence of a label
(negative class). Taking all of this into consideration, low frequency terms that appear in only
one, two, or three documents were removed from the feature set for the positive class. There was
no benefit from removing low frequency terms for the negative class. In fact, it caused a decrease
in both precision and recall, so only low frequency terms for the positive class were removed.
After this modification, Logistic Regression and Linear SVC surpassed the scores of the baseline
classifiers as seen in Table 4-2 (rows MI2 SVC and MI2 Reg). For Logistic Regression (MI2
Reg), the precision score stays almost the same as the baseline L. Reg. classifier, but recall
improves by 13.3 percentage points, a substantial increase. Linear SVC (MI2 SVC) has a
precision score of 67.7% and a recall score of 57.4%, beating the L. SVC classifier by 4.9
percentage points and 13.8 percentage points respectively. The fact that both Logistic Regression
and Linear SVC improved so much when this method of feature selection was used, further
proves that this methodology is picking out the correct terms.

There are multiple possible explanations for why pulling out low frequency words from the
positive class helped. One possible explanation is that mutual information is biased towards
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picking more terms from the positive feature set, which caused excess noise. Removing some of
those terms reduced this noise and brought more balance between negative and positive features.
Second, it can be noted again that the positive labels may only be a single sentence out of an
entire document, and as such, infrequent terms that appear in those documents are likely to cause
a lot of noise, which is why the positive class benefits from their removal. In contrast, the negative
labels only indicate the lack of the label, and infrequent terms seem to aid in their prediction.

4.4.1.2. Chi-squared

Next, Chi-square scores were generated on the training set for each word in the feature set and for
each individual tactic label. A p-value of .05, along with one degree of freedom, was used to
obtain the critical value of 3.84 from the chi-squared distribution table. Any word with a
chi-squared value greater than 3.84 was assumed to be independent of the label and left out of the
feature set. The results are shown in Table 4-2 for rows CHI SVC and CHI Reg. It can be seen
that using the chi-square metric improved the precision from the baseline (L. SVC) when Linear
SVC was used, but the average recall score dropped by 2.2 percentage points. When Logistic
Regression was used, chi-squared does worse on both recall and precision than the baseline
Logistic Regression model (L. Reg.). The chi-square metric is also a two-sided metric, similar to
mutual information, so it shares the same weakness of prioritizing the positive features. However,
removing low frequency words did not aid the chi-square metric. This is likely because chi-square
is not biased towards the infrequent terms in the same way that mutual information is.

4.4.2. GloVe Embedding

A GloVe embedding was used with a bidirectional LSTM (BiLSTM) architecture, which is a type
of recurrent neural network (RNN). The BiLSTM model is comprised of a GloVe embedding
layer, a BILSTM layer, two dense layers, and a dense layer with sigmoid activation that outputs
twelve neurons, one for each tactic. Binary cross entropy was used for the loss. A threshold of 0.5
was set for the predictions. In addition, the batch size was set to 128, and the model was trained
for five epochs, based upon trial and error. While, the number of training epochs may seem low,
using a higher number of epochs quickly led to over-fitting of the model, showing the model’s
inability to generalize to the information-security data. We examined several GloVe embeddings,
two of which are outlined below.

4421, Pre-trained GloVe

First, we used the common crawl GloVe embedding, created by Stanford [85]. This embedding
was trained over 42 billion tokens, with a 300 dimensional vector space and was used as the
embedding layer of the BILSTM model. The results can be seen in Table 4-2 for the method
pre-trained, which shows scores that are much lower than the baseline Linear SVC (L. SVC)
method.
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In order to further aid the BILSTM model, a weighted binary cross entropy function was created
(Weighted in Table 4-2). Class weights were first assigned for the positive and negative classes for
each tactic. The weighted loss function returns the mean of the weight matrices for each class
multiplied together with binary cross entropy. The average recall is almost 70%, surpassing all
methods used so far. The precision, on the other hand, dips by 3.3 percentage points from the
unweighted BiLSTM model, and the precision is overall much lower than any of the feature
selection methods using Linear SVC or Logistic Regression. This indicates that many false
positives are returned.

4.4.2.2. Information-security Trained GloVe

As can be seen from the results using a pre-trained GloVe embedding, the overall precision is low
for both methods. This may be due in part to the fact that the dataset is full of highly specific
information-security words that the GloVe embedding was never trained over. In order to test this
theory, tools from the GloVe repository were used to create an information-security specific
GloVe embedding. To do so, we downloaded a corpus that contains the first 100 million
characters from Wikipedia, which is then supplemented with domain specific texts, in order to
create a GloVe embedding. Since training a GloVe embedding requires large amounts of data, we
had to supplement the information-security documents with those from Wikipedia. In all, a
training set of 211,000 information-security documents was collected for training a GloVe
embedding. This included 503 malware threat reports downloaded from the Github repository
APTnotes [11], around 42,000 entries extracted from Exploit Database [109], around 165,000
CVE entries from MITRE [19], around 1400 cybersecurity blog posts extracted from Krebs on
Security [56], and the 1490 reports from the examined dataset. All of the text documents were
tokenized and then used to create a GloVe embedding. The results from using this embedding
with the weighted loss function are shown in Table 4-2. It can be noted that there is a small
improvement in results from the weighted LSTM model.

4.4.2.3. Evaluation

Overall, using an BiLSTM with a GloVe embedding scored highest on the overall recall score,
with the GloVe embedding trained on the cybersecurity corpus scoring the highest with a recall
score of 69.8%.

However, precision did not go above 50% for any of the three GloVe embedding methods.
Overall, mutual information, with low frequency words pulled out for the positive class, did the
best, with both recall and precision scoring above 50%. It also has the highest F 5-score of
65.4%.

While GloVe has often done better on text classification than TF-IDF methods [10], it seems that
in this case a word embedding did not sufficiently represent a highly domain specific dataset.
While, we also tested a GloVe embedding trained over a information-security corpus, it also
performed poorly. One possibility is that it was not trained over a large enough corpus, indicating
that many more documents would be necessary to improve the result. In addition, many of these
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labels might only be represented by a few words out of an entire text document. This is different
from other text classification tasks where GloVe has been proven to do well, such as sentiment
analysis or classifying the topic of a document [10]. In those scenarios, often most of the text is
relevant to the label being predicted. This in part helps to explain why feature selection would aid
in classification so much because it removes the noise from the irrelevant portions of text.

4.5. Class Imbalance Methods

After selecting mutual information along with Linear SVC as the best performing method, further
work was done to increase the performance of the classifier. This section focuses on different
methods of correcting the imbalance in the data. Previously, sampling techniques have often been
applied as a method of correcting the imbalance within the data [131]. Oversampling is used to
create more samples of the minority class by duplicating the minority class; however, it is prone
to over-fitting on the data. In contrast, undersampling removes samples of the majority class until
there is an even distribution of samples. The work by Legoy et al. on the same dataset used
resampling of the minority class in an attempt to improve results, but their work did not show any
substantial improvement for recall or precision. Instead, we examine two different methods of
correcting data imbalance.

4.5.1. SMOTE: Synthetic Oversampling

SMOTE is a method of oversampling the minority class by creating synthetic data samples [15].
The synthetic samples are created from the feature space by interpolating between k-nearest
neighbors of the same class. For this work, SMOTE was applied to the training set with 3-nearest
neighbors after feature selection had been used to pick the optimal set of features. Finally, Linear
SVC was used to make predictions on the test set.

4.5.2. Snorkel: Weak Supervision

Another method to address data imbalance is to label more data. However, this is often a time
consuming task because most labeling has to be done by experts who go through the text
documents manually. Snorkel is an implementation of weak supervision where users can generate
labeled training data by using labeling functions, which apply well known heuristics and rules to
the task [98]. The labeling functions may be overlapping and have noise. Snorkel then uses an
ML model to predict the best set of labels for unlabeled text documents [98].

Here, 503 unlabeled malware threat reports were downloaded from the Github repository
APTnotes [11]. In order to create the labeling functions, heuristics were needed for each tactic.
Snorkel seems to work best when there are labeling functions for both the positive and negative
classes. This was a challenging problem given that the negative class represented the absence of a
tactic. However, there is the possibility that the absence of a tactic makes other malware tactics
and behaviors more likely to show up in the text. Using that assumption, the training data was
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used in order to find high frequency words that mainly show up for the positive label or mainly
show up for the negative label. These lists of words were then used to create the labeling
functions.

Once the labeling functions were created, the unlabeled set of documents from APTnotes was
labeled using the Snorkel model. The Snorkel predictor will either predict one of the labels
(positive or negative in this case), or it abstains from giving a prediction when the model is
uncertain or there isn’t a relevant labeling function for a text document. In this case, we made the
assumption that abstain predictions could also be seen as an indicator of the absence of a label, so
all of them were changed to negative labels. Snorkel was applied after using mutual information
on the dataset.

4.5.3. Evaluation

The results of SMOTE and Snorkel are shown in Table 4-3. The table shows the results of using
SMOTE and Snorkel without any feature selection, as well as the results of using SMOTE and
Snorkel after mutual information has been applied. The Linear SVC baseline model is also shown
here.

It can be seen that SMOTE without any feature selection greatly improves the average recall score
from the baseline classifier, with an improvement of 14.5 percentage points. On the other hand,
the precision dropped by two percentage points. SMOTE, with mutual information, improved
even further, gaining twenty-one percentage points in recall over the baseline classifier, with
precision only being one percentage point less than the baseline. This affirms that mutual
information is finding a more optimal feature set, which allows SMOTE to create synthetic
samples that have far less noise. Additionally, it can be seen that SMOTE with mutual
information outperforms the recall of just using mutual information by eight percentage points,
although it does worse in terms of precision.

Snorkel, on the other hand, only gains 3.5 percentage points in terms of precision against the
baseline classifier, and the recall score drops over ten points to 31.7%. Using mutual information
alongside Snorkel improves the results, but still does worse than just using mutual information on
its own. It is likely that Snorkel could be improved upon if better heuristics were given to the
labeling functions. The biggest challenge is in creating the labeling functions that indicate the
absence of a tactic.

4.6. Discussion

In summation, the key findings of this research showed that many of the state of the art techniques
used in NLP need to be adapted specifically for the information security domain. Our methods
provide a 6% gain in the F 5-score from the research done by Legoy et al. when mutual
information was used as a feature selection tool when predicting tactics. Additionally, a
combination of SMOTE and mutual information saw a gain of 2% in precision from their work
and a gain of 6.5% in total recall, with both methods achieving higher F5-scores. Of note is the
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Table 4-3. Data Balancing Results. Snorkel generally improves the precision
while SMOTE increases the recall. Mutual information feature selection (FS)
increases both the precision and the recall.

Method Macro Avg Prec. Macro Avg Recall Macro Avg Fs

L.SVC 0.628 0.436 0.577
MI2 SVC 0.677 0.574 0.654
SMOTE 0.604 0.581 0.599
Snorkel 0.663 0.317 0.544
SMOTE FS 0.621 0.656 0.628
Snorkel FS 0.667 0.417 0.596

fact that mutual information performed so well in this scenario when the infrequent words were
removed for the positive label in the training set. Past research has shown that other feature
selection methodologies, such as chi-squared, have generally out performed mutual information
when used for classification tasks [134, 99]. This work indicates that mutual information can
outperform chi-squared when it is pruned of some of the infrequent terms that it is biased
towards. This work also showed that traditional feature selection out performed GloVe on an
information security specific task, likely because the pre-trained GloVe embeddings have been
trained over more generalized text documents.

In the future, this work could benefit from being extended to the MITRE ATT&CK techniques as
well, although generating the feature sets for around two-hundred technique labels may be a time
consuming task, which is one potential downfall of this approach. However, once generated, the
feature sets do not have to be created again unless the training data were to change. Further, it
should be understood that the MITRE ATT&CK framework is constantly adapting and combining
or adding labels to their system as new behaviors are discovered. While this does not invalidate
any of the labels within this dataset as being incorrect, it does give room towards improvement in
creating a more dynamic dataset.

4.7. Conclusion

In this paper, we have discussed past research that has been done on labeling malware threat
reports with behavioral labels, showing that further pre-processing of the data may be beneficial.
This led to our research in using feature selection methodology as a way of creating optimal
feature sets to improve overall precision and recall, as well as leading into our work with
attempting to balance the dataset with other pre-processing methods such as SMOTE and Snorkel.
Additionally, we also compared to current state of the art methods for NLP tasks, such as GloVe.
This work showed that feature selection outdid GloVe when working with a very domain specific
dataset. Finally, we also showed improvements in the results when using SMOTE to to create
synthetic data to fix the data imbalance.

As malware continues to find news ways to evade detection, our purpose is to find new ways in
which we can automate the labeling of malware with behaviors. The ability to detect malware by
the behaviors it exhibits not only aids in detection but also aids the malware analysts, who now
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have starting places of behaviors that they can look for. Unfortunately, there are not many datasets
of malware that are labeled with these kinds of behaviors. The work from this research aims to
help with this task by giving a means to utilize all of the prior information that has already been
written about malware in order to create these kinds of labeled datasets. In addition, this research
aims to aid analysts by collating important information for them.
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5. GENERATING NOVEL MALWARE WITH SPECIFIC
BEHAVIORS!

Recent generative techniques are capable of generating images with specific visual characteristics
by conditioning the generative process with labels representing those characteristics. To borrow
some of the techniques from the image domain for our initial experiments, we use the binary
representation of an executable from the Microsoft malware classification challenge (which has
some of the PE header stripped off so that it is not executable). We follow the process of
transforming the executable into a gray-scale image for direct consumption by a ML

algorithm [74] (which also demonstrated the success of detecting malware with image
representations of the executable).

We examine the conditional subspace variational auto encoder (CSVAE) [55] and a flow based
generative model (GLOW) [54] for generating malware with specific behaviors. We chose the
CSVAE and GLOW models empirically, as they create images with specific visual features and
are relatively simpler to train than more complicated models. The CSVAE was developed to
provide a neural network architecture that incorporates conditional information into the VAE,
both during training and also for subsequent use as a generative model. GLOW has similar
functionalities, but theoretically it can provide exact latent-variable inference without
approximation based on a sequence of bijective functions. A schematic diagram of the CSVAE
used in our research is shown in Figure 5-1 and GLOW is shown in Figure 5-2.

Despite the impressive performance by generative adversarial networks (GANSs) in generating
synthetic data, we specifically chose to not examine GANs due to the large amounts of data
required to train them [51]. Various methods have been proposed to reduce the number of training
images for GANs and conditional GANs [67, 51, 139, 125] that we plan to investigate as part of
our future work.

We used the CSVAE? and Glow 3 author’s GitHub code as well other GitHub sites*>-6 for
reference and inspiration in designing and implementing our CSVAE and GLOW models. We
extended this CSVAE code base to allow for subspace reconstruction as a separate path along
with image reconstruction. In Figure 5-1, this is shown as the sub network below which takes in a

ICitation of majority of this work: Michael R. Smith, Stephen J. Verzi, Nicholas T. Johnson, Xin Zhou, Kanad
Khanna, Sophie Quynn, and Raga Krishnakumar. Malware Generation with Specific Behaviors to Improve Ma-
chine Learning-based Detection. In 2021 IEEE International Conference on Big Data (Big Data), pp. 2160-2169.
IEEE, 2021.

https://paperswithcode.com/paper/learning-latent-subspaces—in-variational

3https://github.com/openai/glow

“https://github.com/alexlyzhov/latent-subspaces

Shttps://github.com/AntixK/PyTorch-VAE

®https://github.com/y0ast/Glow-PyTorch
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Figure 5-1. CSVAE neural network architecture used in our research. This
architecture includes four convolutional sub-layers in both the encoder and
decoder portions of the VAE as well as two latent layers, one each for the

malware images and behaviors.
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Figure 5-2. GLOW generative model used in our research. This architecture
uses the label likelihood to condition the latent spaces on the behaviors.
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vector of 0’s and 1’s corresponding to the behaviors present in an executable. Once we have
trained our CSVAE and GLOW models on the malware images and behaviors [115], we use the
trained model to generate malware samples with specified behaviors.

We start our investigation using only 64x64 images of the malware to establish the feasibility of
using synthetic data. We only use the first 64x64 bytes and truncate the rest of the
executable—recognizing that with a limited portion of the executable the behavior may or may
not be present. In the generation process, the set of behaviors present is used to condition the
generation process. With only 7 distinct families (combinations of behaviors) disentangling any
correlations between the behaviors is also a concern. The CSVAE is beneficial here since part of
its design and loss function help in disentangling behaviors from each other and from the malware
images. (GLOW does not have the same mechanism and is apparent in the results).

In our CSVAE implementation, each convolutional sublayer consists of a two-dimensional
convolutional neural network (CNN) layer with 5x5 kernels, a stride of 2 and padding of 2.
Initially we looked at using both batch normalization and pooling, but we settled on using just
batch normalization without pooling. In visual inspection of the results, pooling produced images
that were significantly blurrier than not pooling. Since each byte can convey important
information, we opted not to use pooling. We use leaky ReLU activation in the convolution
layers. We added two additional weighting factors (8, and 34 in Equation 5.1) to the first two
parts of the loss function specified by Klys and colleagues [55] (see Section 4.1 of [55] for more
details) so that we could separate the contribution of each latent layer’s KL divergence to the
composite loss function. The third part of the loss function remains the same, now using 5 in
Equation 5.2 in this manuscript.

min {E@(Ly) [ﬁl ]Eq¢ (z,wlx,y) [lOg (pO (x|W7 Z) )] +

6.9,
T BaDralas vl o v+ o)
B3Dkr(qe(zlx,y)[[p(2)) —log(p(y))] '
BaEy, ey 2[5 (¥12) log(g5 (v]2))]}
max{BsEq, (e 7 () [45(V12)]} (5.2)

Here, log(pg(x|w,z)) is the marginal log-likelihood for reconstruction of the data x conditioned
on the latent space z and a subspace w. The latent subspace w is conditioned on the label vector y
(in our case, the set of behaviors) as log(py(wly)). Dk represents the KL divergence, and g,
represents a learned approximate posterior. The mutual information between y and z is minimized
by maximizing gg(y|z) in Equation 5.2, since I(Y;Z) = H(Y) — H(Y|Z), where H(Y) is fixed. In
clearer terms, 3; weights the generative loss — how different is the model image output from the
model image input; 3, and 33 weight the conditional latent losses for w and z, respectively —
penalizing g, for deviating from the desired distribution (e.g., .4 (i, 0)); B4 weights the
conditional entropy of y|z subject to the maximum computed in Equation 5.2; and s weights the
conditional entropy between y and z. During learning we use mean squared error to compute
reconstruction error for the image (x in the first term in Equation 5.1) and binary cross entropy for
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Table 5-1. CSVAE parameters and values.

Parameter Value
CNN kernel size 5x5
CNN activation | leaky ReLU
learning rate 0.001
batch size 256
training epochs 1000
B 20
B2 0.00001
B3 0.00002
B4 10
Bs 1

behavior reconstruction (y in Equation 5.2). We also use Pytorch’s distributions to compute KL,

divergence [83]. A table of parameters and values used in our CSVAE implementation is provided
in Table 5-1.

GLOW is one type of flow-based generative model which takes high-dimensional vector x (binary
image) as input then compressing it into latent space z with a sequence of transformations based
on the bijective functions. In the Glow implementation, the authors propose the use of batch
normalization to alleviate the problems encountered in training steps and an invertible 1 x 1
convolution as a generalization of permutations operation instead of using random or reverse
permutation before transformation step. A reversible transformation is the affine coupling layer
which was initially introduced in NICE [27] that minimizes the negative log-likelihood [ as the
following:

l(.@)zli—lo &) + ¢ (5.3)

N & gPeo .

where () = x() 4y represents the i/’ instance with Gaussian noise u ~ 1(0,a), and
¢ = —M xloga where a is determined by the discretization level of the data and M is the
dimensionality of x.

In our GLOW implementation, we do not modify the code as significantly as we did with the
CSVAE. We set the learning rate to 0.001 and train for 240 epochs using a batch size of 48. The
parameters were adjusted as GLOW had larger memory constraints than the CSVAE.

5.1. Experiments

Here we describe the specifics that we use to run our experiments for generating synthetic data
and for detecting behaviors in malware. To detect behaviors in an executable, we fine-tune the
Malconv model, a deep neural network model that achieves state-of-the-art malware detection
(benign or malicious) [93]. We use the pre-trained Malconv model [93] trained to detect malware
on the EMBER dataset [4] and fine tune the weights of the last layer for behavior detection. To
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simulate a novel malware family, the Malconv model is trained by holding out one malware
family and training on the remaining malware families. The held-out malware family will then
represent a novel malware attack.

Malconv enhances the state-of-the-art by allowing extremely long input sequences, employing a
shallow 1-dimensional convolutional network with 128 convolutional filters (covering 500 bytes
each), max pooling, and a long stride of 500 bytes. The wide filters and aggressive stride allow
Malconv to process very long inputs in a reasonable amount of time. Malconv also borrows many
ideas from natural language processing. For instance, the model uses an embedding layer to deal
with the polysemy inherent in byte values, as well as gated convolutions [24]. The model does not
use batch normalization, which typically performs poorly on the type of sequential, polysemous
inputs found in both natural language and executables; instead, Malconv uses DeCov
regularization [17].

The fine-tuning is performed by re-initializing the final fully connected layer in the model and
modifying it to output the requisite number of classes for our task. Similar to the original
Malconv training, our batching process uses zero-padding to convert all inputs to the length of the
longest input in the batch.

We use this model for all of our experiments and only change whether synthetic data is used as
part of the fine-tuning phase. We use synthetic data from the CSVAE and GLOW so that in there
are 3,500 samples for every family. We also compare our method against SMOTE [15] which, at a
high-level, generates synthetic data by interpolating between data points of the same class and has
performed well in many tasks. We used the malware families as the classes and not the behaviors
as interpolating in the multi-label scenario is not handled by SMOTE. As interpolating between
images most likely will not maintain semantic information, we generate synthetic data with
SMOTE using the outputs of the neurons of the last layer of Malconv. The new Malconv model
trained on the SMOTE synthetic data will only have its last layers modified.

5.2. Results

Ultimately, our goal is to improve the detection of novel malware by detecting behaviors that are
shared among several malware families without first having to discover, analyze, and collect
several samples of a novel malware family. Given the challenging nature of obtaining and
detecting behavioral information, we seek to generate novel malware samples. However, when
generating synthetic data sets, there are several steps that can be used to help verify the validity of
the synthetic data. In the image domain, one can visually inspect the synthetic images to ensure
realism and that certain characteristics are present. In the malware domain, that option is available
but inconclusive. Therefore, we validate the results using the following techniques:

1. Visual Inspection. For images, one can examine generated images and determine their
quality. We set up a similar examination for validating the images and examine visually
how synthetic data compares to ground truth data. Our hope is that visual characteristics
will be replicated as a sanity check, but by no means any conclusions can be drawn from
the visualizations.
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2. Reconstruction Error. Here, as a first step, we ensure that the reconstruction error for the
images and the behaviors are decreasing as training progresses. While most traditional
generative methods only focus on the loss from the generated image, we also consider the
reconstruction on the behaviors as another indicator of how well we are able to capture the
characteristics of the behaviors. While lower error is always better, determining how low is
acceptable is an open question.

3. Behavior Recognition. We validate that behaviors are in the synthetic data based on the
improvement of behavioral detection using the fine-tuned Malconv model described in
Section 5.1. We specifically examine the recall rate of detecting behaviors that are present
and the specificity of not predicting behaviors that are absent.

Our results for each validation method are presented below.

5.2.1. Visual Inspection

A batch of input images of malware (left) and synthesized images of malware (right) from the
CSVAE are shown in Figure 5-3 and from GLOW are shown in Figure 5-4. The number of
images are different since the batch sizes for GLOW and the CSVAE differed as GLOW required
significantly more resources to compute. As a first pass in validating the output of a generative
model, we can visually discern many of the patterns from the ground truth data. The synthesized
data is significantly smoother than the actual data and some of the more subtle patterns within the
examples are not present in the synthesized data. Some of the structure in the data is captured.
For example, the in the bottom row in the fourth and seventh columns in Figure 5-3, there is very
similar structure reconstructed. In other data points, the structure is not captured quite as well. In
the first row, there are several examples where what looks like salt and pepper noise is smoothed
in the reconstructed examples. Similarly, GLOW is able to capture the overall structure of images
with some visual defects. Visually, the CSVAE appears to regenerate crisper structural details.

We conclude that we are able to capture some structure - the question is whether the models are
able to capture the structure that corresponds to behaviors, and the less meaningful structure is not
captured as precisely. That will be investigated in the next two sections dealing with behavior
reconstruction and detection.

5.2.2. Reconstruction Error

The reconstruction error is simply the mean-squared error between the original values and the
values on the reconstructed image. However, we also measure the reconstruction error on the
recovered behaviors from the latent space. The behaviors are provided as input to the CSVAE to
condition the latent space for the generation of synthetic data and are also reconstructed as shown
in Figure 5-1. Behaviors used here are not themselves conditioned, but rather serve to condition
the image reconstruction. We reconstruct behaviors by decoding from the latent subspace layer
used to encode the behaviors, which is trained using adversarial weighted links (see [55]). The
behavioral reconstruction error is also the mean squared error between the original behaviors and
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Figure 5-3. (a) Example batch input data to the CSVAE model. (b) Corre-
sponding synthetic data from the CSVAE model. Visually, many patterns
from the input data on the left are present in the synthetic data on the right
suggesting that the CSVAE is able to capture some nuances of the data.

57



() (b)

Figure 5-4. (a) Example batch input data to GLOW. (b) Corresponding syn-
thetic data from GLOW. Visually, many patterns from the input data on the
left are present in the synthetic data on the right suggesting that GLOW is
able to capture some nuances of the data.

reconstruction_error reconstruction_error

(a) (b)

Figure 5-5. Reconstruction error on a reconstructing malware images by the
CSVAE. (a) TOP: Reconstruction error on a single batch of inputs is signifi-
cantly smoother as training progresses. (b) BOTTOM: Reconstruction error
when the batches are shuffled oscillates between batches. This difference
shows a difficulty to learn the overall structure of the executable that gener-
alizes between batches.

the reconstructed behaviors. We focus specifically on the CSVAE as the GLOW model provides
similar results.

We consider training with increasing levels of difficulty that highlight the challenges in generating
images of malware. We first train on a single batch where the data is the same for all training
steps. In this case, as shown in Figure 5-5a, the training error smoothly decreases as the amount
of time spent training increases. Here, the x-axis represents that amount of time in training and
can roughly be correlated with the number of epochs. We then train using multiple batches and
shuffling between each batch (Figure 5-5b). In this case, we trained for a significantly longer
period of time and observe that (1) the reconstruction error is also significantly larger, and (2)
while there is some decrease, the error oscillates considerably as training time
increases—corresponding with a new shuffled batch of inputs to train on. This highlights a
challenge in learning the structure of the executable. This is different from many of the natural
image tasks where this is not as difficult. We are currently trying to understand the differences
and how to reduce the oscillations.

Despite the challenges in producing low reconstruction error, the behavioral information is what
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Figure 5-6. Reconstruction loss for reconstructing malware behaviors using
the CSVAE. (a) TOP: Behavior reconstruction loss on a single batch of inputs
is significantly smoother as training progresses. (b) BOTTOM: Behavior re-
construction loss from shuffled batches. The reconstruction error oscillates
at the start, but then settles down, with some intermitent spikes, as training
progresses. Since we are using one-hot encoding for the behaviors, it is not
surprising that the behavior reconstruction loss approaches zero as training
progresses.

Table 5-2. Behavioral reconstruction error when seeding the CSAE with a
training image (scenario a) and when only sampling from the latent space
(scenario b). Sampling directly from the latent space and using novel com-
binations of behaviors highlights challenges in disentangling correlations
between behaviors and capturing generic structure of the executable.

Behavior Reconstruction Error
(a) Training image + known behavior combinations 0.07
(b) Latent space sampling + known behavior combinations | 29.1
(b) Latent space sampling + novel behavior combinations | 43.0
(a) Training image + novel behavior combinations 43.2

is most important to maintain. Behavior reconstruction loss is shown in Figure 5-6 for both a
single batch and shuffled multi-batch training, where the x-axis ranges over the amount of time
(in hours) since the start of training. As with image reconstruction, shuffling the batches produces
significantly larger reconstruction error (see the y-axis in Figure 5-6) and produces oscillations.
Although, for behavior reconstruction, there are much better convergence properties than the
image reconstruction.

Using the single non-shuffled batch, we also examine specific expanded use cases of
reconstructing the behaviors shown in Table 5-2. While the absolute values do not have a strong
meaning (as we are unaware of any other work examining this), their relative values give
important information. When using known behavior combinations (from known malware
families) and seeding the latent space using training images, the error is set at a baseline of 0.07.
Once the data with known combinations of behaviors is generated by sampling directly from the
latent space there is a significant increase in behavioral reconstruction error by an order of
magnitude. Thus, there is an acute challenge in how to properly sample from the latent space to
ensure that structure that is shared between executables is properly generated. There is another
significant increase in behavioral reconstruction error when the novel combinations of behaviors
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Table 5-3. The recall, specificity and accuracy for detecting behaviors with
(CSVAE, GLOW, and SMOTE) and without (Malconv) synthetic data.

Malconv CSVAE
recall | specificity | acc | recall | specificity | acc | support
simda 0.250 1.000 0.873 | 0.393 1.000 0.899 42
vundo | 0.315 0.985 0.893 | 0.546 0.925 0.861 475
tracur 0.401 0.938 0.879 | 0.600 0.983 0.939 751
gatak 0.159 0.985 0.771 § 0.209 0.970 0.776 1013
ramnit | 0.146 0.978 0.737 | 0.199 0.970 0.752 1541
lollipop | 0.530 0.876 0.857 | 0.637 0.939 0.901 | 2478
kelihos | 0.456 0.899 0.870 | 0.529 0.924 0.887 | 3340

Ave 0.322 0.952 0.840 | 0.445 0.959 0.859
Std.Dev | 0.147 0.048 0.061 | 0.181 0.030 0.069

GLOW SMOTE
recall | specificity | acc | recall | specificity | acc | support
simda 0.531 0.871 0.795 | 0.321 1.000 0.889 42
vundo | 0.432 0.814 0.754 | 0.409 0.979 0.898 475
tracur 0.654 0.834 0.804 | 0.591 0.941 0.898 751
gatak 0.404 0.824 0.699 | 0.242 0.943 0.764 | 1013
ramnit | 0.396 0.742 0.629 | 0.242 0.985 0.779 1541
lollipop | 0.736 0.807 0.799 | 0.669 0.832 0.799 | 2478
kelihos | 0.494 0.742 0.725 | 0.477 0.878 0.843 | 3340

Ave 0.521 0.805 0.743 | 0.422 0.937 0.839
Std.Dev | 0.130 0.048 0.064 | 0.167 0.061 0.058

are produced, highlighting a possible challenge of disentangling the correlations between
behaviors. This occurs regardless of whether the latent space is sampled from or seeded from a
training image.

5.2.3. Behavior Recognition

The ultimate goal is to be able to detect behaviors in novel malware. We examine this, comparing
behavior detection using our fine-tuned Malconv model (Section 5.1). We fine-tune using our
original data and data that has been augmented using the CSVAE, GLOW, and SMOTE models.
Since we are holding out one family, all of the test data has the same label set. Thus, we report the
recall (behaviors correctly detected), the specificity (behaviors correctly identified as not being
present), and the averaged accuracy across all behaviors in Table 5-3.

The results show that behavior detection is a challenging problem. The baseline recall of

behaviors is only 32.2% despite Malconv being able to detect malware effectively at over 94%
detection rate [93, 4] and classify malware families at 98% using the same Microsoft malware
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classification challenge data that is examined here [47]. The low recall and high specificity reflect
that the model has a high number of false negatives but fewer false positives.

The addition of synthetic data from the CSVAE, GLOW, and SMOTE results in a significant
increase in recall, improving by 12%, 20%, and 10% respectively. SMOTE, on average, has a
slight decrease in specificity; the CSVAE performs the best with a significant increases in recall
and a slight increase in specificity; GLOW achieves the highest recall, but it has the lowest
specificity and accuracy. This highlights that the synthetic data is able to capture the
characteristics of some behaviors as the recall significantly increases. The increase in specificity
from the CSVAE also highlights that the CSVAE is able to disentangle the behaviors to a certain
degree while SMOTE nor GLOW is not able to do so as efficiently (nor are they designed to do
so). Future work is needed to make conclusive statements about the entanglement of the
behaviors, but initial results are promising in the ability to generate synthetic data that captures
meaningful features for behavior detection.
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6. MITIGATING THE IMPACT OF NOVEL MALWARE BY
DETECTING OUT-OF-DISTRIBUTION SAMPLES

6.1. Introduction

Malware infections continue to increase at exponential rates and show no signs of declining. The
amount of malware variants and novel families makes it difficult for analysts to manually process
and defend against them, necessitating automated mechanisms to assist. With the increasing
variations of malware, machine learning (ML) has been explored as a means of mitigating the
effects of malware [93, 115]. Many proposed methods report impressive results—achieving
upwards of 99% accuracy and F1 scores in detecting malware from various data

sets [129, 49, 128, 35]. Despite these impressive experimental results, ML-based malware
detection does not perform as well in deployed situations and particularly in specialty domains
such as banking or health care where large repositories of malware are not

available [84, 115, 133].

In the ML community, it has been shown that commonly used n-fold cross-validation provides
overly optimistic results as spurious correlations with the classes are present across folds but not
in deployed scenarios [5]. The rising concern of the inability and the unpredictability of how a
ML model generalizes to novel data is now being studied in the MLL community [22]. The
problem of generalizing to novel data is magnified in domains like malware detection where the
environment is highly dynamic and malware authors purposefully obfuscate to evade detection.

We propose that a significant contributing factor to the large discrepancy between observed
performance rates and actual performance for ML-based malware detection is significant
differences in the data encountered in deployed scenarios from those data used for training. We
denote not properly accounting for this assumption as a generalization bias. In cases where the
data is similar to the training data, ML-based detectors tend to excel. However, as the encountered
data differs from the data used to train the model, model performance deteriorates and becomes
unpredictable. To evaluate the impact of generalization bias we hold out an entire malware family
rather than partition a malware data set randomly or according to time. Random partitioning of
the data provides an estimate of the performance on specific data types, and partitioning
according to time that a malware sample was observed helps to evaluate data drift and how the
model adapts. To facilitate predictions on classes that are not included in the training data, we
predict behaviors rather than malware families [115] using the Microsoft Malware Classification
Challenge Dataset [100] and corroborate results on the malpedia dataset [89].

I Citation of majority of this work: Michael R. Smith, Raga Krishnakumar, Joseph P. Lubars, Stephen J. Verzi, Xin
Zhou, and Akul A. Goyal. All Models are Wrong, but Some(times) are Useful: Evaluating when Machine Learning
Models are Useful for Detecting Novel Malware in the Wild. Sandia National Labs SAND2022-13867 C. 2022.
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Recently, several papers have investigated the discrepancy between experimental and real-world
ML results in computer security. Notably, Axelsson [7] recognized the base rate fallacy which
describes how class imbalance, common in malware detection where goodware often significantly
outnumbers malware, causes misleading evaluations when experimental settings do not match
deployed settings. Pendlebury et al. [84] break down how experimental biases affect the
evaluation metrics, specifically spatial bias (relating to the class balance) and temporal bias
(relating to when data is used for training and not introducing future knowledge). Our approach
evaluates how an ML-based malware detector generalizes on previously unseen malware families
and is complementary to the spatial and temporal biases. Arp et al. [6] outline ten common
pitfalls that are generic to ML in computer security and suggest remediations. Our work
introduces an additional pitfall of optimistic generalization relating to assuming an overly
optimistic ability of an ML model to generalize on novel data. Optimistic generalization is related
to sampling bias as presented by Arp et al. [6]. Rather than focusing on the distribution of the
sources of the data, our work focuses on detecting novel attacks and malware families specifically
when they come from the same source.

This paper makes the following contributions:

* We identify optimistic generalization as the overly optimistic evaluation of the ability an
ML model to generalize on novel data that deviates from the training data. This is a major
concern as attackers continually morph their attacks to evade detection. Our method for
evaluating generalization bias is complementary to spatial and temporal biases defined by
Pendlebury et al. [84].

* We empirically demonstrate the effects of generalization bias in identifying behaviors in
novel malware classes. Balanced accuracy reduces from 81.4% to 60.5% when
generalization bias is considered (Section 6.3). Even using generative modeling approaches
shown to correlate with generating behaviors [117], balanced accuracy only slightly
improves to 63.8%.

* We examine the similarity between malware families and show that when a family is held
out from training, it is almost always considered out of distribution (OOD) (Section 6.4).

* In support of measuring the similarities between malware samples, we present a novel
genomics-based similarity measure that operates on the raw binary (Section 6.4.1). The
primary benefit of such an approach is a more reasonable distance measure as opposed to
using the Euclidean distance that is often used.

* We propose to use the presented methods for determining if a novel sample is
in-distribution or OOD. If the data point is OOD, it should be rejected similar to Jordaney et
al. [45]. However, rather than using the model confidence, we propose to use
model-agnostic methods as the confidences from ML models, particularly deep learning
methods, have been shown to be overly confident on obviously OOD data samples [75].
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Figure 6-1. Distribution of malware families in the Microsoft Malware Classi-
fication Challenge

6.2. Behavioral Malware Classification

Ideally, ML-based malware detection would identify novel malware families without requiring
labeled examples to be included in training. Most ML-based malware detection systems either
operate as binary classifiers distinguishing among benign software and malware or distinguishing
between malware families. While convenient for experimental settings, they do not extrapolate
well to new malware families. We build on previous work that identifies malware behavior in
executables where a behavior is an action that are taken by malware when it is executed [115].
For example, possible behaviors include DLL injection, process hallowing, or credential
harvesting. The underlying assumption is that most malware families share a common set of
behaviors. Note that behaviors here are in the labeling and do not require dynamic analysis. The
labels could be used with features from static or dynamic analyses to train an ML model.

Behaviors are assigned broadly to malware families identified by manually reading through threat
reports of each malware family [115]. Behaviors are defined using the malware behavior

catalog [18] developed by MITRE. For our experiments, we use the Microsoft Malware
Classification that was used as part of a Kaggle Challenge [100]. There are nine malware
families, but “Kelihos v1” and “Kelihos v2” are combined as most threat reports do not
distinguish between the two versions. The “obfuscated” group is dropped since it was used as a
category for executables that could not be placed into a specific family due to obfuscation
techniques. Figure 6-1 shows the distribution of the malware families. Note that the number of
samples per malware family is highly skewed, which is traditionally difficult for ML models to
handle well [15].

We also examine the Malpedia data set [89] which contains significantly more malware families
with fewer examples per family. The Malpedia data set offers 2187 malware families but only
5910 samples (averaging two to three samples per malware family). We only use a subset that
have the same behaviors that are present in the Microsoft Malware Classification Challenge data
set. This results in 238 malware families and a total of 1049 samples of which the largest class
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Figure 6-2. Distribution of malware families in the Malpedia data set

contains 54 samples and 88 malware families contain only 1 sample. The distribution of malware
classes is shown in Figure 6-2. These two data sets represent depth and breadth of the malware
families to investigate generalization bias. Malpedia provides an opportunity to learn the
generalities of behaviors since they are diversely represented in multiple malware families. For
Malpedia, the CAPA automated tool? is used to assign labels given the large number of malware
families.

To detect behaviors in malware samples, we use the Malconv model [93] pre-trained on the
EMBER data set [4]. Malconv is a deep learning model that operates on the raw byte sequences
from an executable to classify it. Malconv can accept an extremely long input sequence and
achieves state of the art performance in categorizing malware and goodware. Using transfer
learning, we fine-tune Malconv to have 56 output nodes corresponding to the number of behaviors
observed in the Microsoft Malware Classification challenge data set. We only train the final two
layers of Malconv—after the temporal max pooling layer. We examined training other layers
without significant differences in the performance. Note that identifying behaviors in malware is
significantly more difficult than simply categorizing executables as malicious or benign. While
categorizing executables as malicious or benign achieves upwards of 99% accuracy, 10-fold
cross-validation achieves only 84.5% for MMC data. Results are consistent for the Malpedia data
set achieving an accuracy of 83.2% using 10-fold cross-validation.

6.3. Generalization Aware Evaluation

We are concerned with how well a trained ML model will generalize to malware families that are
not included in the training data. A strong assumption made in ML is that the test data will be
drawn from the same distribution as the training data. This assumption generally does not hold
for most domains, but it is especially acute in malware detection as (1) technology is rapidly
changing with artifacts in the executables to incorporate new technologies and (2) malware is
inherently adversarial and actively seeks to evade detection. Thus, this generalization assumption
should not be made for any security domain.

Zhttps://github.com/mandiant/capa
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Despite the violation of this assumption, common ML evaluation methods typically do not take it
into account when applied to security domains. We term this neglect as a generalization bias
where unrealistic assumptions about data in deployed settings cause modelers to assume that their
models will perform well on novel data, even from new malware families. To mitigate overly
optimistic expectations from generalization bias, we argue for explicitly evaluating how well a
model will generalize on data that may be considerably different from the training data yet is
likely to be observed once deployed and provide a method for doing so. The temporal constraints
proposed by Pendlebury et al. [84] partially address this by enforcing a temporal ordering.
However, temporal ordering does not simulate the use case of a zero-day encounter with a novel
malware family. In this paper a generalization aware evaluation holds out specific families from
training and evaluates the performance of an ML on the held out family. This approach could be
adapted to other scenarios. This would mimic the introduction of a yet-to-be-discovered malware
family and evaluate how well an ML model would generalize to that family.

Similar to the temporal constraints from Pendlebury et al. [84], we propose the following
constraint to avoid a generalization bias when dividing a dataset D into a training set 7r and a test
set T's.

C1) Malware Family Consistency. All of the objects in the testing data must not belong to
malware families that are in the training data:

family(s;) ¢ families(Tr),Vs; € Ts (6.1)

where s; is an object in the training set, family(s;) returns the malware family of s; and
families(D) returns the set of malware families represented in the data set D. For measuring the
generalization to novel malware, Equation 6.1 must hold. Violating C1 inflates the performance
results by effectively injecting “future knowledge” [84] into the classifier. This constraint directly
measures the generalization of an ML model to novel families. This constraint should be used
with temporal and spatial constraints when supporting data is available.

6.3.1. Impact of Generalization Bias

By considering generalization bias, we explicitly examine the claim that ML-based malware
detection will generalize to novel malware. Our primary hypothesis is that learned ML models are
not able to generalize to novel malware families as they are OOD from the training data. To test
our hypothesis, we first measure the accuracy of a trained ML-based malware detector that
identifies the behaviors in an executable. Following Equation 6.1, we hold out all samples
belonging to a given malware family from training and then evaluate on that held out family. On
the Microsoft Malware Classification Challenge Dataset, we examine features used by the
winning Kaggle team [130] (Say No To Overfitting or SNTO) as well as extracted from the layers
of Malconv [93] and a resnet model [38] representing the executables as gray-scale image [74] to
lessen the results from a specific feature representation.

As we are holding out a malware family where all samples have the same set of behaviors, we
measure the recall (the percentage of correctly identified behaviors that are in an executable), the
specificity (the percentage of correctly identifying when a behavior is not present), and the
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balanced accuracy which is the arithmetic mean of the recall and specificity. As was noted earlier,
the Microsoft Malware Classification Challenge is a skewed dataset with representation from
certain malware families much larger than others. As class skew affects the classification of MLL
models [116], we examine several methods for dealing with class imbalance to mitigate these
results and to improve generalization as synthetic data generation has improved classification
performance.

* Oversampling. Oversampling randomly replicates existing data points to balance the
number of examples per class, or malware family in this case. We use oversampling to
balance the number of examples per malware families and refer to this technique as
balanced.

* SMOTE. Synthetic Minority Oversampling Technique, or SMOTE [15], synthetically
creates additional data points by interpolating between data points of the same class rather
than replicating the same data points multiple times. Since we are using binary
representations as input to MalConv, we use SMOTE on the embedded version of a binary
taken from the last layer of MalConv. We then only train the last layer of MalConv using
the original data and and the embeddings from SMOTE.

* GLOW. GLOW [54] is a flow-based generative model that we use to generate the raw
bytes of an executable. Theoretically it can provide exact latent-variable inference without
approximation based on a sequence of bijective functions. In the GLOW implementation,
the authors propose the use of batch normalization to alleviate the problems encountered in
training steps and an invertible 1 x 1 convolution as a generalization of permutations
operation instead of using random or reverse permutation before transformation step. A
reversible transformation is the affine coupling layer which was initially introduced in
NICE [27] that minimizes the negative log-likelihood / as the following:

1 N

(2)~ 5 Y —logpe (i) +c (6.2)
i=1

where () = x() 4y represents the i/’ instance with Gaussian noise u ~ 1(0,a), and

¢ = —M xloga where a is determined by the discretization level of the data and M is the
dimensionality of x. We set the learning rate to 0.001 and train for 240 epochs using a batch
size of 48.

* CSVAE. The conditional subspace variational auto encoder (CSVAE) [55] was developed
to provide a neural network architecture that incorporates conditional information into the
VAE, both during training and also for subsequent use as a generative model. We use the
modified version from Smith et al. [117] which was extended to allow for subspace
reconstruction as a separate path along with image reconstruction. The subspace is a vector
of 0’s and 1’s corresponding to the behaviors present in an exectuable.

For all techniques, we balance the number of examples per malware family. Results are shown in
Tables 6-1-6-3 corresponding respectively to the recall, specificity, and balanced accuracy when
holding out the the malware family list in the first column. The results from 10-fold
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Table 6-1. The average recall over 10 runs for identifying behaviors in each
malware family when held during training using MalConv (MC), Balanced
oversampling (Bal), SMOTE (SMO), GLOW, (GLO), and CSVAE (CSV).

Family | MC Bal SMO GLO CSV
ramnit | 0.255 0.353 0.334 0.262 0.288
vundo | 0.499 0.455 0.463 0477 0.476
gatak 0.329 0.385 0.412 0.305 0.317
lollipop | 0.497 0.634 0.655 0.613 0.498
kelihos | 0.426 0.532 0.532 0.649 0.439
tracur 0.504 0.617 0.622 0.494 0.503
simda 0.299 0.366 0.369 0.364 0.303
Ave 0.401 0478 0.484 0.452 0.403
10-fold Cross-Validation: 0.730

Table 6-2. The average specificity over 10 runs for identifying behaviors in
each malware family when held during training using MalConv (MC), Bal-
anced oversampling (Bal), SMOTE (SMO), GLOW, (GLO), and CSVAE (CSV).

Family | MC Bal SMO GLO CSV
ramnit | 0.822 0.794 0.791 0.868 0.788
vundo | 0.781 0.874 0.878 0.874 0.796
gatak 0.806 0.764 0.735 0.824 0.806
lollipop | 0.731 0.728 0.693 0.750 0.732
kelihos | 0.820 0.766 0.755 0.752 0.815
tracur 0.808 0.772 0.757 0.831 0.811
simda 0.900 0.890 0.890 0.869 0.897
ave 0.810 0.798 0.785 0.824 0.807
10-fold Cross-Validation: 0.899
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Table 6-3. The average balanced accuracy over 10 runs for identifying be-
haviors in each malware family when held during training using MalConv
(MC), Balanced oversampling (Bal), SMOTE (SMO), GLOW, (GLO), and CSVAE
(CSV).

Family | MC Bal SMO GLO CSV
ramnit | 0.538 0.574 0.563 0.565 0.538
vundo | 0.640 0.664 0.670 0.675 0.636
gatak 0.567 0.575 0.573 0.564 0.562
lollipop | 0.614 0.681 0.674 0.682 0.615
kelihos | 0.623 0.649 0.644 0.700 0.627
tracur 0.656 0.694 0.689 0.662 0.657
simda 0.600 0.628 0.629 0.616 0.600
Ave 0.605 0.638 0.635 0.638 0.605
10-fold Cross-Validation: 0.845

Table 6-4. The average and standard deviation values for recall, specificity,
balanced accuracy, and accuracy for 10-fold cross-validation and general-
ization aware evaluation on the Malpedia data set. The standard deviation is
significantly greater when doing generalization aware evaluation suggesting
less predictable behavior by the learned model.
Evaluation | Recall Std. Dev. | Spec  Std. Dev. | Bal Acc. Std. Dev. | Acc, Std. Dev.
10-cv 0.170 0.015 0.947 0.007 0.558 0.007 0.832 0.005

Gen aware | 0.276 0.134 | 0.762  0.143 0.519 0.045 0.646  0.104

cross-validation are shown in the last row. This set of experiments use the embeddings from the
temporal pooling layer of MalConv.

The generalization aware balanced accuracy is significantly lower than the balanced accuracy
from 10-fold cross-validation—reducing from 84.5% to the best method achieving a balanced
accuracy of 63.8%. Additional data can improve the performance of MalConv in identifying
behaviors by 3% for some techniques which is quite significant for security domains. However, it
is not capable of overcoming generalization bias.

Recall is significantly lower than specificity—partially caused by the class skew of the presence
of a behavior. This corresponds with an ML model that is more likely to predict that a behavior is
not present and can artificially inflate accuracy results. However, even with family balancing,
recall performs significantly worse than specificity raising the question of if an ML actually learns
the behavior or not. This raises an additional concern of if an ML model actually learns anything
semantically meaningful beyond a signature that correlates with the behavior. Current results
suggest that the outputs in general ML models are not able to generalize to novel malware
families that are not included in training.

The results from Malpedia are similar and are summarized in Table 6-4. Here, the effect on
predictions of behaviors not present is greater as specificity is 94.7% but recall is only 17.0%.

69



Generalization aware evaluation actually improves the recall on novel families but decreases the
specificity. The difference in balanced accuracy is not as significant here are as it is with the
Microsoft malware classification challenge data set. However, note that one side effect of 10-fold
cross-validation versus generalization aware evaluation is the variability of the learned model.
The standard deviation of the cross-validated models where constraint 6.1 is not held is small for
all measures. For generalization aware evaluations, the standard deviation is at least an order of
magnitude greater. This suggests that the behavior of the learned model is less predictable and
should be noted before deployment. It also corroborates previous findings that the output is more
unpredictable when extrapolating [22].

The question then is why do ML-based detectors not perform as well on these data points and
what can be done to mitigate their impact?

6.4. Identifying Generalization Bias

Recently, the ML community has began investigating OOD detection techniques that specifically
seek to identify data that is inconsistent with the training data [40]. We examine several
approaches to measure the similarities (or distance) between malware samples. Inspired by the
similarities between biological evolution and malware, we develop a genomics method to
measure the similarity of malware samples in addition to using more traditional approaches such
a Euclidean distance and distance between neural network embeddings. We then compare how
similar malware families are to each other and the other classes.

For the Microsoft Malware Classification Challenge data set, we examine multiple feature
representations leveraging embedded representations from Malconv [93], a resnet model [38], the
features used by the winning Kaggle team [130], and the raw binaries using our
genomics-inspired method described below. To compare the similarity between the malware
families, we employ two density-based methods: HDBScan [13] and local outlier factor

(LOF) [12]. We utilize our genomics-inspired distance measure in LOF. We compare with Deep
MCDD [61], a neural network-based OOD detection method.

6.4.1. Genomics Similarity Measure

To measure the similarity between executables, we propose an alternative distance measure using
principles from genomics. The name computer virus was taken from biological viruses, which are
self-replicating entities that modify their hosts by inserting their information into host

genomes [8, 118]. One of the most prominent features shared by computer and biological viruses
is the modularity of their information—their code (or genome) can be sub-divided into
self-contained sections that can move around and evolve and be transferred independently. This
allows viruses to be versatile and adaptive, making them much more likely to evade host defense
mechanisms, and makes identifying them using signatures significantly more challenging [37].
Looking at two virus sequences side-by-side in a linear manner may not reveal their similarities
due to inter- and intra-shuffling of modules of genomic information. Malware behaves similarly,

70



and the signatures that we can use to identify them and annotate their behaviors may be
reorganized and shuffled between files.

As a result, we examined how treating malware files like viral genomes would allow us to
understand evolutionary relationships, and eventually refine our understanding of the similarities
of the files that could potentially be attributed to behaviors. There have been a number of methods
developed in bioinformatics for aligning genomes and mapping evolutionary relationships,
including ones specifically designed for complex, multi-sequence alignment [52, 121]. A
limitation, however, is that many of these programs have high-order complexity, making them
resource hungry. More recent work has seen the implementation of minhash-based
pseudo-aligners that use k-mer dictionaries to determine Jaccard edit distances in

genomes [79, 29]. Given the large number of files, and their varying sizes, we decided to use
Mash, a program that uses minhash sketches to calculate Jaccard distances [79].

Programs such as Mash require DNA sequences as their input. Specifically, this consists of a
string of arbitrary length composed of the characters A, T, G and C (representing the four
nucleotide bases that DNA is composed of: adenine, thyamine, guanine and cytosine). We convert
malware byte files (generated from binaries) into a DNA string. For this, first we removed any
stretches of zeros longer than 8 (to avoid long strings of a single base that would be meaningless
to match). Then we converted byte value integers into a four code array by using base 4
conversion. This four-code array was converted to DNA by assigning each of the four values to a
single base. These new DNA string files were then compared using Mash. The resulting distance
matrix was used as a baseline to determine relatedness between samples. For visualizing these
relationships, the software platform Cytoscape was used [80].

6.4.2. Similarity of Novel Malware Families

As a first step, we visualize a 2-D representation of the data shown in Figure 6-3. The 2-D
projections are obtained using the top two components from a principal component analysis
(PCA) and using a t-distributed stochastic neighborhood embedding (t-SNE) projected to two
dimensions. While not directly optimized for classification, the malware families cluster
together—even with just two dimensions.

We also visualize the groupings of the malware families using Cytoscape in Figure 6-4. As with
the PCA and t-SNE projections, we see that malware families largely group together. Connections
between data points are represented with black lines linking the data points. Interestingly, there is
a large number of data points that do not cluster with the primary groupings, as represented in the
bottom portion of the Cytoscape visualization by the larger number of points without any black
lines. Rather, singletons (unconnected, or degree-zero points) and smaller clusters are formed.
This suggests that the space is sparsely populated by the training data and that there are large
variations in the data. For the Cytoscape figure, we use a cut-off value of 0.2. The resulting figure
for the Malpedia data set is similar in having a large number of singleton data points that are not
connected to the larger cluster (Figure 6-5). However, in this data set there are no clear clusters of
the same color or that stand out from the rest of the data points. This is unsurprising given the
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Figure 6-3. Visualization of 2-dimensional projections of the malware data
using PCA (left) and t-SNE (right). Each color denotes a separate family. Al-
though not optimized for classification, the embeddings show that malware
families cluster together.

large number of families and low number of examples per family. This exemplifies the difference
between the data used for training and that which may be encountered once deployed.

Quantitatively, we use generalization aware evaluation to evaluate if data points are considered
noise using HDBSCAN [69] and Deep MCDD [61]. To do so, we cluster on all malware families
except for the one that is held out and then evaluate the held-out family to see if it clusters with
any of the learned clusters. For this analysis we use the embeddings from the temporal pooling
layer in MalConv. For HDBSCAN, we use the provided approximateredict function to
designate which cluster additional data would belong to.

The results for the Microsoft Malware Classification Challenge data set are shown in Table 6-5.
We also include for HDBSCAN a train/test split to compare performance. Consistently about
40% of the data used for training comprise outliers regardless of which malware family is held
out. This is consistent with the Cytoscape images showing that a lot of the space is sparsely
covered with singletons.

For the held-out malware family, more than 93% of the test data is considered an outlier for all
families when held out from training; and in six families it is more than 98.8%. Results are
similar for Deep MCDD. For the train/test split that has examples from all malware families,
72.4% are considered OOD by HDBSCAN. These results are concerning on several levels.

While clustering and classification have different objective functions, these results suggest that
not using generalization-aware evaluation produces highly unrealistic performance estimates. If
these results are accurate, it suggests that essentially all predictions on novel malware families are
on OOD data and should not be trusted as the behavior of an ML model on these data points is
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Figure 6-4. Visualization of how data points are linked together when using
our genomics distance measure. While many of the families cluster together,
there are many that do not link with any other data point and are singletons.
This indicates possibly a sparse coverage of the input space.

unpredictable [22]. It also demonstrates that malware is constantly evolving and adapting rapidly
enough that current ML-based detection approaches cannot adapt.

To further corroborate these findings, we examine the LOF scores as well and expand the analysis
to include multiple feature representations. We examine using a cut-off value of 1 for LOF
following common practice in the ML community. We also examine a cut-off value that makes
40% of the training data outliers. The results are shown in Table 6-6 providing a ratio of outlier
percentage in train to that in test. For the non-MalConv embedding feature representations, we
separate the two versions of Kelihos to show that even between different variants of a malware
family generalization bias exists. In all cases, a concerningly high percentage of data points are
OOD regardless of the feature representation. We note that the MalConv Dense embedding is
highly sparse in general and the 10-fold cross-validation balanced accuracy is 10% lower than
that from using embedding from the temporal pooling layer.

For the Malpedia data set with more malware families, the input space is inherently sparser. In
this case, the percentage of training data points considered as outliers is similar to that for
training—about 90% of the data. This should raise some concerns about the quality of the
training data beyond the generalization bias. It also highlights different challenges of using data
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Figure 6-5. Visualization of how data points are linked together when using
our genomics distance measure for the Malpedia data set. Many of the data
points are connected, but without any noticeable structure. There are many
that do not link with any other data point and are singletons. This indicates
possibly a sparse coverage of the input space.

sets with more families but fewer examples versus less families with more examples.

6.5. Discussion

We have identified generalization bias and demonstrated that its impact on evaluation metrics is
significant and should not be ignored. Traditional evaluation methods remain important to
understand how well a model will perform on expected data (i.e., data similar to the training set).
It is important to take additional measures to determine where a model will perform unpredictably
(and very likely poorly). We propose that a generalization-aware evaluation should be conducted
in conjunction with temporal and spatially aware evaluations to properly temper expectations.
Our key contribution is in identifying blind spots that lead ML practitioners to assume that when
encountering a novel malware family, it is virtually always OOD. Our results suggest that this is
quite significant with close to 100% of all malware from a held-out family being OOD. This is
particularly concerning for several reasons. (1) Malware families can easily evade automated
approaches even when systems are defended with ML-based systems. (2) ML-based systems may
provide a false sense of security if they are evaluated improperly. To our knowledge, no prior
work has examined ML-based detection taking generalization bias or OOD detection into
account. Taking generalization bias into account is particularly important in security domains
such as malware detection where adversaries purposefully craft examples to evade detection.
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Table 6-5. Percentage of data points considered outliers by HDBScan and
DeepMCDD when holding out a malware family. We report both the percent-
age of outliers in the training data (about 40% in all cases) and the percentage
in the held-out malware family with HDBScan and DeepMCDD (match to the
percentage of outliers in the training data with HDBScan). For the held-out
family, almost all of the data points are considered outliers for each held-out
family. The last row, “split” represents when a test set is partitioned from the

training set.

Training Outlier Test Outlier
Family HDBScan HDBScan DeepMCDD
ramnit 0.384 0.997 0.983
vundo 0.411 0.937 0.947
gatak 0.410 0.997 0.993
lollipop 0.388 0.998 0.956
kelihos 0.538 0.999 0.995
tracur 0.421 0.988 0.800
simda 0.422 1.000 0.976
split 0.439 0.724 -

Generalization to novel data is an open research question in ML, but several lines of promising
research exist. Domain generalization [141] and adaptation [23] deal with adapting ML models to
evolving domains. These most often require at least a handful of labeled examples and, thus, can
only be employed after a samples from a new malware family have been hand labeled.

In the short term, care should be taken to first determine if the prediction of an ML model on a
data point should be trusted. This has been suggested previously [45, 84] using the output of an
ML model. However, ML models have been shown to be overly confident for OOD data. Our
proposed genomics-inspired measure could be used as a model-agnostic measure for OOD
detection. Regardless of the method, we suggest a first pass to determine if a data point is OOD or
in distribution in conjunction with the prediction. The ML model could then filter out data that it
has been used for training. In some cases, the data could be passed to manual examination to help
expand the space of the training data.

6.6. Related Work

The misalignment between the reported success of ML-based malware detection and its
performance in deployed scenarios has been observed in several works [84, 115, 6, 7, 119].
Notably, Pendlebury et al. [84] identify two main sources of experimental bias that affect the
generalization of experimental evaluation to realistic real-world expectations: spatial bias and
temporal bias. Here, bias specifically refers to the experimental settings that introduce certain
biases, intentional or not. Spatial bias refers to the misalignment of the ratio of categories
(malware vs goodware or malware families) in the training data versus data that is observed when
it is deployed. Temporal bias refers to integrating future knowledge about the test data into the
training phase, for example, by not structuring evaluation experiments with strict temporal
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Table 6-6. Percentage of the training and testing data that are considered out-
liers with the various feature representations using LOF. DNA represents out
genomics-inspired distance measure, Resnet uses the embeddings from a
Resnet model, SNTO are the features from “Say No To Overfitting”, the win-
ning group from the Microsoft Malware Classification challenge, and the Mal-
conv embeddings from the temporal pooling (TempPool) and last (Dense)

layers.
LOF > 1

DNA Resnet SNTO  Malconv TempPool Malconv Dense
ramnit 0.77/0.99 0.82/0.99 0.79/0.98 0.82/1.00 0.8/0.85
vundo 0.78/1.00 0.82/0.99 0.8/1.00 0.83/0.95 0.81/0.82
gatak 0.79/0.99 0.82/0.82  0.8/0.95 0.83/1.00 0.80/0.88
lollipop 0.79/1.00 0.81/1.00 0.79/1.00 0.82/1.00 0.80/0.88
kelihos 0.81/0.88 0.82/0.88 0.77/1.00 0.86/0.99 0.81/0.90
tracur 0.78/1.00 0.82/0.90 0.80/1.00 0.84/1.00 0.81/0.87
simda 0.79/1.00 0.82/0.99 0.79/1.00 0.83/0.98 0.81/0.88
kelihos v2 | 0.79/1.00 0.93/0.93 0.79/1.00 -/- -/-
average 0.79/0.98 0.83/0.94 0.79/0.99 0.83/0.99 0.81/0.88

40%

DNA Resnet SNTO  Malconv TempPool Malconv Dense
ramnit 0.40/0.96 0.40/0.95 0.40/0.88 0.40/0.97 0.40/0.44
vundo 0.40/1.00 0.40/0.98 0.40/1.00 0.40/0.71 0.40/0.55
gatak 0.40/0.99 0.40/0.6  0.40/0.92 0.40/0.99 0.40/0.75
lollipop 0.40/0.83 0.4/0.97 0.40/1.00 0.40/1.00 0.40/0.87
kelihos 0.40/0.83  0.4/0.86  0.40/1.00 0.40/0.99 0.40/0.9
tracur 0.40/0.99 0.4/0.70  0.40/0.99 0.40/0.94 0.40/0.81
simda 0.40/0.97 0.40/0.98 0.40/0.95 0.40/0.93 0.40/0.62
kelihos v2 | 0.40/0.99 0.40/0.00 0.40/1.00 -/- -/-
average 0.40/0.95 0.40/0.76 0.40/0.97 0.40/0.93 0.40/0.71

ordering. They provide a framework, TESSERACT, for evaluating malware detection taking into
account both sources of bias. Our work is complementary to spatial and temporal biases,
introducing a third axis—sample bias referring to the misalignment of the types of malware that
will be encountered.

Addressing spatial and temporal biases does not remove generalization bias; even after adjusting
for these biases, predicted performance against novel malware families is likely to be greatly
overstated. Smith et al. [115] proposed to evaluate ML-based malware detection systems by
holding out an entire malware family to evaluate how a detector would perform on a novel
malware class when detecting behaviors in malware. While they did not specifically examine bias
that is introduced into the evaluation process, they suggested that holding out a malware family
may provide more realistic expectations when evaluating how well a model will perform on novel
data when it deviates from the training data. We utilize their methodology of holding out a
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malware family and specifically examine the similarities and differences between malware
families. They also proposed to classify behaviors rather than malware families or a binary
indicator of maliciousness hypothesizing that most malware share certain behaviors and that they
would generalize to novel malware families.

The rise in interest in OOD detection in the ML community inspired this work. While most ML
models provide a confidence output, the challenge is that the confidence measures are often (1)
overly confident for data that is “far” from the training data, especially for deep learning models,
making them meaningless [39, 40] and (2) the models model the maximum likelihood and do not
model full joint probability of the data; in fact doing so incurs large computational overhead. We
look to use a model-agnostic approach based on distances, which has been suggested as being
robust to adversarial attacks [138, 16], which is an important characteristic in inherently
adversarial domains such as malware detection.

6.7. Conclusion

This paper has identified and evaluated the impact of generalization bias on malware detection.
The proposed constraint to hold out entire malware families from training data and to evaluate on
held-out malware families revealed that ML models are not able to generalize very well even
when common behaviors are being classified between the training and test sets. These issues
continue to make detecting malware a challenging problem. We hope that, by identifying
generalization bias and the corresponding generalization-aware evaluation, additional techniques
can be developed to address this bias in experimental settings and additional techniques that
address fundamental issues in classifying malware and automated executable analysis can be
developed. One additional area for future work is expanding the amount of labeled data that is
available with behaviors. MOTIF [46] is a new malware data set that has 3,095 disarmed PE
malware samples from 454 families, labeled with ground truth confidence. Malware family labels
were obtained by surveying thousands of open-source threat reports published by 14 major
cybersecurity organizations between 2016 and 2021. This could provide a more in-depth analysis
of the variety of malware families used for training and possibly lend itself to techniques that can
learn from few examples.

Practically, we envision that generalization-aware evaluation will help to temper expectations. In
the computer security domain we find that many security analysts are extremely skeptical of ML
models due to improper usage and overly confident claims. Our hope is that we can bridge the
gap between ML developer and security analyst by being more upfront about the performance of
an ML model—when its output is more credible and when it is less credible.
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7. FINAL OBSERVATIONS

This LDRD project investigated the ability to improve the detection of novel malware by ML
models by (1) detecting behaviors and (2) generating novel data points with specific behaviors.
While there were improved results, we uncovered a larger problem in a generalization bias that
comes from assuming that the data used for training is representative for the data that will be
encountered once the model is deployed. We showed that ignoring this leads to overly optimistic
results as most novel malware families are OOD from the data used for training. That being said,
we are confident a learned ML model will perform well on data that is similar to that which was
used for training. We believe that our genomics-inspired method will improve the detection of
novel malware and also help to gain information about the evolution of malware families. This
LDRD has only scratched the surface of ML-based malware detection. We hope that it will lead
to promising work in improving the detection of novel malware detection, ML-human teaming,
and protecting our national interests.
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