
Explore the web calculator:

<https://www.sandia.gov/ess-ssl/thermodynamic-web-calculator/about.html>

Sandia
National
Laboratories

A Lithium-Ion Battery Thermodynamic Web Calculator for Thermal Runaway Severity Assessments

PRESENTED BY

Randy Shurtz

Fire Science and Technology Department (Org. 1532)

Sandia National Laboratories

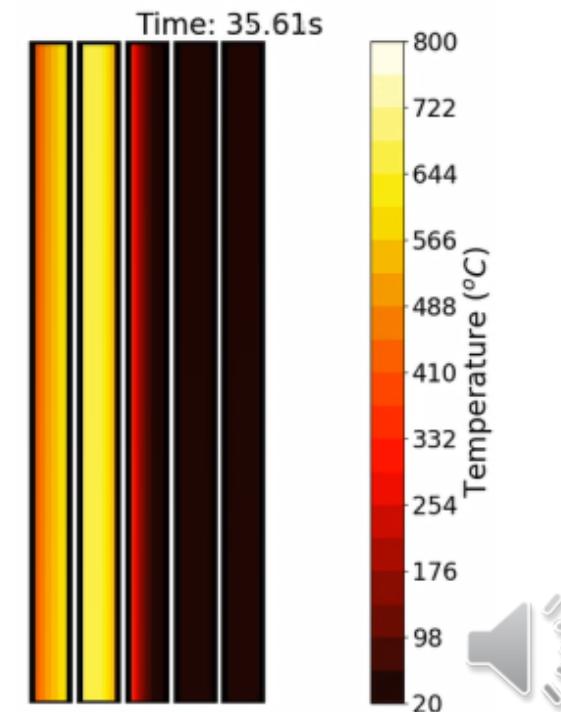
DOE Office of Electricity Energy Storage Program Peer Review

October 26-28, 2021

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Why do Batteries Have a Risk of Thermal Runaway?


- Rapid release of stored energy in any form is hazardous
 - Thermal, mechanical, pressure, chemical, or potential energy
 - Stored energy must have an unstable aspect to be accessible
- Undesired reactions may activate under certain conditions for stored chemical energy (batteries and fuels)
 - Li-ion battery electrodes decompose at high temperatures
 - External heating or internal shorts provide sufficient ignition energy
 - Energy from decomposition may exceed stored electrical energy
 - A single cell may ignite cascading thermal runaway in neighbors

www.cnn.com

Catastrophic failure of Teton Dam on June 5, 1976, ID-L-0010, WaterArchives.org

How Much Heat Can Be Released If My Li-Ion Battery Goes Into Thermal Runaway?

- Simple or complex safety assessments require **quantity of heat released**
 - Requires thermodynamic properties that can be hard to find
 - Simple assessments need total potential heat release
 - Advanced thermal runaway models need heat for each decomposition reaction
- **Solution from Sandia:** Lithium-Ion Battery Thermodynamic Web Calculator
 - <https://www.sandia.gov/ess-ssl/thermodynamic-web-calculator/>
 - Predicts potential heat release from user-defined cathodes and full cells
 - Customizable cathode composition, state of charge, and cell build/size
- Video demo on next slide

Lithium-ion Battery Thermodynamic Web Calculator

This web-based calculator estimates heats of reaction associated with thermal runaway of layered metal oxide cathode materials based on the underlying thermodynamics for specific metal compositions, degrees of delithiation, and coexisting organic material (e.g. electrolyte solvent).

The web-based calculator is intended to provide a better experience for most users, while the spreadsheet-based calculator is suitable for customization by advanced users.

[Enter Thermodynamic Web Calculator](#)

[Download Thermodynamic Excel Calculator](#)

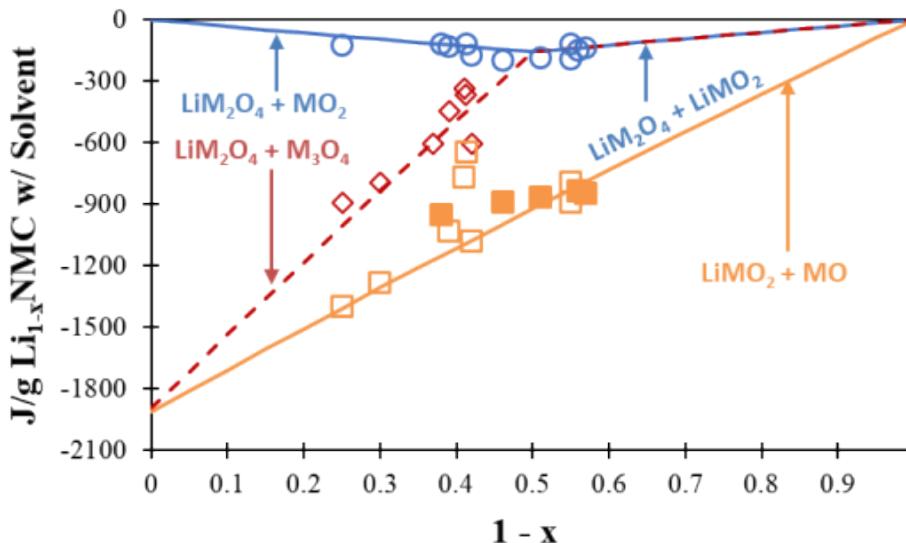
If you use this calculator to support analysis that is submitted for publication in any form, please cite this website and the articles listed below.

These thermodynamic calculations are explained in the following articles:

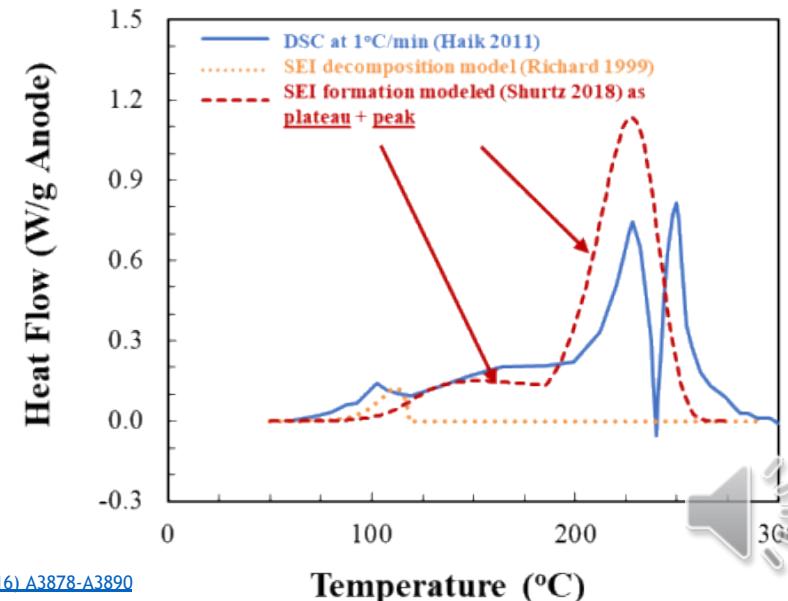
[R. C. Shultz and J. C. Hewson, *J. Electrochem. Soc.*, 2020, 167, 090543](#)

[R. C. Shultz, *J. Electrochem. Soc.*, 2020, 167, 140544](#)

The proper citation for this website is:


Shultz, Randy C. (2021) "Lithium-ion Battery Thermodynamic Web Calculator," Sandia National Laboratories,
<https://www.sandia.gov/ess-ssl/thermodynamic-web-calculator/>

Source and Performance of Thermodynamic Web Calculations



- Thermodynamic properties and reaction definitions from recent review¹
- Methods compare favorably with thermal measurements
 - Layered metal oxide positive electrode² with arbitrary mix of Ni, Mn, Co, and/or Al
 - Graphite negative electrode³
 - Common electrolyte solvents, any state of charge
- Future updates to include more electrode materials and improved user interface
 - Contact for suggested improvements: libtrwebcalc@sandia.gov
- Thermal runaway models at Sandia couple measured decomposition rates with predicted stepwise heats of reaction from this tool

Thermodynamic
Cathode Heat
Release Comparison²

Graphite Heat
Release Comparison³

1. R. C. Shurtz and J. C. Hewson, *J. Electrochem. Soc.*, 2020, 167, 090543

2. R. C. Shurtz, *J. Electrochem. Soc.*, 2020, 167, 140544

3. Shurtz, R. C., J. D. Engerer and J. C. Hewson, *J. Electrochem. Soc.*, 2018, 165(16) A3878-A3890