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ABSTRACT 

Taking a step towards a greener planet has created an increased need for a higher 
integration of renewable energy resources into the electric grid. Nonetheless, the intermittency 
and uncertainty associated with renewable generation have slowed down this integration. 
Transactive control (TC) has been recently adopted to address this challenge by utilizing demand 
side flexibility and enabling the participation of many grid-interactive efficient buildings 
(GEBs). However, existing TC methods require significant modeling and/or training efforts and 
are computationally expensive. To address the aforementioned issues, we propose a model-free 
control (MFC)-based strategy that is robust to the time delays in the temperature measurements 
of the thermostatically controlled loads (TCLs). It assigns to each GEB a local controller to 
maintain the TCLs’ temperatures within desired comfort levels, while the load aggregator (LA) 
allocates the assigned reference power provided by the distribution system operator (DSO) to 
support a specific grid service, such as demand peak reduction, load shifting, balancing supply 
and demand, and consuming the solar photovoltaic power locally. We investigate the effects of 
such loss of information on the local control action as well as on meeting the power allocation 
constraint. We conclude that, for an appropriate choice of design parameters, the proposed MFC 
controller is satisfactorily robust to measurement time delays.  

Introduction 

Either stemming from the need to reduce carbon emissions or to geopolitically insulate 
the local markets, the need for integration of renewable energy in the electrical mainframe and 
day-to-day consumption has been on the rise. Research in the area has responded through 
different lines of development – demand-response (DR) strategies, peer-to-peer electricity 
sharing, dynamic electricity pricing, and others (Park, 2017). However, as more components get 
added on, the chance of failure of the overall system also increases. This causes a need to 
proactively look ahead and build fault tolerance and robustness in the systems to increase their 
overall reliability.  

The existing literature on the fault tolerance of control systems in microgrids is reviewed 
in Ortiz (2020). To dynamically balance the loads, time delays are included in the system models 
in Hayat et al. (2003). A detailed study on time delays in real systems and ways to handle them is 
presented in Nilsson (1998). These works require accurate system models of the different 
building loads that is hard to obtain in practice. 

In this paper, we choose a model-free control (MFC) strategy developed in Fliess (2014) 
to maintain the desired load output and analyze its robustness to time delays. The said data-
driven strategy has been widely employed in a range of real applications (Jama et al. 2017; 
Lafont et al. 2015; MohammadRidha et al. 2017). Its inherent ability to adaptively estimate the 



to-be-controlled-system in real-time also allows it to handle various attributes like system 
nonlinearities and time delays.  

In Telsang et al. (2018), an MFC strategy to allocate a certain reference power profile 
among a group of building thermostatically controlled loads (TCLs) has been investigated. Such 
a reference power profile could either be generated from a solar energy source, or it could be 
obtained as a result of a DR strategy that a load aggregator (LA) is supposed to manage among 
the participating loads. In either case, there is a central command center that receives the input 
power consumption of the participating TCLs and their corresponding temperature 
measurements for all the TCLs. Based on the received information and the available power at 
that time instant, the central command center communicates back to each local controller the 
input power to each TCL such that the power allocation constraint is satisfied. In Telsang et al. 
(2021), the case where there are different importance levels for different load types has been 
considered and a weighted power allocation strategy through projection has been developed. 
Additionally, in the same work, the feasibility of a reference power profile has been investigated.  

In this paper, we consider practical issues and investigate the situation where there is a 
measurement defect on the local side. Specifically, if there is a fault in the local measurement 
system and the TCL temperature output is measured with a time-delay, then the time lag is 
reflected in the measurement communicated from the local controller to the central command 
center as well. We investigate the performance of the proposed MFC strategy and its integration 
in the power allocation scheme under existence of measurement time delays. That is, we 
investigate the robustness of the local control method against such measurement time delays as 
well as the effect of such time delays on satisfying the power allocation constraint by the central 
command center. 

The paper is structured as follows. First, we briefly review the MFC strategy employed 
on the local control action, followed by a description of the Heating, Ventilation, and Air 
Conditioning (HVAC) models used in this study. Then, we investigate the indoor air 
temperatures resulting from controlling the HVACs with and without introducing time delays in 
the measurements. We compare the performance of MFC with a simple thermostat control that 
turns the HVAC on or off in response to the measured air temperature. Following the analysis on 
the local side, we then present the central algorithm that performs power allocation and study its 
performance in the presence of measurement time delays. Finally, we conclude with some 
remarks and future work. 

Overview of MFC 

A SISO system is approximated by the following ultra-local model (Fliess, 2014): 
𝑦̇ = 𝐹 + 𝛼𝑢 

Here, 𝐹 represents the uncertainties in the system at that time, and 𝛼 is a tuning parameter to 
match the magnitudes of the input and the derivative of the output. Using previous 𝐿 seconds of 
input and output measurements, 𝐹 is approximated as 𝜙 (Fliess, 2014): 

𝐹 ≈ 𝜙 =
−6
𝐿! -

(𝐿 − 2𝜎)𝑦(𝜎) + 𝛼𝜎(𝐿 − 𝜎)𝑢(𝜎)𝑑𝜎
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Using the latest approximation of the system, the control input is computed as (Fliess, 2014): 

𝑢 = 	−
𝐹 − 𝑦̇∗ + 𝐾&(𝑦 − 𝑦∗)

𝛼  
Here, 𝐾& is the proportional control gain and  𝑦̇∗ is the derivative of the desired trajectory 𝑦∗.  



The tuning parameters in MFC are 𝛼 and 𝐿.  
In this paper, we analyze MFC for its effectiveness and robustness against time delays in 

measurements. To do so, we consider twenty different first-order models to represent a range of 
HVAC systems and control them using the MFC to maintain the indoor air temperature at a 
desired setpoint.  

HVAC Models 

We consider the following first-order state-space model to represent the cooling of indoor 
spaces by HVAC: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵	𝑢(𝑘) + 𝐺	𝑣(𝑘) 
𝑦(𝑘) = 𝐶	𝑥(𝑘) + 𝐷𝑢(𝑘) 

The system matrices are given as: 

𝐴 = 	
−1
𝑅𝐶 										𝐵 =

𝐶'&
𝐶  

																																										𝐺 = [𝐺(𝐺)]     𝐶 = 1      𝐷 = [0	0	0] 
Here, 𝑅 and 𝐶 are the thermal resistance and capacitance of the building, respectively. The 
system time constant is 𝜏 = 𝑅𝐶. The HVAC input is discrete: 𝑢 = {0,2.5	𝑘𝑊}, and 𝑦 is the 
measured indoor air temperature. We range the time constant from 22.2 hours to 225 hours in 
order to cover most practical HVAC scenarios. The models indexed in order along with their 
time constants that are obtained by varying their resistances and capacitances are shown in Table 
1. For a step input of 2.5	𝑘𝑊, the indoor air temperatures obtained from all the considered 
HVAC models are shown in Figure 1. The disturbances considered are the external temperature 

and solar irradiance – 𝑣(𝑘) = 	 I𝑣((𝑘)𝑣)(𝑘)
J – and are shown in Figure 2. 

Table 1: System parameters for a range of HVAC models. 
Model Index R (℃/kW) C (MJ/℃) Time Constant (hr) 

1 2 40 22.22 
2 2 56 31.11 
3 3 52 43.33 
4 4 48 53.33 
5 5 46 63.89 
6 5 54 75 
7 7 44 85.56 
8 6 58 96.67 
9 8 48 106.67 
10 10 42 116.67 
11 11 42 128.33 
12 9 56 140 
13 10 54 150 
14 12 48 160 
15 14 44 171.11 
16 13 50 180.56 
17 12 58 193.33 
18 13 56 202.22 
19 16 48 213.33 
20 15 54 225 



 
Figure 1. Temperature responses of 20 first-order HVAC models. 

 
Figure 2. External disturbances considered in the HVAC models. 

 
Having seen the system response for the rated power of 2.5 kW, we now observe the 

system for different input (rated) powers to gain more insight into the system dynamics. For the 
fastest model – 𝑀( in Figure 1, the temperature responses for a range of rated powers from 0 to 
2.5	𝑘𝑊 are shown in Figure 3. As we can see, the system response is similar for inputs up to 
300	𝑊, and is almost the same as the HVAC being switched off. We can also clearly observe the 
inherent effect of the external disturbance in such cases.  



 
Figure 3. Output response of the first model M1 for a range of HVAC input powers. 

Continuous Control under Zero Time-Delay in Measurements 

To establish a fair platform for analysis of MFC under time delays in measurements, we 
first establish a set of tuning parameters for each HVAC model without any time delay in 
measurements. Then we introduce time delays and observe the performance under the 
established tuning parameters. 

To present a clear analysis, we consider three of the twenty models: 𝑀(,  𝑀(*,  𝑀)* for the 
rest of the paper. In Figure 4 we show the temperature responses of the three models controlled 
using MFC without any time delay in the measurements. Alongside the temperature responses, 
we also show the corresponding control inputs and the state of the tuning parameters used for the 
models.  

 
Figure 4. Baseline control of three HVAC models - performance under zero measurement time delays. 



Control under Non-Zero Time-Delay in Measurements 

With the MFC tuning parameters established under the absence of measurement time 
delays for the three considered models, we proceed to analyze their responses with the 
introduction of time delays in measurements. We also compare the responses obtained using 
MFC with an On-Off control strategy, or commonly known as thermostat control, which is 
defined to be ON except if the indoor air temperature hits the desired set-point. That is: 

𝑢(𝑘 + 1) = 	 N2.5	𝑘𝑊														𝑖𝑓	𝑦(𝑘) > 𝑦∗
0																				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Y 

Note that the On-Off control strategy inherently leads to a discrete control input. 
Therefore, to maintain a fair comparison between On-Off and MFC, we round-off the control 
input from the MFC and accordingly switch on or off the HVAC. This results in the final HVAC 
power input resulting from the MFC strategy to be discrete, not continuous.  

The sampling time considered is 10 minutes, and hence each time delay in a sample 
corresponds to 10 minutes. Accordingly, a measurement delay of 6 samples corresponds to one 
hour delay in measurements. We present the controlled temperature responses for the three 
models 𝑀(, 𝑀(*, 𝑀)* under different measurement time delays in Figures 5-7. In each figure, 
along with the temperature responses, we also show the corresponding control inputs. We note 
here that the tuning parameters for MFC are the same as obtained under the absence of 
measurement time delays. Each figure considers one model, and in the subplot columns therein, 
it shows the comparison between On-Off and MFC. While the top row shows the indoor air 
temperatures obtained for different measurement time delays under the two control strategies, the 
bottom row shows their corresponding control inputs. For all the three models under a range of 
considered measurement time delays, as we can see, the MFC strategy is able to handle the time 
delays effectively and outperforms the On-Off strategy.  

 
Figure 5. Comparison of On-off and MFC for Model-1 under different measurement time-delays. Top row: Indoor 

air temperatures. Bottom row: HVAC input states. 



 
Figure 6. Comparison of On-off and MFC for Model-10 under different measurement time-delays. Top row: Indoor 

air temperatures. Bottom row: HVAC input states. 

 
Figure 7. Comparison of On-off and MFC for Model-20 under different measurement time-delays. Top row: Indoor 

air temperatures. Bottom row: HVAC input states. 



The results shown in Figures 5-7 are further analyzed through different metrics as shown 
in Table 2. For all the three models, we compare the two strategies – On-Off control and MFC – 
through their ability to maintain the desired temperature setpoint and through their power 
consumption. Accordingly, the first metric is the absolute mean deviation, which is the mean of 
the absolute difference between the measured temperature and the desired temperature setpoint. 
This error measurement metric is denoted 𝑒+,-. The second metric is the power consumption, 
which is the average power consumed, in kW, by the HVAC over a 24-hour period, denoted 
𝑝+./. As observed in Table 2, the power consumption using MFC is significantly less than the 
one for on-off control. Additionally, in most cases the deviation in indoor air temperature from 
the desired setpoint is also less than on-off control. 

Table 2. Comfort satisfaction and power saving of on-off control and MFC for Models 1, 10, and 
20. 

Model 
Index 

Time 
Delay (hr) 

0 1 3 5 
On-off MFC On-off MFC On-off MFC On-off MFC 

1 𝑒+,-(℃) 0.5760 0.6006 0.9529 0.7507 1.0630 0.8202 0.9277 0.7854 

1 𝑝+./(𝑘𝑊) 40 25 55 42.5 90 67.5 65 35 

10 𝑒+,-(℃) 0.2059 0.5780 0.685  0.3959 0.9753 0.4107 0.8993 0.4259 
10 𝑝+./	(𝑘𝑊) 27.5 5 37.5 10 47.5 10 47.5 10 
20 𝑒+,-(℃) 0.1529  0.6454 0.5499 0.4239 0.9806 0.4429 0.8975 0.4620 
20 𝑝+./	(𝑘𝑊) 32.5 7.5 45 15 62.5 15 62.5 15 

 

Effect of Measurement Time-Delay in Power Allocation 

Let 𝑃(𝑘) be the amount of power to be allocated by the central command among 𝑁 
different TCLs at time 𝑘. Let 𝑢0(𝑘) and 𝑦0(𝑘) be the “ideal” control input and the corresponding 
output of the 𝑖"1 TCL at time 𝑘, and 𝑃0(𝑘) ∈ {0, 𝑝2} be the power consumed, where 𝑝2 is the 
rated power of the TCL, which is 2.5 kW in this study. The “ideal” control input refers to the 
control input computed from the local control method and would be supplied to the TCL had 
there been no power allocation constraint. However, in order to follow the reference power 
profile, the central command receives all the “ideal” control inputs and sends back power inputs 
to the TCLs such that the power allocation constraint is satisfied while deviating the least from 
the ideal requirements.  

𝑃(𝑘) − 𝜖 ≤a𝑃0(𝑘)
3

04(

≤ 𝑃(𝑘) + 𝜖 

The central command maintains the power allocation constraint above in the following steps: 
1. Compute the number of TCL units to be switched on as 𝑛'5 = round(6(8)

&!
). 

2. Use the “ideal” control inputs 𝑢0(𝑘) to rank the TCLs – higher value reflects the urgency 
of the TCL to be switched on.  

3. Set the top 𝑛'5 TCLs’ inputs to 1 (switch on) and rest to 0. 
4. Communicate the modified control inputs back to the local controllers. 



Note here that the central command employs the “ideal” control input from all the local 
controllers only to rank the loads in terms of the urgency in needing additional power. The 
number of units to be turned on at a certain time instant is only based on the available power at 
that time instant. Therefore, regardless of the state of the TCL output, only a pre-decided number 
of TCLs are turned on. The aspect that the measurement time-delay will affect certain units being 
wrongly turned on, and certain others being wrongly turned off. Therefore, we will observe the 
negative effects of the measurement time delays in the TCLs’ temperature outputs deviating 
from their desired setpoints; however, the power allocation constraint will always be satisfied. 
Accordingly, if the power profile is feasible, then the chances of all TCLs’ temperature outputs 
deviating the least from their desired setpoints is high.  

The scale of the resulted data to present power allocation among 100 HVACs of three 
different models for a range of measurement time delays is too large to meaningfully present as 
visual graphs. Therefore, we present the power allocation results – temperature responses and 
power consumption – for 𝑀( with and without measurement time delays. Then, we present the 
rest of the large, resulted data in a table by analyzing it through different metrics.  

Figures 8-10 shows the results of power allocation for 𝑀(, where the considered time delays 
are 0 and 5 hours. Since the power consumption profile is the same for both the cases, we only 
show the power graph once. The metrics we consider for further analysis of the large-scale 
resulted data are absolute mean deviation and average number of switching. The former, error 
through absolute mean deviation denoted 𝑒+,-, is computed the same way as in the case of no 
power allocation. The latter is computed as follows. Each time an HVAC changes its state, from 
On to Off or vice versa, it is considered to have switched. The total number of switching of each 
HVAC, throughout the span of 24 hours, is then averaged to obtain the second metric – average 
number of switching per HVAC per day, denoted 𝜂:. Like Table 2, the first entry in each cell 
corresponds to On-Off control and the second entry corresponds to the MFC. 

 
Figure 8. Temperature responses of 100 HVACs of Model-1 obtained with power allocation 
constraint and no time-delay in measurements. 



 
Figure 9. Temperature responses of 100 HVACs of Model-1 obtained with power allocation constraint and a 

measurement time-delay of 5 hours. 

 

 
Figure 10. Power tracking of the reference (available) power by the central command, using on-off control and 

MFC. 



Table 3. Comfort satisfaction and HVAC switching under power allocation constraint using on-
off control and MFC for Models 1, 10, and 20. 

Model 
Index 

Time 
Delay (hr) 

0 1 3 5 
on-off MFC on-off MFC on-off MFC on-off MFC 

1 𝑒+,-(℃) 0.5969 0.5791 0.6416 0.5909 0.6245 0.6162 0.6152 0.6069 

1 𝜂: 15.68 13.64 10.58 11.16 12.02 12.36 13.06 13.24 
10 𝑒+,-(℃) 0.3754 0.3221 0.6330 0.3909 0.8524 0.6428 0.8897 0.5947 
10 𝜂: 8.34 9.84 1.76 3.02 1.28 2.72 1.32 3.36 
20 𝑒+,-(℃) 0.5427 0.5075 0.7289 0.5164 0.9026 0.6959 0.9429 0.6954 
20 𝜂: 4.86 9.8 1.38 3.02 1.2 2.76 1.08 3.36 

 
Overall, mean deviation in indoor air temperatures is less using MFC than using on-off 

control. However, the switching rate is slightly higher in MFC in most cases.  
 

Conclusion 

Despite the introduction of time delays in measurements, we observe that the power 
allocation constraint is always satisfied. This is due to the framework of the algorithm 
embedding the power allocation as a hard constraint. When there is a time delay in 
measurements, the local controller – on-off or MFC – does not have the latest (and hence the 
most accurate) measurement to operate on. This leads to certain deviations from the desired 
temperature setpoint. However, as we have observed the MFC strategy is nonetheless robust to 
measurement time delays for at least up to 5 hours, which is practically a sufficient time to 
correct the faults causing the delays. 
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