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> | Introduction and Problem Formulation

- False Data Injection Attacks (FDIAs) can inject false  BATTERY MODULE
measurements on sensors, monitor sensor
readings, or deny service,

« Typically evade traditional bad data detectors

« Can cause equipment malfunction ‘

Contributions of this work;
« Accurate SoC estimation for a stack of batteries

Current literature focuses on modeling batteries as
single cells or modeling stacks of batteries using the
“big cell” approximation [1] - [6] SoC ESTIMATION

BMS

SENSING

- Voltage (cell, stack)
- Stack current
-Temperature

* Quick detection of small magnitude FDIAs in 5
SoC estimation for a stack of batteries using a -
physical models, an Extended Kalman Filter
(EKF), and a statistics-based Cumulative Sum « PROTECTION
(CUSUM) Algorithm AND BALANCING

Monitoring battery stacks will allow the EKF to compute
estimations in the event of some sensor failures -
adding robustness to the estimation
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Governing Equations:

x[k + 1] = f(x[k], ulk], wlk])

ylk] = g(x[k], ulk], v[k])

where w[k] ~ NV (0, Q) and v[k] ~ IV (0, R)
ipaclk] = ic[k] + ig[k]
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Vpaty K] = Voc, (61[k]) + vy 1 [k] + vo 1 [k] + Ro 1 (ic[k] + ia[k])
Vbatz[k] = Ve, (62 [k]) + vy 2[k] + vy plk] + Ro(ic[k] + iglkl])

Vstack k] = Ubat, [k] + Ubat, (k]

o

k, At Current time step, sampling time Kalman
u System input \F/gtr?arbles
Y, 9 Model output, predicted output !
X, & State, predicted state
w Process noise
v Measurement noise
S1 Battery SoC for Cell1 System
2 RC voltage drop 1 for cell 1 State
Vz1 RC voltage drop 2 for cell 1 Variables
S2 Battery SoC for Cell 2
Vi, RC voltage drop 1 for cell 2
Vy RC voltage drop 2 for cell 2
iq Discharge current System
i Charge current Inputs
Vpat, Battery voltage for cell 1 System
Vpat, Battery voltage for cell 2 Outputs
Vstack Battery stack voltage
ihat Battery current

Extended Kalman Filter:

Required to estimate the
SoC of the battery stack
using the nonlinear
relationship between open
circuit voltages and SoC

The a priori measurement

residuals derived from the

EKF are used in the CUSUM
algorithm to detect FDIAs
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Attack of 10 mV added to the v,,, measurement
at t = 5500, for visualization purposes. Estimated

states for Cell 1 (top) and Cell 2 (bottom)

Cumulative Sum Algorithm:

« Performed using a priori
residual data with mean (p = 0):

zlklk — 1] = y[k] = y[k|k — 1]

Population Standard Deviation:

AsS
2= 3

« Upper/ Lower Control Limit:
UCL = ha, , LCL = —ha,
+ High and Low CUSUM:
SH; = max (0,7 — u — ko, + SH;_y)
SL; = min(0,Z — p + ko, + SL;_;)
« Determine presence of attack:

SH; > UCL or SL; < LCL - attack present
SH; < UCL and SL; = LCL - no attack
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- The method described can be used to quickly detect FDIA in BESS state estimation
This CUSUM Algorithm could detect attacks as low as 500 pV added to v,,,, measurement

« The algorithm resulted in zero false alarms

« Performing estimation with a stack of batteries, rather than a single cell, adds
redundancy to the measurements allowing the system to remain observable when

all but one sensor failed
« Created a more robust estimation algorithm

%107 CUSUM Chart CUSUM Chart %107 CUSUM Chart (Fixed Y-Limits)
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