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• Carrier dynamics measurements and modeling with small-signal EL 

• c-Plane wavelength series on commercial epitaxy 

• Crystal orientation series 

• Core-shell nanostructure-based LEDs  
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Motivation for Carrier Dynamics/Modulation Studies 
Visible-Light Communication Micro-LED Displays Augmented and Virtual Reality 

H. Haas, J. Lightwave. Technol. 34, 1533 (2016) 

https://purelifi.com/technology/ 

Photonic Integration 

B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics 

Efficiency/Thermal Droop Green Gap 



• Small area reduces RC parasitics 

• 50 – 100 m diameter 

• Can be driven at high current density 
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Small-Area GaN-Based LEDs 

https://www.lifi.eng.ed.ac.uk/lifi-news/2015-11-28-1320/how-fast-can-lifi-be 
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RF Measurement System 

𝑆11= 
𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡
 

𝑆21= 
𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡
 

Impedance = 𝑍 = 𝑍0
1+𝑆11

1−𝑆11
 

Frequency Response= 𝑆21 
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Rate Equation Modeling of LED Carrier Dynamics 

𝑨𝒊𝒆
−𝒊𝝎𝒕 

𝑨𝒓(𝝎)𝒆
−𝒊(𝝎𝒕+𝝋𝒓) 

𝑨𝒕(𝝎)𝒆
−𝒊(𝝎𝒕+𝝋𝒕) 

Considered carrier processes: 

1. Carrier injection  
2. Carrier diffusion and capture 
3. Recombination in QW 
4. Carrier leakage  
5. Recombination in cladding 

and overshoot  

𝜏∆𝑟𝑒𝑐 = 𝑅𝑤𝐶𝑤 

𝜏∆0 = 𝑅𝑐𝐶𝑡𝑜𝑡 𝜏∆𝑒𝑠𝑐 = 𝑅𝑐𝐶𝑤 

𝜏∆𝑅𝐶 =
𝑅𝑠

𝑅𝑠 + 𝑅𝑐
𝜏∆0 

A. Rashidi, et al., J. of Appl. Phys. 122, 3 (2017) 

𝑗𝜔𝑛𝑤 = −
1

𝜏∆𝑟𝑒𝑐
+

1

𝜏∆𝑒𝑠𝑐
𝑛𝑤 +

𝑛𝑐

𝜏∆𝑐
  

𝑗𝜔𝑛𝑐 =
𝑖

𝑞
− 𝑗𝜔𝑣𝑐

𝐶𝑠𝑐

𝑞
+

𝑛𝑤

𝜏∆𝑒𝑠𝑐
−
𝑛𝑐

𝜏∆𝑐
 − 

𝑛𝑐

𝜏∆𝑟𝑒𝑐,𝑐𝑙𝑎𝑑
  

Small-signal rate equations Small-signal equivalent circuit 

Associated lifetimes 

A. Rashidi et al., Appl. Phys. Lett., 112,  031101 (2018)  
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Fitting Equivalent Circuit Model 

Simultaneous fitting of optical frequency response and impedance yields various carrier lifetime 

𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

=
𝑅𝑤

𝑅𝑠 1 + 𝑗𝜔𝜏𝑟𝑒𝑐 1 + 𝑗𝜔𝜏0 + 𝑅𝑠 𝑗𝜔𝑅𝑤𝐶𝑡𝑜𝑡 + 𝑅𝑐 1 + 𝑗𝜔𝜏𝑟𝑒𝑐 + 𝑅𝑤
 

𝑍𝑖𝑛 = 𝑅𝑠 +
𝑅𝑐(1 + 𝑗𝜔𝑅𝑤𝐶𝑤) + 𝑅𝑤

(1 + 𝑗𝜔𝑅𝑤𝐶𝑤)(1 + 𝑗𝜔𝑅𝑐𝐶𝑡𝑜𝑡) + 𝑗𝜔𝐶𝑡𝑜𝑡𝑅𝑤
 Input impedance: 

Optical response: 

Extract differential lifetimes 

A. Rashidi, et al., J. of Appl. Phys. 122, 3 (2017) 

𝑅2 > 0.995 

Fit to input impedance 

𝑅2 > 0.995 

Fit to optical frequency response Recombination lifetime:  
green LED 

𝝉𝒓𝒆𝒄 = 𝑹𝒘𝑪𝒘 
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Wavelength Series on Lumileds Epitaxy 

Color Description 
Blue 3 QWs, 3 nm, wavelength 470 nm 
Cyan 3 QWs, 3 nm, wavelength 500 nm 

Green 3 QWs, 3 nm, wavelength 530 nm 

*LED mesa diameter = 100 µm 

• Study of simplified commercial LED designs 

• Representative of recombination behavior in “real” designs 

• Design simplification restricts emission to one QW 

on wafer 



Daniel Feezell 9 

Internal Quantum, Injection, and Radiative Efficiency 

• Longer wavelength → lower IQE, lower injection efficiency, and lower radiative efficiency 

• How much of the change in efficiency from blue to green is due to intrinsic effects (e.g., wave-
function overlap and phase-space filling) vs. extrinsic effects (e.g., material degradation)? 

 

𝜂𝑖𝑛𝑗 =
 𝜂Δ𝑖𝑛𝑗𝑑𝐼
𝐼

0

𝐼
 

𝜂𝐼𝑄𝐸 = 𝜂𝑖𝑛𝑗 ∗ 𝜂𝑟  Based on known extraction efficiency 
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Radiative and Non-Radiative Lifetimes 

• The total recombination lifetime is obtained by integrating the differential lifetime 

• Radiative lifetime and non-radiative lifetime are separated using total lifetime and radiative efficiency 

• Longer wavelength → longer total lifetime, longer radiative and non-radiative lifetimes 

• Longer lifetimes at longer wavelengths expected from smaller wave function overlap 

 

𝜏𝑟𝑒𝑐 =
𝜏𝑛𝑟 ∗ 𝜏𝑟
𝜏𝑛𝑟 + 𝜏𝑟

 

𝜂𝑟 =
𝜏𝑛𝑟

𝜏𝑛𝑟 + 𝜏𝑟
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Role of Carrier Density vs. Current Density 

𝐽 ∝ 𝐴(𝑛)𝑛 + 𝐵(𝑛)𝑛2 + 𝐶(𝑛)𝑛3 

• Longer wavelengths have lower 𝐴 𝑛 , 𝐵 𝑛 , 𝐶(𝑛) at a 

given 𝑛 due to stronger QCSE 

• Reduces efficiency of converting carriers to current 

• Longer wavelengths have higher 𝒏 at a given J  

• Increases the relative strength of the Auger term 

 

𝑛𝑤 =
1

𝑞 ∗ 𝐴 ∗ 𝑑
 𝜂∆𝑖𝑛𝑗𝜏Δ𝑟𝑒𝑐𝑑𝐼
𝐼

0
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Radiative and Non-Radiative Recombination Rates 

• Longer wavelength → stronger polarization in QWs → lower wave function overlap → smaller 𝐴, 𝐵,  and 𝐶* 

• At longer wavelength, 𝑛 is higher, but 𝐵 and 𝐶 are lower 

• 𝑹𝒏𝒓(530 nm) > 𝑹𝒏𝒓(470 nm) but 𝑹𝒓(530 nm) < 𝑹𝒓(470 nm) since 𝑹𝒓 ∝ 𝒏
𝟐, while 𝑹𝒏𝒓 ∝ 𝒏

𝟑 

• In addition to increased Auger, reduction in radiative rate is an important factor for green gap 
*E. Kioupakis et al ., Appl. Phys. Lett., 101.23 (2012): 231107. 

𝑅𝑟 =
𝑛𝑤
𝜏𝑟

 

𝑅𝑛𝑟 =
𝑛𝑤
𝜏𝑛𝑟

 

𝑅𝑟 =
𝑛𝑤
𝜏𝑟

 

𝑅𝑛𝑟 =
𝑛𝑤
𝜏𝑛𝑟

 𝜏𝑟𝑒𝑐 =
𝑛𝑤
𝑅𝑟𝑒𝑐

 

𝑅𝑟𝑒𝑐 =  
𝑑𝑛𝑤
𝜏∆𝑟𝑒𝑐

𝑛𝑤

0
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ABC Parameters 

• Mechanisms that affect A 𝑛 , 𝐵 𝑛 , and 𝐶 𝑛 :  QCSE (field screening), phase-space 

filling (PSF), and Coulomb enhancement/screening 

• 𝐺𝑛𝑟 𝑛  doesn’t converge at low n, so can only bracket A 𝑛  

• Increase of 𝐺𝑟 𝑛
2  and 𝐺𝑛𝑟 − 𝐴𝑛 𝑛3  at low n attributed to Coulomb enhancement 

• Strong field screening not observed in these 3-nm-thick QWs 

• Difficult to decouple the different effects but ratios can provide insight 

 

A. David et al., Phys. Rev. Appl., 12.4 (2019): 044059. 

Optical differential lifetime (ODL) method 



  Rr Rnr n B(n) C(n) 

Blue 1 1 1 1 1 

Cyan 0.80 1.16 1.29 0.48 0.55 

Green 0.60 1.34 2.09 0.14 0.15 
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n, B(n), and C(n) Compared to Blue at 40 A/cm2 

• Blue → Green:  𝑅𝑟  decreases but 𝑅𝑛𝑟  increases 

• Blue → Green:  Carrier density increases by 2X 

• Blue → Green:  𝐵 𝑛  and 𝐶 𝑛  both decrease by 7X 

• Efficiency reduction for high 𝒏 in longer wavelength LEDs not 

dominated by large relative increase in 𝑪 𝒏  compared to 𝑩 𝒏  

Scale factor compared to blue 

*B(n)-G: ratio of B(n) 

for green to B(n) for 

blue at a given J 

𝑅𝑟 = 𝐵 𝑛 ∗ 𝑛2 

𝑅𝑛𝑟 ≈ 𝐶 𝑛 ∗ 𝑛3 (at high n) 

Definition of 𝐵 𝑛  & 𝐶 𝑛  

SRH neglected (high n) 

𝜂𝑟 ≈
𝐵 𝑛 𝑛2

𝐵(𝑛)𝑛2 + 𝐶(𝑛)𝑛3
 (at high n) 

Normalized to blue: 
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Scaling Law Between C(n) & B(n) at High n 

• 𝐶(𝑛) ∝ 𝐵(𝑛) at high 𝑛 from experiment and Schrödinger-Poisson simulations from Univ. of Michigan 

• Simulations capture variations in QCSE, PSF, and alloy disorder 

• Same power law obeyed for all wavelengths at high 𝑛 under varying polarization fields and PSF 

• Variations in 𝑪(𝒏) and 𝑩(𝒏) due to QCSE (field screening) and PSF cancel out at high n if we consider 𝑪(𝒏)/𝑩(𝒏) 

• Whatever differences exist in 𝑪(𝒏)/𝑩(𝒏) should mainly capture any material-quality differences 

𝜂𝑟 ≈
1

1 + (𝐶 𝑛 𝐵 𝑛 ) ∗ 𝑛
 at high n 

A. David et al., Appl. Phys. Lett., 115.19 (2019): 193502. 

𝐶(𝑛) ∝ 𝐵(𝑛)1.12 

Optical differential lifetime (ODL) method 

𝐶(𝑛) ∝ 𝐵(𝑛)1 

Simulations by N. Pant and E. Kioupakis, Univ. of Michigan 
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C(n)/B(n) Approaches Similar Value at High n 

• 𝐶(𝑛)/𝐵(𝑛) approaches a similar value at high 𝑛 for all wavelengths ⇒ effects of material degradation are small 

• Differences in 𝐶(𝑛)/𝐵(𝑛) between blue, cyan, and green consistent with differences in 𝐶𝑏𝑢𝑙𝑘(𝑛) from DFT 

• Decrease of 𝜼𝒓 for longer wavelength is mostly from the increase of corresponding 𝒏 at a given J 

• Radiative efficiency is similar for a given 𝒏 for all wavelengths 

• Target green LED designs that reduce 𝑛 (multiple QWs) and increase overlap (thin QWs, semipolar, stepped profiles) 

at high n 𝜂𝑟 ≈
1

1 + (𝐶 𝑛 𝐵 𝑛 ) ∗ 𝑛
 

~ 25% 
variation 
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Orientation Series:  Blue LEDs 

𝐒𝐞𝐦𝐢𝐩𝐨𝐥𝐚𝐫 (𝟐𝟎𝟐 𝟏 ) 𝐏𝐨𝐥𝐚𝐫 (𝟎𝟎𝟎𝟏) 𝐍𝐨𝐧𝐩𝐨𝐥𝐚𝐫 (𝟏𝟎𝟏 𝟎) 

D. Feezell, J. Disp. Technol. 9, 190-198 (2013) 

Goal:  Investigate the effects of orientation on modulation bandwidth 

Carrier recombination lifetime (rate) influenced by orientation (𝑓3𝑑𝐵 ∝ 1 𝜏 ):  



• Compared 450 nm LEDs on polar, semipolar (202 1 ), and nonpolar orientations 

• Bandwidth trends follow wavefunction overlap trends 

• 𝑓3𝑑𝐵−𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 > 𝑓3𝑑𝐵−𝑠𝑒𝑚𝑖𝑝𝑜𝑙𝑎𝑟 > 𝑓3𝑑𝐵−𝑝𝑜𝑙𝑎𝑟 
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Orientation Dependence of Bandwidth 
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M. Monavarian, et al., Appl. Phys. Lett. 112, 041104 (2018) 



• Nonpolar and semipolar bandwidth is significantly higher at low current densities 

• Polar LED experiences screening of the internal electric fields above 500 A/cm2 

• Large bandwidth at low current density important to maximize efficiency  
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Orientation Dependence of Bandwidth 
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• Differential carrier lifetime (DLT) follows inverse trend to bandwidth 

• Carrier density for a given current density always lower on nonpolar and semipolar 

Daniel Feezell 20 

Differential Carrier Lifetime and Carrier Density 
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M. Monavarian, et al., Appl. Phys. Lett. 112, 041104 (2018) 



• Recombination rate (𝐴𝑛 + 𝐵𝑛2 + 𝐶𝑛3) is roughly proportional to the square of the wave 
function overlap for a given carrier density (𝑛) 

• Overlap is higher in nonpolar/semipolar, increasing the recombination rate and bandwidth 

• With higher recombination coefficients (𝐴, 𝐵, 𝐶), 𝑛 is lower for a given 𝐽 

• Lower 𝑛 at a given 𝐽 reduces the impact of the 𝐶𝑛3 term 
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Effect of Wave Function Overlap 

polar nonpolar / semipolar 

𝐹1 𝐹2
2 ↓ ↑ 

𝐴, 𝐵, 𝐶 ↓ ↑ 

𝑛 @ given 𝐽 ↑ ↓ 

𝐽 @ given 𝑛 ↓ ↑ 

𝐴, 𝐵, 𝐶 ∝ 𝐹1 𝐹2
2 

𝐽 ∝ 𝐴𝑛 + 𝐵𝑛2 + 𝐶𝑛3 

𝜂𝑟 =
𝐵𝑛2

𝐴𝑛 + 𝐵𝑛2 + 𝐶𝑛3
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Nonpolar LED with 1.5 GHz Modulation Bandwidth 
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Similar modulation bandwidth to highest reported GaAs-based LED 
A. Rashidi, et al., Elect. Dev. Lett. (2018) 



• Bottom-up selective-area growth 

• 4 X 2.5-nm-thick QWs 

• AlGaN underlayer and electron blocking layer 

• Peak IQE ~ 62% 

• 60 µm x 60 µm area of NWs 
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Nonpolar Core-Shell Nanowire-Based LEDs 

M. Nami, et al., Nanotechnology 28 , 025202 (2017) 

M. Nami, et al., Sci. Reports 8 , 501 (2018) 

Potential Advantages: 

• Polarization-free active regions 

• Large effective active region area  

• Elimination of threading dislocations  

• Strain relaxed structures possible 

• Monolithic integration of multi-color LEDs 
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Electrical and Optical Characteristics 

• Excellent diode behavior was obtained 
for the nanowire LED using AlGaN 
underlayer 

• Nanowire LEDs show an IQE of 0.62 
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Frequency Response and Lifetimes 
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• 1.2 GHz bandwidth at 1 kA/cm2 

• Non-uniform injection affects 
spectrum and BW vs. J trend 

• Similar maximum bandwidth to 
planar m-plane LED 

M. Nami, et al., ACS Photonics  6, 1618 (2019) 



 

• Non-uniformity in 
InGaN growth rate 
and QW thickness 

 

• Non-uniformity in 
indium content  

 

• Both result in 
variation in QW 
emission  
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QW Non-uniformity Across The Nanowires 

A. Rishinaramangalam, et al., Appl. Phys. Express 9, 032101 (2016) 

S. Okur, et al., Nanotechnology 29, 235206 (2018) 
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Nanowire Emission From Blue to Green  

Emission color changes from green to blue by changing current density 

• Carrier injection non-
uniformity in EL 
suggested by the 
simulation results 

• Due to non-uniformity 
of QW emission, EL 
spectra is strongly 
dependent on the 
current density 

 

M. Nami, et al., ACS Photonics  6, 1618 (2019) 



c-plane bandwidth is fundamentally lower due to internal electric fields (QCSE)  
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Comparison of Bandwidth for Various Orientations 

M. Monavarian, et al., Appl. Phys. Lett. 112, 041104 (2018) 
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• Small-signal electroluminescence measurements used to study carrier 
dynamics in polar, semipolar, and nonpolar LEDs under real operating 
conditions 

• Analysis of an LED wavelength series on commercial epitaxy shows decrease 
in IQE for longer wavelength is mostly from the increase of corresponding 𝑛 
at a given J 

• Nonpolar and semipolar orientations are fundamentally faster than c-plane, 
as expected from increased wave function overlap 

• Core-shell nanowire LEDs showed >1 GHz 3dB bandwidth, but suffered from 
non-uniform carrier injection 
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Conclusions 
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Thank You! 


