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> | Why are fields and electron dynamics near a MITL load
so important!?

* Z machine is the largest pulsed power machine in the world capable of
delivering < 30 MA of current.

* The inner MITL conducts power to the load which is located at the center
of the machine.

* The following analysis can be used to directly understand fields/electron
dynamics near the load. The fields/electron dynamics from this analysis
are checked using the fully electromagnetic code EMPIRE developed at
Sandia National Laboratories.
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: | Assumptions™
1.  The MITL is cylindrically symmetric.

2. The magnetic field is specified by Ampere’s Law in the limit ¢ — % (no
displacement current) for a time-dependent MITL current I(t).
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3. 'The MITL surfaces are perfect conductors.

4. 'The load, which defines the “end” of the MITL, is also represented as a
perfect conducting surface.

*The following work can be found in M. H. Hess and E. G. Evstatiey,
“Electron Dynamics Within a MITL Containing a Load”, IEEE Transactions
On Plasma Science (accepted for publication 2021). (SAND 2021-11933 ))



+ I Electric Field Equations

* The electric fields, which are in the radial and axial directions, can be
solved using Maxwell’s Equations.

Gauss’s Law: V B = 0

0B
ot

Faraday’s Law: V X E =

Boundary
Condition at MITL

Surface and Load: n X E|S —



s | Types of MITLs Examined

*  We examine two different types of MITLs: radial and spherically

curved.
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Full Kinetic Lagrangian Description of Electron Dynamics

Lagrangian function of L(@Q1..-Qs Q1-..Qs)
coordinates and velocities: <% _ 9L
dt 9Q); 0Q;
Radial MITL
Electric Field: E—_Holy (_) &,
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Vector Potential: A= ln( e
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Spherical MITL
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| Full Kinetic Radial MITL Particle Trajectory Equations

In order to simplify our
discussion, we assume

’Ucf)(t) == 0
dp, _ pgﬁ n quolv, dp,  quolv,
dt ymr 27T dr " G
Mome'.:ntum d(rps) _ dpy _
Equations: dt dt
dp. qpolv, dp. quolv,
= - =gE, —
dt 9k 27T dt 4 2rr
Position " db v, 1

Equations: ad- Y @, @Y




. | Full Kinetic Spherically Curved MITL Particle
Trajectory Equations

In order to simplify our I
discussion, we assume

vg(t) =0 ‘
dp, pﬁ%—pﬁ, quolvg dp, 7 qrolve ||
— i [
dt Ymp gy 27 p sinf dt Ymp T 27 psinf
Momentum dp, —p.ps + p2cot(9) apolv, ||dps _ —pope | o . awolv,
= + qEy + . = pr £ 7 e
o dt Ymp 27 p sinf dt ymp 2mpsind
Equations:
d(psinfps) _ s _
dt dt
L - I
Position dp _ 0wy dd _ vy I
. g T O e = —
Equations: dt dt — p dt psinf




> I Drift Kinetic Approximation

* The guiding center drift motion for a particle in an inner MITL can be
described by a combination of ExB and grad B drifts. Since we assume the
particle’s azimuthal velocity is zero at emission, curvature B drift is also zero.

Guiding Center ExB u BxVB
Equation*: Vec = T po | gy B2

Relativistic Adiabatic
Invariant A
(Magnetic Moment)**: H= IYnB

*R. ). Goldston and P. H. Rutherford, Introduction *#A, ], Brizard and A.A. Chan, Phys. Plasmas 8
to Plasma Physics (1995) p.51. 4762 (2001).
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Full Kinetic vs. Drift Kinetic (Radial MITL)

We use a 20 MA peak curtent with ~ *%%

120 ns pulse length current drive.
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Full Kinetic vs. Drift Kinetic (Spherically Curved MITL)
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For the spherical MITL, electrons are
emitted at different initial MITL angles.

For smaller initial angles, the initial
electric field is smaller — smaller
magnetic moment — smaller grad B drift.

For larger initial angles, the initial electric
field is larger — larger magnetic moment
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How good is the comparison of Full Kinetics vs. Drift
Kinetics!?

In general, the smaller the ratio r;/1. = Larmor radius/electric field
gradient length where

E

lp = ——
YT VE]

the better the drift kinetic model agrees with the full kinetic model.

Since smaller initial emission angles — smaller Larmor radii, then the
drift kinetic model at smaller initial angles agrees better with the full
kinetic model.
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s | Theory vs. EMPIRE (Radial MITL Fields) E

* We use the radial MITL

example with a 20 MA peak g 25| f
current to test the ¢ = © limit £ 0
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+ LFull/Drift Kinetic vs. EMPIRE-PIC (Radial MITL Trajectories)

* In order to better resolve cyclotron orbits near the load, we lower the peak
current to 2 MA. We also lower the electric field threshold to 2.4 MV/m.

*  We get excellent agreement with full kinetic simulation of particle
trajectories.
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Theory vs. EMPIRE (Spherically Curved MITL)

We include an axial extension

into the EMPIRE simulation to — °°
provide the correct field BCs £
into the spherical MITL section.
= —50H
E, has excellent agreement % _100]
between theory and EMPIRE.
There is disagreement at larger
angles for Eg due to either the -
difference in the mode structure £
supported by the fully EM =
model vs. the c > ©modelora £
boundary constraint due to the ™ |
MITL extension.
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« IFull/Drift Kinetic vs. EMPIRE-PIC (Spherically Curved MITL)

* The agreement between the theoretical model and the fully electromagnetic model
trajectories is excellent. (E-field threshold is 2.4 MV /m).
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7 I Summary

* We have analyzed the fields and electron trajectories for radial and spherically
curved MITLs.

e A drift kinetic model that incorporates ExB and grad B drifts provides an
L] L] P [ ] [ ] g P.
overall excellent approximation to the full kinetic electron motion.

e The drift kinetic model shows differences with the full kinetic model
when the Larmor radius grows relative to the electric field gradient scale
length.

* The fields/full kinetic/drift kinetic dynamics for the two MITL problems have
been tested against the electromagnetic code EMPIRE.

*  We get excellent agreement between theory/EMPIRE for
fields/trajectories in the radial MITL case.

*  We get excellent agreement for E; in the spherically curved MITL, and
some disagreement with Eg at large angles between the full EM model
and the ¢ model.

* Small differences in trajectories between the full/drift kinetic and
EMPIRE are also observed. Overall, both the c2 and the drift kinetic
approximation provide excellent representations of electron trajectories
when compared with EMPIRE results.



