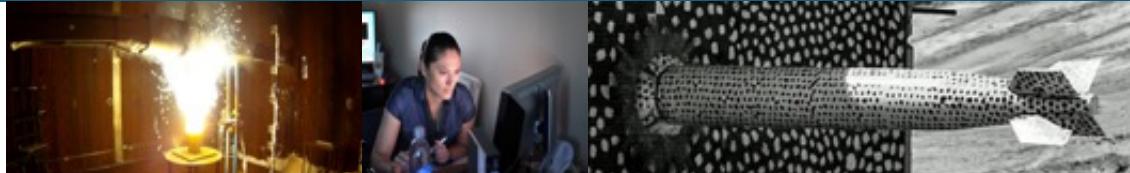




# Full Kinetic and Drift Kinetic Descriptions of Electrons Within MITLs Near a Load



*M.H. Hess and E.G. Evstatiev*

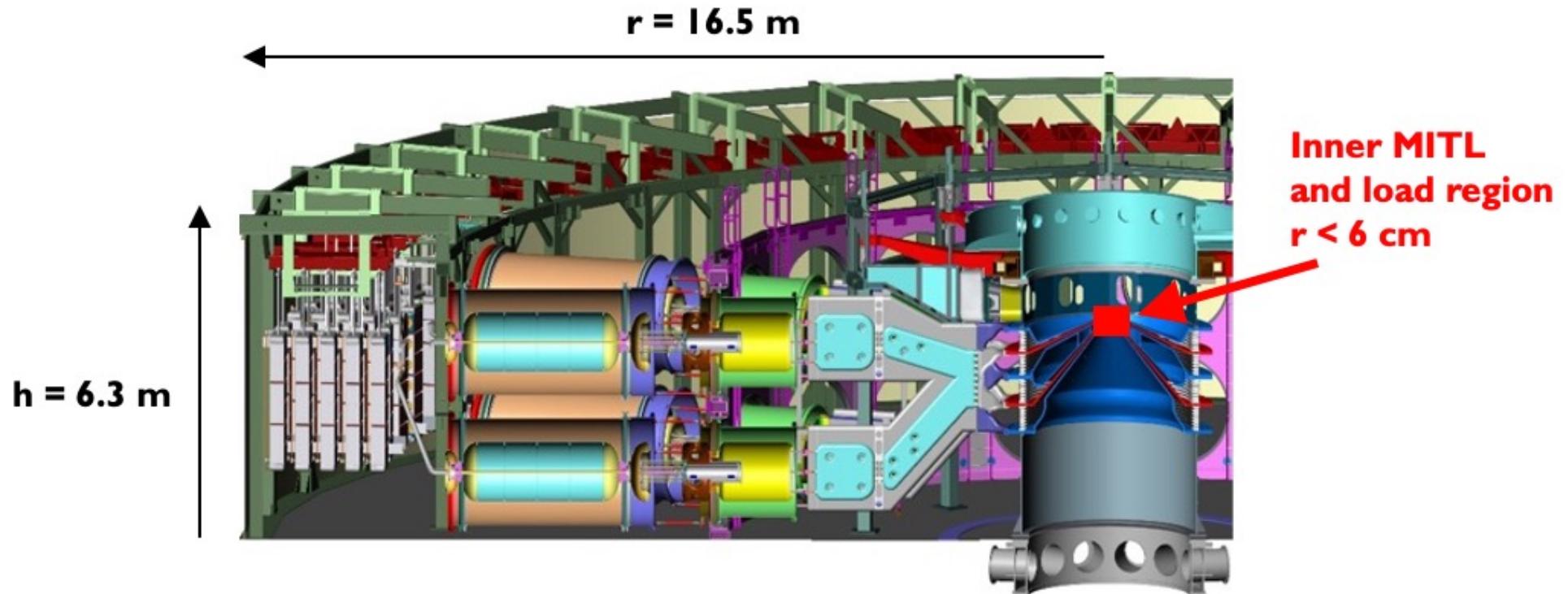
Sandia National Laboratories



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. Partial support is provided by the Sandia National Laboratories Grand Challenge-LDRD #209240 and the Exploratory Express-LDRD #223791.

## Why are fields and electron dynamics near a MITL load so important?

- Z machine is the largest pulsed power machine in the world capable of delivering  $< 30$  MA of current.
- The inner MITL conducts power to the load which is located at the center of the machine.
- The following analysis can be used to directly understand fields/electron dynamics near the load. The fields/electron dynamics from this analysis are checked using the fully electromagnetic code EMPIRE developed at Sandia National Laboratories.



## Assumptions\*



1. The MITL is cylindrically symmetric.
2. The magnetic field is specified by Ampere's Law in the limit  $c \rightarrow \infty$  (no displacement current) for a time-dependent MITL current  $I(t)$ .
$$\mathbf{B} = -\frac{\mu_0 I(t) \mathbf{e}_\phi}{2\pi r}$$
3. The MITL surfaces are perfect conductors.
4. The load, which defines the “end” of the MITL, is also represented as a perfect conducting surface.

\*The following work can be found in **M. H. Hess and E. G. Evstatiev**, “**Electron Dynamics Within a MITL Containing a Load**”, **IEEE Transactions On Plasma Science (accepted for publication 2021)**. (SAND 2021-11933 J)

# Electric Field Equations



- The electric fields, which are in the radial and axial directions, can be solved using Maxwell's Equations.

**Gauss's Law:**

$$\nabla \cdot \mathbf{E} = 0$$

**Faraday's Law:**

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

**Boundary  
Condition at MITL  
Surface and Load:**

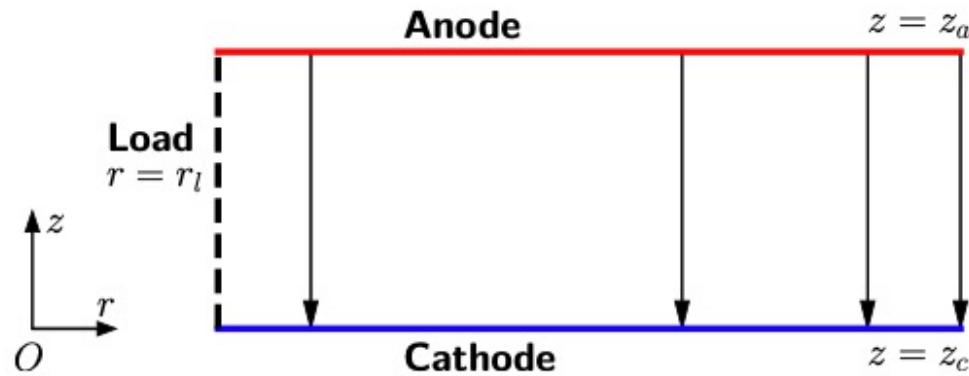
$$\mathbf{n} \times \mathbf{E}|_S = 0$$

# Types of MITLs Examined

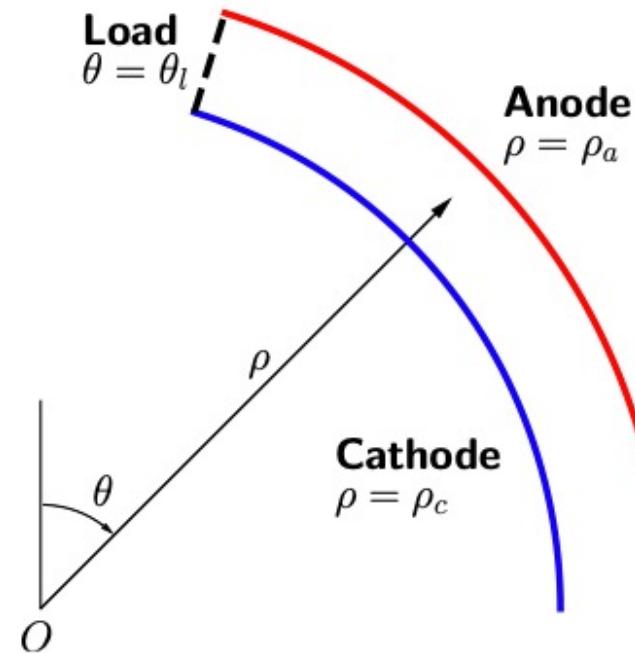


- We examine two different types of MITLs: radial and spherically curved.

## Radial MITL



## Spherically Curved MITL





**Lagrangian function of coordinates and velocities:**

$$L(Q_1 \dots Q_s, \dot{Q}_1 \dots \dot{Q}_s)$$

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{Q}_i} = \frac{\partial L}{\partial Q_i}$$

## Radial MITL

**Electric Field:**

$$\mathbf{E} = -\frac{\mu_0 I}{2\pi} \ln\left(\frac{r}{r_l}\right) \mathbf{e}_z$$

**Vector Potential:**

$$\mathbf{A} = \frac{\mu_0 I}{2\pi} \ln\left(\frac{r}{R}\right) \mathbf{e}_z$$

**Lagrangian:**

$$L = -mc^2 \sqrt{1 - \frac{1}{c^2} \left( \dot{r}^2 + r^2 \dot{\phi}^2 + \dot{z}^2 \right)} + q\mathbf{v} \cdot \mathbf{A}$$

## Spherical MITL

**Electric Field:**

$$\mathbf{E} = \frac{\mu_0 I \rho_a \rho_c}{2\pi \rho^2} \ln\left(\frac{\csc\theta + \cot\theta}{\csc\theta_l + \cot\theta_l}\right) \mathbf{e}_\rho + \frac{\mu_0 I (\rho - \rho_a)(\rho - \rho_c)}{2\pi \sin\theta \rho^2} \mathbf{e}_\theta$$

**Vector Potential:**

$$\mathbf{A} = -\frac{\mu_0 I \rho_a \rho_c}{2\pi \rho^2} \ln\left(\frac{\csc\theta + \cot\theta}{\csc\theta_l + \cot\theta_l}\right) \mathbf{e}_\rho - \frac{\mu_0 I (\rho - \rho_a)(\rho - \rho_c)}{2\pi \sin\theta \rho^2} \mathbf{e}_\theta$$

**Lagrangian:**

$$L = -mc^2 \sqrt{1 - \frac{1}{c^2} \left( \dot{\rho}^2 + \rho^2 \dot{\theta}^2 + \rho^2 \sin^2 \theta \dot{\phi}^2 \right)} + q\mathbf{v} \cdot \mathbf{A}$$

# Full Kinetic Radial MITL Particle Trajectory Equations



In order to simplify our discussion, we assume

$$v_\phi(t) = 0$$

## Momentum Equations:

$$\frac{dp_r}{dt} = \frac{p_\phi^2}{\gamma mr} + \frac{q\mu_0 Iv_z}{2\pi r}$$

$$\frac{d(rp_\phi)}{dt} = 0$$

$$\frac{dp_z}{dt} = qE_z - \frac{q\mu_0 Iv_r}{2\pi r}$$

$$\frac{dp_r}{dt} = \frac{q\mu_0 Iv_z}{2\pi r}$$

$$\frac{dp_\phi}{dt} = 0$$

$$\frac{dp_z}{dt} = qE_z - \frac{q\mu_0 Iv_r}{2\pi r}$$

## Position Equations:

$$\frac{dr}{dt} = v_r \quad \frac{d\phi}{dt} = \frac{v_\phi}{r} \quad \frac{dz}{dt} = v_z$$

# Full Kinetic Spherically Curved MITL Particle Trajectory Equations



In order to simplify our discussion, we assume

$$v_\phi(t) = 0$$

$$\frac{dp_\rho}{dt} = \frac{p_\theta^2 + p_\phi^2}{\gamma m \rho} + qE_\rho - \frac{q\mu_0 I v_\theta}{2\pi \rho \sin\theta}$$

## Momentum Equations:

$$\frac{dp_\theta}{dt} = \frac{-p_\rho p_\theta + p_\phi^2 \cot(\theta)}{\gamma m \rho} + qE_\theta + \frac{q\mu_0 I v_\rho}{2\pi \rho \sin\theta}$$

$$\frac{d(\rho \sin\theta p_\phi)}{dt} = 0$$

$$\frac{dp_\rho}{dt} = \frac{p_\theta^2}{\gamma m \rho} + qE_\rho - \frac{q\mu_0 I v_\theta}{2\pi \rho \sin\theta}$$

$$\frac{dp_\theta}{dt} = \frac{-p_\rho p_\theta}{\gamma m \rho} + qE_\theta + \frac{q\mu_0 I v_\rho}{2\pi \rho \sin\theta}$$

$$\frac{dp_\phi}{dt} = 0$$

## Position Equations:

$$\frac{d\rho}{dt} = v_\rho \quad \frac{d\theta}{dt} = \frac{v_\theta}{\rho} \quad \frac{d\phi}{dt} = \frac{v_\phi}{\rho \sin\theta}$$

# 9 Drift Kinetic Approximation

- The guiding center drift motion for a particle in an inner MITL can be described by a combination of  $E \times B$  and  $\text{grad } B$  drifts. Since we assume the particle's azimuthal velocity is zero at emission, curvature  $B$  drift is also zero.

**Guiding Center  
Equation\*:**

$$\mathbf{v}_{\text{gc}} = \frac{\mathbf{E} \times \mathbf{B}}{B^2} + \frac{\mu}{q\gamma} \frac{\mathbf{B} \times \nabla B}{B^2}$$

**Relativistic Adiabatic  
Invariant  
(Magnetic Moment)\*\*:**

$$\mu = \frac{p_{\perp}^2}{2mB}$$

\*R. J. Goldston and P. H. Rutherford, Introduction to Plasma Physics (1995) p. 51.

\*\*A. J. Brizard and A. A. Chan, Phys. Plasmas 8 4762 (2001).

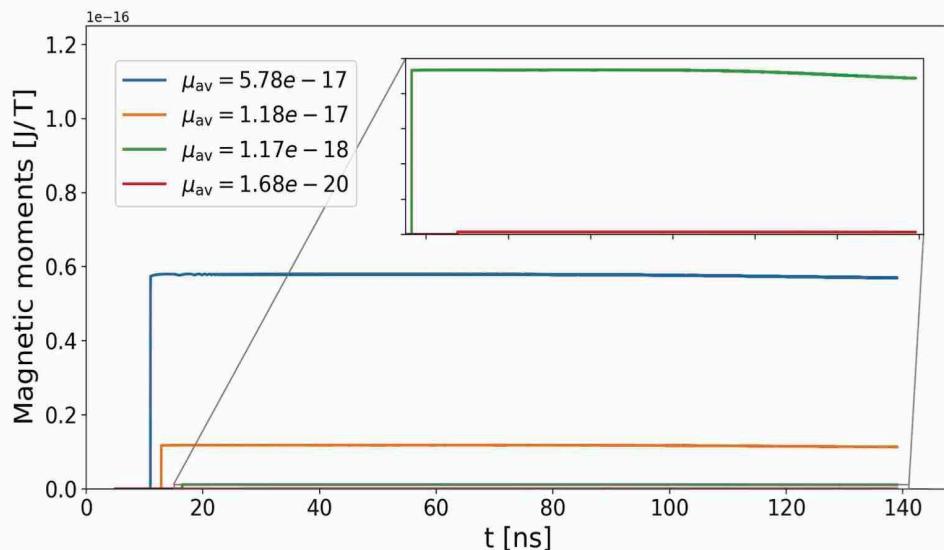
# Full Kinetic vs. Drift Kinetic (Radial MITL)



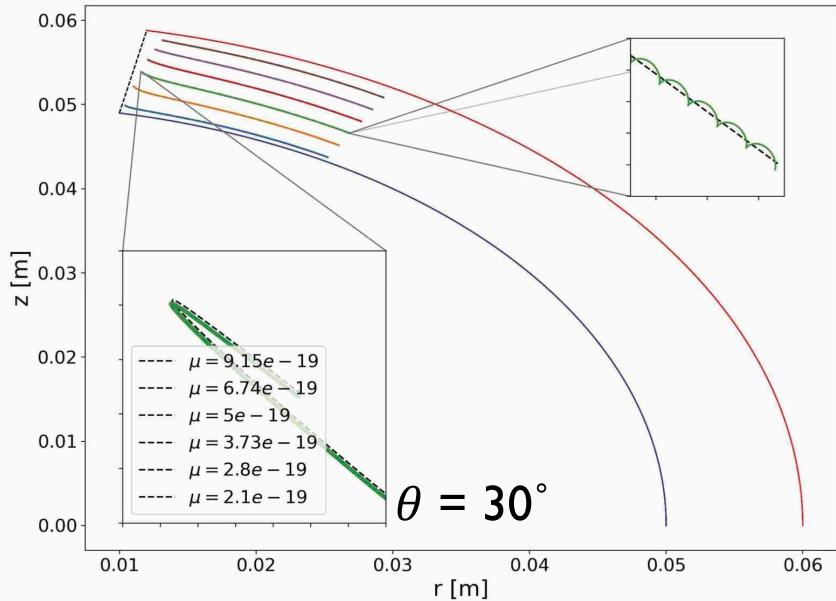
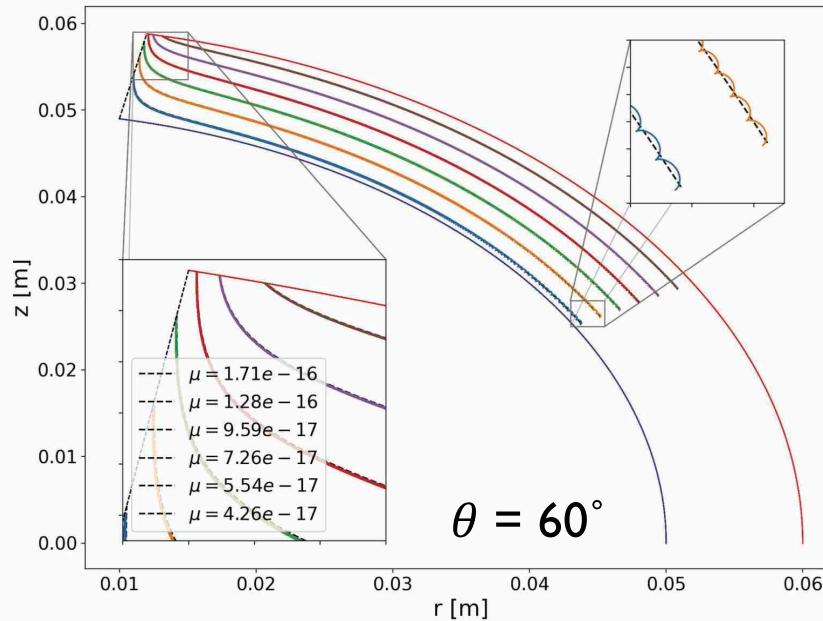
- We use a 20 MA peak current with 120 ns pulse length current drive.

$$I(t) = I_{\text{peak}} \sin^2 \left( \frac{\pi t}{2\tau_{\text{peak}}} \right)$$

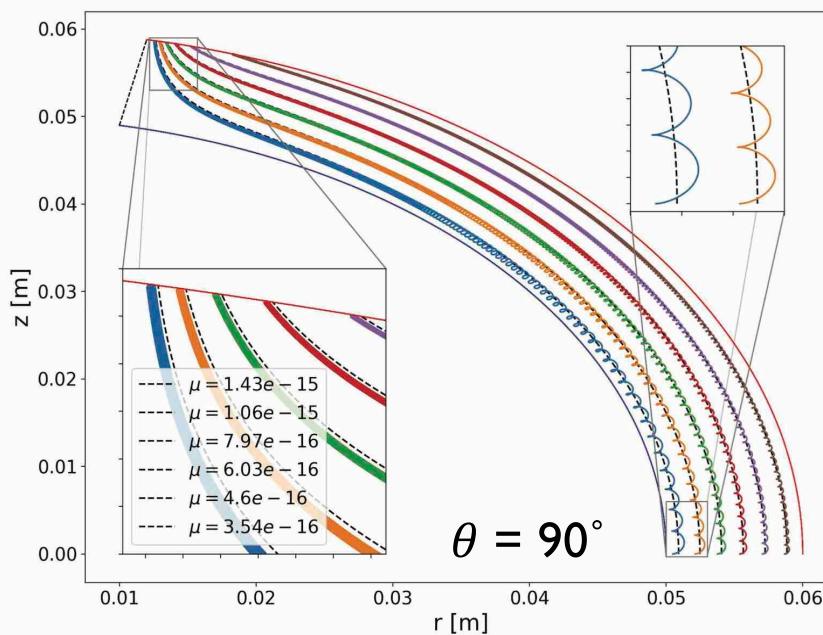
- We compare a full kinetic 4<sup>th</sup> order R-K scheme using  $dt=10^{-15}$  s and the drift kinetic equations solved with a 2<sup>nd</sup> order R-K scheme with  $dt=10^{-12}$  s.
- The initial drift kinetic axial position is set to half the initial cycloidal orbit size of the full kinetic trajectory.
- Electron emission is at 24 MV/m.



# Full Kinetic vs. Drift Kinetic (Spherically Curved MITL)



- For the spherical MITL, electrons are emitted at different initial MITL angles.
- For smaller initial angles, the initial electric field is smaller → smaller magnetic moment → smaller grad B drift.
- For larger initial angles, the initial electric field is larger → larger magnetic moment → larger grad B drift.



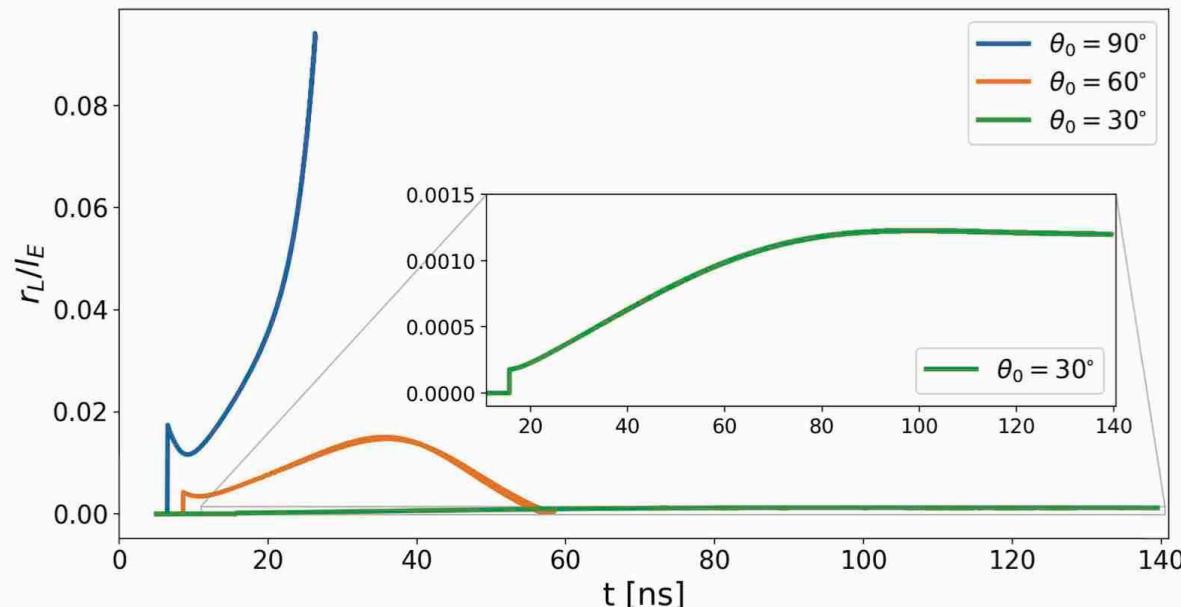
# How good is the comparison of Full Kinetics vs. Drift Kinetics?

- In general, the smaller the ratio  $r_L/l_E = \text{Larmor radius/electric field gradient length}$  where

$$l_E = \frac{E}{|\nabla E|}$$

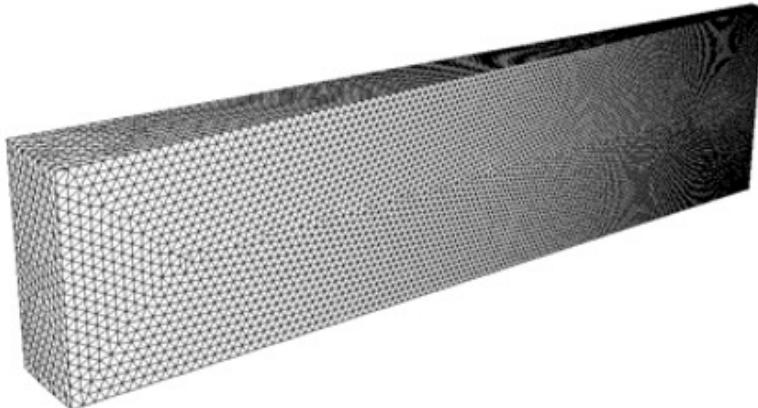
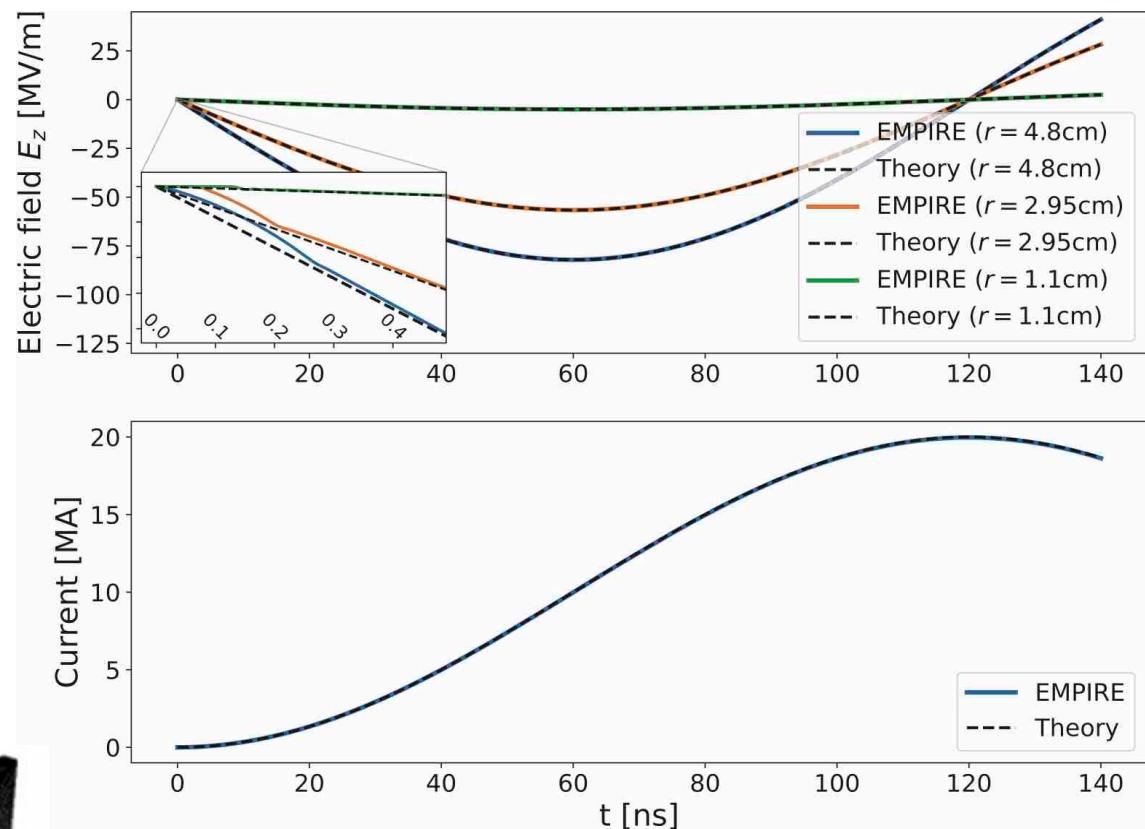
the better the drift kinetic model agrees with the full kinetic model.

- Since smaller initial emission angles  $\rightarrow$  smaller Larmor radii, then the drift kinetic model at smaller initial angles agrees better with the full kinetic model.



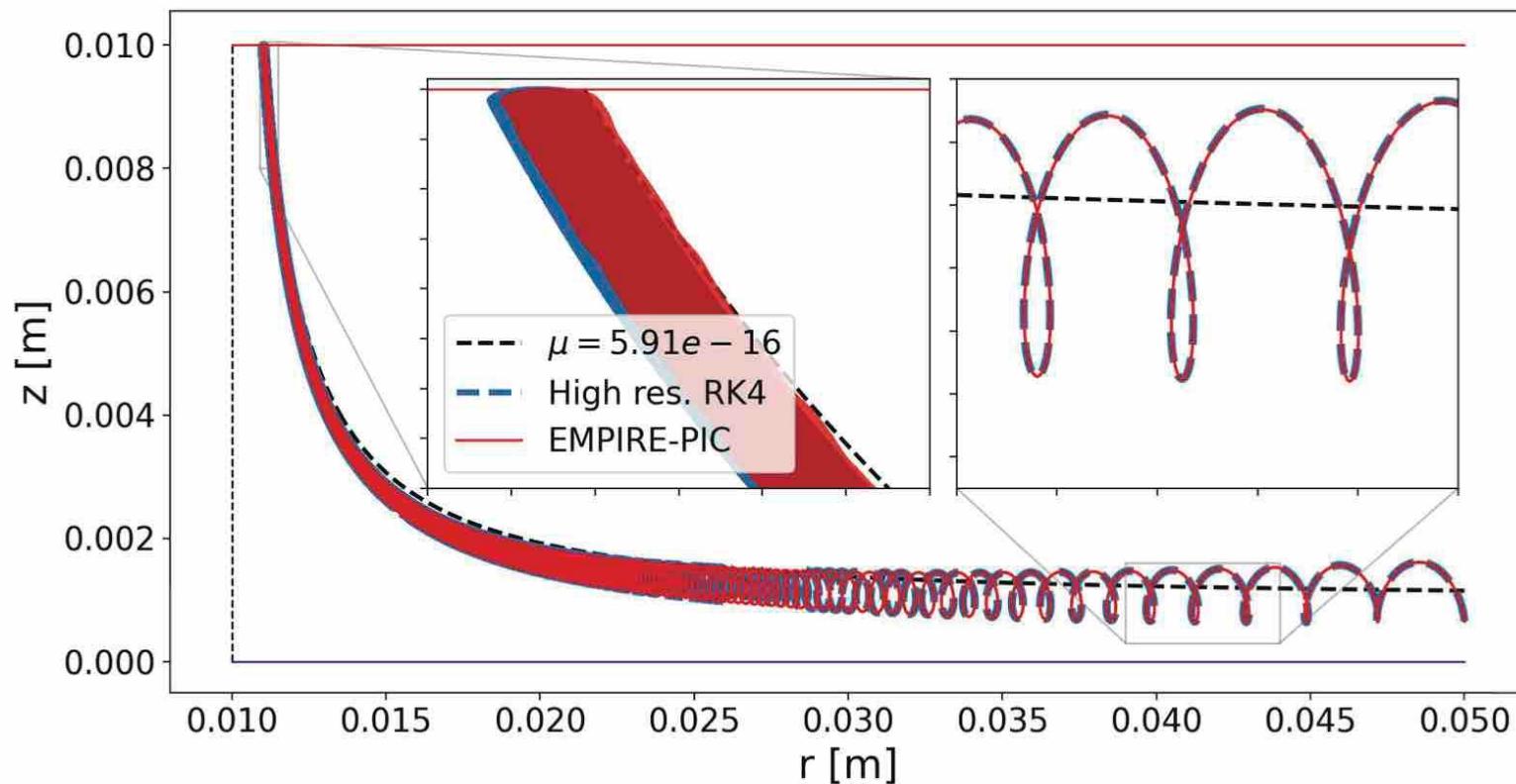
# Theory vs. EMPIRE (Radial MITL Fields)

- We use the radial MITL example with a 20 MA peak current to test the  $c \rightarrow \infty$  limit model against the fully EM code EMPIRE developed at Sandia.
- We get excellent agreement with the spatial dependence of the voltage and electric field.



# Full/Drift Kinetic vs. EMPIRE-PIC (Radial MITL Trajectories)

- In order to better resolve cyclotron orbits near the load, we lower the peak current to 2 MA. We also lower the electric field threshold to 2.4 MV/m.
- We get excellent agreement with full kinetic simulation of particle trajectories.



# Theory vs. EMPIRE (Spherically Curved MITL)

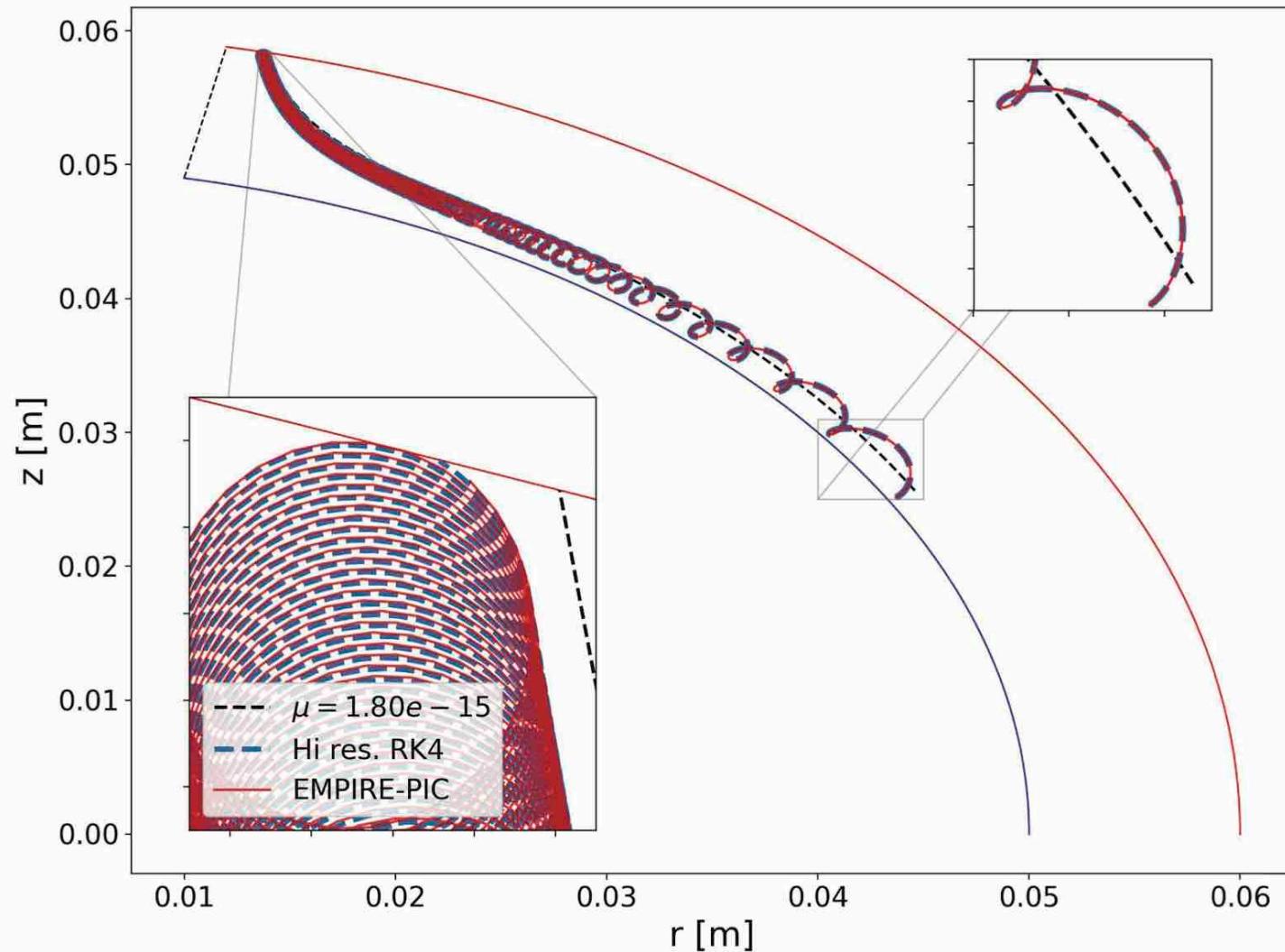
- We include an axial extension into the EMPIRE simulation to provide the correct field BCs into the spherical MITL section.
- $E_\rho$  has excellent agreement between theory and EMPIRE.
- There is disagreement at larger angles for  $E_\theta$  due to either the difference in the mode structure supported by the fully EM model vs. the  $c \rightarrow \infty$  model or a boundary constraint due to the MITL extension.



# Full/Drift Kinetic vs. EMPIRE-PIC (Spherically Curved MITL)



- The agreement between the theoretical model and the fully electromagnetic model trajectories is excellent. (E-field threshold is 2.4 MV/m).



# Summary



- We have analyzed the fields and electron trajectories for radial and spherically curved MITLs.
- A drift kinetic model that incorporates  $\mathbf{E} \times \mathbf{B}$  and grad  $\mathbf{B}$  drifts provides an overall excellent approximation to the full kinetic electron motion.
  - The drift kinetic model shows differences with the full kinetic model when the Larmor radius grows relative to the electric field gradient scale length.
- The fields/full kinetic/drift kinetic dynamics for the two MITL problems have been tested against the electromagnetic code EMPIRE.
  - We get excellent agreement between theory/EMPIRE for fields/trajectories in the radial MITL case.
  - We get excellent agreement for  $E_\phi$  in the spherically curved MITL, and some disagreement with  $E_\theta$  at large angles between the full EM model and the  $c \rightarrow \infty$  model.
  - Small differences in trajectories between the full/drift kinetic and EMPIRE are also observed. Overall, both the  $c \rightarrow \infty$  and the drift kinetic approximation provide excellent representations of electron trajectories when compared with EMPIRE results.