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Why are fields and electron dynamics near a MITL load 
so important?

• Z machine is the largest pulsed power machine in the world capable of  
delivering < 30 MA of  current.

• The inner MITL conducts power to the load which is located at the center 
of  the machine.

• The following analysis can be used to directly understand fields/electron 
dynamics near the load.  The fields/electron dynamics from this analysis 
are checked using the fully electromagnetic code EMPIRE developed at 
Sandia National Laboratories.
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Assumptions*

1. The MITL is cylindrically symmetric.

2. The magnetic field is specified by Ampere’s Law in the limit c → ∞ (no 
displacement current) for a time-dependent MITL current I(t).

3. The MITL surfaces are perfect conductors.

4. The load, which defines the “end” of  the MITL, is also represented as a 
perfect conducting surface.
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*The following work can be found in M. H. Hess and E. G. Evstatiev, 
“Electron Dynamics Within a MITL Containing a Load”, IEEE Transactions 
On Plasma Science (accepted for publication 2021).  (SAND 2021-11933 J)



Electric Field Equations

• The electric fields, which are in the radial and axial directions, can be 
solved using Maxwell’s Equations.
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Gauss’s Law:

Faraday’s Law:

Boundary 
Condition at MITL 
Surface and Load:



Types of MITLs Examined5

• We examine two different types of  MITLs: radial and spherically 
curved.

Radial MITL Spherically Curved MITL



Full Kinetic Lagrangian Description of Electron Dynamics
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Full Kinetic Radial MITL Particle Trajectory Equations
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In order to simplify our 
discussion, we assume



Full Kinetic Spherically Curved MITL Particle 
Trajectory Equations
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In order to simplify our 
discussion, we assume



Drift Kinetic Approximation

• The guiding center drift motion for a particle in an inner MITL can be 
described by a combination of  ExB and grad B drifts.  Since we assume the 
particle’s azimuthal velocity is zero at emission, curvature B drift is also zero.
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Guiding Center 
Equation*:

Relativistic Adiabatic
Invariant 
(Magnetic Moment)**:

*R. J. Goldston and P. H. Rutherford, Introduction 
to Plasma Physics (1995) p. 51.

**A. J. Brizard and A. A. Chan, Phys. Plasmas 8 
4762 (2001).



Full Kinetic vs. Drift Kinetic (Radial MITL)

• We use a 20 MA peak current with 
120 ns pulse length current drive.

• We compare a full kinetic 4th order 
R-K scheme using dt=10-15 s and 
the drift kinetic equations solved 
with a 2nd order R-K scheme with 
dt=10-12 s.

• The initial drift kinetic axial 
position is set to half  the initial 
cycloidal orbit size of  the full 
kinetic trajectory.

• Electron emission is at 24 MV/m. 
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where a and b are constants.
The two constants a and b are necessary to satisfy the

electric field boundary condition at the anode and cath-
ode surfaces. The integral in Eq. (11) satisfies the elec-
tric field boundary condition at the load. Moreover, the
function choices for both electric fields are independently
divergent free, which satisfies Eq. (9). The first term on
the right hand side of Eq. (10) produces the term on the
right hand side of Eq. (8). The second term in Eq. (10)
yields zero contribution in Eq. (8). Finally, the third
term in Eq. (10) yields zero contribution in Eq. (9) when
added to the radial electric field term. Solving for the in-
tegral in Eq. (11), and applying the boundary conditions
at the anode and cathode yields the following equations
for the fields, i.e.
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Although we have considered the radial MITL and
the spherical MITL as two separate cases, the radial
MITL can be considered as a special case of the spher-
ical MITL under certain limits. More specifically, in
the limits ⇢ ! 1 and ✓ ! 1/⇢ such that ⇢a � ⇢c is a
constant, the spherical MITL approaches the shape of
the radial MITL with a gap size equal to ⇢a � ⇢c. It
is necessary to take the ✓ ! 1/⇢ limit since the “an-
gle” of the load for the radial MITL, when defined in
spherical coordinates, approaches 1/⇢ as ⇢ ! 1. We
can check that in these limits Eqs. (12) and (13) re-
cover Eq. (5). In particular, notice that the numera-
tor factor (⇢ � ⇢a)(⇢ � ⇢c) on the right hand side of
Eq. (12) reaches a maximum equal to (⇢a � ⇢c)2/4 when
⇢ = (⇢a + ⇢c)/2. Hence, E✓ / 1/⇢2 sin ✓ ! 1/⇢ ! 0.
The cylindrical load radius is defined at rl = ⇢ sin✓l, and
the cylindrical radial location is r = ⇢ sin✓. Therefore
ln((csc✓+cot✓)/((csc✓l+cot✓l)) ! �ln(r/rl). Moreover,
the factor ⇢a⇢c/⇢2 ! 1 and e⇢ ! ez. Hence, Eq. (13)
recovers Eq. (5). This implies that the additional electric
field component in the theta direction for the spherical
MITL originates from the finite curvature of the spherical
MITL.

III. PARTICLE MOTION IN RADIAL AND
SPHERICALLY CURVED MITLs

In this section we show simulations of electrons in
both the radial and spherically curved MITL geometries.
For our simulations, we make the following assumptions.
First, we choose a current pulse which is representative
of power flow experiments at the Z Pulsed Power Facil-
ity, i.e., the current pulse has a sine-squared dependency
with a peak current of Ipeak = 20MA and a peak rise
time of ⌧peak = 120 ns, i.e.

I(t) = Ipeak sin2
✓

⇡t

2⌧peak

◆
. (14)

Next we choose the inner most section of the inner MITL
to be located at a radius of 1 cm. For many power flow ex-
periments conducted at the Z Pulsed Power Facility, the
load current is often checked in the vicinity of r = 1 cm.
Hence, these simulations are intended to be representa-
tive of the field strengths where the load current is moni-
tored for Z power flow experiments. For the radial MITL,
r = 1 cm is the location of the entire load. For the spher-
ically curved MITL, r = 1 cm is where the load and cath-
ode surfaces intersect. Additionally, we have made the
realistic assumption that electrons are not emitted from
the cathode surface until a critical electric field thresh-
old of Eth = 24MV/m is reached [10]. We also assume
that the electrons have zero kinetic energy at the time of
emission since small initial kinetic energies corresponding
to cathode surface temperatures of ⇠ 1 eV do not change
the qualitative behavior of the motion.
We use a fourth-order Runge-Kutta method to solve

the equations of motion. The time step was chosen to be
10�15 s, which is su�cient to capture the smallest rele-
vant time scale as set by the electron cyclotron frequency
and to ensure converged simulation results.

A. Drift kinetic description

The guiding center drifts are given by the well-known
[11] formula
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E⇥B

B2
+

µ

q

B⇥rB

B2
, (15)

where µ is the relativistic adiabatic invariant [12]

µ =
p2?

2mB
, (16)

which is equivalent to the particle’s magnetic moment.
For the radial MITL, the E ⇥ B drift motion is in the
negative radial direction and the rB drift is in the axial
direction. Since the rB drift depends on the sign of the
charge, electrons will drift towards the anode and posi-
tively charged ions will drift towards the cathode. The
drift kinetic equations of motion were integrated with a
second order Runge-Kutta method and a time step on
the order of 10�12 s.



Full Kinetic vs. Drift Kinetic (Spherically Curved MITL)

• For the spherical MITL, electrons are 
emitted at different initial MITL angles.

• For smaller initial angles, the initial 
electric field is smaller → smaller 
magnetic moment → smaller grad B drift. 

• For larger initial angles, the initial electric 
field is larger → larger magnetic moment 
→ larger grad B drift.
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𝜃 = 90˚

𝜃 = 30˚ 𝜃 = 60˚



How good is the comparison of Full Kinetics vs. Drift 
Kinetics?

• In general, the smaller the ratio rl/le = Larmor radius/electric field 
gradient length where

the better the drift kinetic model agrees with the full kinetic model.

• Since smaller initial emission angles → smaller Larmor radii, then the 
drift kinetic model at smaller initial angles agrees better with the full 
kinetic model.
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FIG. 8: Ratio of Larmor radius to gradient scale length for
electron emitted at ✓0 = 30� (green), ✓0 = 60� (orange), and
✓0 = 90� (blue).

the spherical MITL.
The quantity that determines the validity of the drift

kinetic model is the ratio of the Larmor radius to a rele-
vant length scale in the problem. In order for a guiding
center description to be valid, that ratio must be su�-
ciently small. The drift kinetic approximation is obtained
in the zero Larmor radius limit, where finite Larmor ra-
dius e↵ects are neglected. The relevant length scale in
the spherical MITL geometry is given by the variation
of the electric field, which must satisfy perfect conductor
boundary conditions at the walls (see Eq. (4)). We define
a gradient length scale for the electric field as

lE =
E

|rE| , (29)

where E is the magnitude of E. Because of the relatively
small gap of the MITL compared to its length, it can be
easily estimated that E⇢ � E✓ by about three orders of
magnitude. Far from the load E⇢ is normal to the anode
and cathode walls, and therefore E is not expected to
vary significantly over the gap. On the other hand, E⇢

being tangential to the load, varies significantly in that
region since it must vanish at the load. Therefore we
expect the characteristic length scale to be larger away
from the load and smaller near the load, with reverse
implications for the ratio rL/lE .

Figure 8 shows plots of rL/lE for electrons that were
initially emitted near the cathode at ✓ = 30� (green),
✓ = 60� (orange), and ✓ = 90� (blue). There is an initial
large oscillation of rL/lE in the first 5 ns after emission
(similar to oscillations in µ), and then rL/lE performs
smaller oscillations about a well-defined time-dependent
value. In general, we find that the initial oscillations of
rL/lE have a larger amplitude for particles that start at
larger initial angles (farther from the load); e.g., the ini-
tial oscillation amplitude is approximately 2 ⇥ 10�4 for
✓ = 30�, 4⇥10�3 for ✓ = 60�, and 10�2 for ✓ = 90�. Cor-
respondingly, the drift kinetic theory improves at track-
ing the full kinetic trajectory as rL/lE decreases. We find
that for rL/lE < 10�2, the drift kinetic theory provides
a good approximation to the full kinetic trajectory. For

the ✓ = 30� case, rL/lE reaches a maximum of about
1.2 ⇥ 10�3 throughout the entire length of the pulse.
This implies that drift kinetic theory for this electron
is an excellent approximation to the full kinetic theory
throughout its trajectory, which is clearly illustrated in
Fig. 7. For the other two cases, rL/lE grows to larger
than 3 ⇥ 10�2. As the electrons approach the load and
rL/lE increases, we begin to see a discrepancy between
the drift kinetic theory and the full kinetic theory for the
cases ✓0 = 60� and ✓0 = 90�, as illustrated in Figs. 6
and 5. We remind the reader that our discussion on
the validity of the drift kinetic model only concerns the
part of the trajectory where the magnetic moment µ has
converged to a value, which we utilize as the value of the
adiabatic invariant in Eq. (15).

IV. CONCLUSIONS

In the previous sections, we have discovered several
important items regarding inner MITL electric fields and
motion of electrons in these fields. First, we have found
that the electric field, in radial and spherical MITLs, will
be larger at larger distances from the load. In the case of
the radial MITL, the electric field is only pointing in the
axial direction and goes to zero at the radial location of
the load. In the case of the spherical MITL, the electric
field has components in both the spherical radial and
theta directions. At larger distances, the spherical radial
electric field is the dominant component, but it goes to
zero at the location of the load. The theta component
of the electric field is the smaller of the two at larger
distances from the load, but is non-zero at the load.
Secondly, the motion of electrons in the inner MITL

can largely be described by a combination of E ⇥ B
and rB drifts. Since the axial electric field (for the ra-
dial MITL) and the spherical radial electric field (for the
spherical MITL) are dominant at larger distances, in con-
junction with a weaker magnetic field, the E⇥B drift in
the direction towards the load is the dominant drift com-
ponent. The rB drift is pointing in the positive (neg-
ative) axial direction for electrons (positive ions), and
is proportion to 1/r. The rB drift causes electrons to
deflect away from the cathode, and this deflection con-
tinues to grow as the electron gets closer to the load
where the magnetic field is stronger. The rB drift is
also proportional to an adiabatic invariant that is equal
to µ = p2/(2mB). The magnetic moment is not invariant
for all time. It oscillates between a set of finite values (see
Appendix A) at the time of emission; after the initial os-
cillations the magnetic moment eventually converges to a
value. This converged value is slowly varying in time and
can be utilized as the adiabatic invariant for calculating
the rB drift. As discussed in Sec. III, the convergence
of the adiabatic invariant is related to the decrease of the
electric field that the electron experiences as it migrates
towards the load.
Third, the Larmor radius rL and the magnetic moment



Theory vs. EMPIRE (Radial MITL Fields)

• We use the radial MITL 
example with a 20 MA peak 
current to test the c à ∞ limit 
model against the fully EM 
code EMPIRE developed at 
Sandia.

• We get excellent agreement 
with the spatial dependence 
of  the voltage and electric 
field.
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Full/Drift Kinetic vs. EMPIRE-PIC (Radial MITL Trajectories)

• In order to better resolve cyclotron orbits near the load, we lower the peak 
current to 2 MA.  We also lower the electric field threshold to 2.4 MV/m.

• We get excellent agreement with full kinetic simulation of  particle 
trajectories.
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Theory vs. EMPIRE (Spherically Curved MITL)

• We include an axial extension 
into the EMPIRE simulation to 
provide the correct field BCs 
into the spherical MITL section.

• Erhas excellent agreement 
between theory and EMPIRE.

• There is disagreement at larger 
angles for Eq due to either the 
difference in the mode structure 
supported by the fully EM 
model vs. the c à ∞ model or a 
boundary constraint due to the 
MITL extension.
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Full/Drift Kinetic vs. EMPIRE-PIC (Spherically Curved MITL)

• The agreement between the theoretical model and the fully electromagnetic model 
trajectories is excellent.  (E-field threshold is 2.4 MV/m).
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Summary

• We have analyzed the fields and electron trajectories for radial and spherically 
curved MITLs.

• A drift kinetic model that incorporates ExB and grad B drifts provides an 
overall excellent approximation to the full kinetic electron motion.
• The drift kinetic model shows differences with the full kinetic model 

when the Larmor radius grows relative to the electric field gradient scale 
length.

• The fields/full kinetic/drift kinetic dynamics for the two MITL problems have 
been tested against the electromagnetic code EMPIRE.
• We get excellent agreement between theory/EMPIRE for 

fields/trajectories in the radial MITL case.
• We get excellent agreement for Er in the spherically curved MITL, and 

some disagreement with Eq at large angles between the full EM model 
and the cà∞ model.

• Small differences in trajectories between the full/drift kinetic and 
EMPIRE are also observed. Overall, both the cà∞ and the drift kinetic 
approximation provide excellent representations of  electron trajectories 
when compared with EMPIRE results.
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