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Background

Past Research

▪ Denoising hyperspectral data

▪ Material classification with hyperspectral data

▪ Coloring hyperspectral data using dimension reduction techniques

Objectives

▪ Represent hyperspectral computed tomography (HCT) data in a single colorized image

▪ Maximize contrast between distinct materials with similar compositions (different mixture 
concentrations of similar materials)

▪ Maximize smoothness within homogeneous materials

Potential Impact

▪ Rapid human interpretability of complex HCT signatures

▪ More robust material identification methods

▪ Industrial, medical, and security-based applications
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Methods
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Data

HCT System 

▪ PHITS simulations

▪ Patterned anode (tungsten, molybdenum, and silver)

▪ 225kVp electron beam impinging on anode

▪ Detector channelizing photons into 128 energy channels across 300 keV

Objects

▪ Cylindrical

▪ Mixtures of H2O and H2O2

Reconstructed image of cylinders labeled 
with their concentrations of H2O2 to H2O



Preprocessing Methods

Novel “majority vote” thresholding 
▪ Multilevel thresholding on each channel

▪ Each channel result counts as a vote

▪ Each pixel with < 50% of the vote is removed

Majority Vote

Channel 7 Channel 11 Channel 31

Final Result

Note: In the small 3 channel example to the right, it does not remove all 
pixels not in objects of interest, but it works well using all 128 channels.



Preprocessing Methods

Binary erosion (remove additional remaining artifacts)

Channel filtering (removing uninformative low-energy channels)

Spatial smoothing (box, Gaussian, or median filter)

Clustering (grouping objects by location/channel intensities) 
+ object value assignment (channel mean/median or smoothing splines over channels)

Example of Clustering + Object Value Assignment



Colorization Methods

Dimension Reduction 

▪ Uniform Manifold Approximation and Projection (UMAP)

▪ t-distributed Stochastic Neighbor Embedding (t-SNE)

▪ Others tested but not presented, did not perform as well

▪ Represent 128 channels in 3 dimensions for RGB coloring

Linear Models

▪ Logistic Regression 

▪ Predicting concentration from channel intensities

▪ Quadratic Regression 

▪ Using model parameters as RGB color dimensions
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Example t-SNE to RGB translation 
from Fonville et al. [6]

Example UMAP 2D representation of MNIST digit 
images from McInnes, Healy, & Melville [12]



Colorization Assessment Metrics
After the final colorization is produced, there are several visual attributes that we wished to 
measure. The metrics to assess these attributes were based on the RGB additive color model.
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Contrast Local Color Variance Inconsistency

• Color differences between 
each pair of objects.

• Think: The visual/color 
contrast within an image.

• Color differences between 
neighboring pixels within 
objects.

• Think: The amount of 
speckle within an object.

• Coloring differences within 
objects.

• Think: How similar all the 
objects are in an image 
with respect to the 
smoothness or speckle.

High LCVLow LCV

Low Contrast High Contrast

Low Inconsistency High Inconsistency



Results
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Before Majority-Voting Thresholding + Erosion10

Before any preprocessing:

• Many artifacts due to 
system noise

• No contrast between 
objects of interest

Metric Results (only for objects)
Contrast = 0.0082

Local Color Var = 0.0003
Inconsistency = 0.0000

Concentration Key
60%     40%    50%
30%     10%    20%
90%     70%    80%



After Majority-Voting Thresholding + Before Erosion11

Metric Results (only for objects)
Contrast = 0.1376

Local Color Var = 0.0815
Inconsistency = 0.0001

Concentration Key
60%     40%    50%
30%     10%    20%
90%     70%    80%After thresholding:

• Most non-object pixels 
removed

• Objects have large amounts 
of local color variance and 
fairly low contrast

• Remaining non-object pixels 
are scan boundary artifact 
due to reconstruction



After Majority-Voting Thresholding + Erosion12

Metric Results
Contrast = 0.1460

Local Color Var = 0.0222
Inconsistency = 0.0001  

Concentration Key
60%     40%    50%
30%     10%    20%
90%     70%    80%After thresholding + erosion:

• All non-object pixels removed

• Slightly more contrast 
between objects and much 
lower local color variance

• Issue with edge artifact in 
objects, which was localized 
to a few low-energy channels 



Edge Artifact Removal

Coloring after removing channels driving object edge artifacts…
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Very effective for reference data (high photon count) Not so effective for sample data

Metric Results
Contrast = 0.3961

Local Color Var = 0.0215
Inconsistency = 0.0009

Metric Results
Contrast = 0.2378

Local Color Var = 0.0728
Inconsistency = 0.0007

Concentration Key
60%     40%    50%
30%     10%    20%
90%     70%    80%



Median Assignment         vs.            Median Filtering14

Metric Results
Contrast = 0.4908

Local Color Var = 0.0000
Inconsistency = 0.0000

Metric Results
Contrast = 0.2957

Local Color Var = 0.0118
Inconsistency = 0.0025         

Concentration Key
60%     40%    50%
30%     10%    20%
90%     70%    80%

Median assignment requires object segmentation, but produces high contrast. 
Median filtering provides a useful alternative with simple pixel-level processing.



UMAP                     vs.                         t-SNE15

Metric Results
Contrast = 0.4908

Local Color Var = 0.0000
Inconsistency = 0.0000   

Metric Results
Contrast = 0.4276

Local Color Var = 0.0000
Inconsistency = 0.0000

Concentration Key
60%     40%    50%
30%     10%    20%
90%     70%    80%

UMAP provides more separation between objects, resulting in better contrast.
However, both methods do not allow easy interpretation of concentrations.



Linear Model Colorization16

Metric Results
Contrast = 0.2651

Local Color Var = 0.0444
Inconsistency = 0.0004

Logistic Regression
(on pixels)

Concentration Key
60%     40%    50%
30%     10%    20%
90%     70%    80%

Using linear models retains good contrast, and increases interpretability by
coloring concentrations on a meaningful gradient.

10% 20% 30% 40% 50% 60% 70% 80% 90% 

Objects arranged in 
ascending order by 

concentration



Linear Model Colorization17

Metric Results
Contrast = 0.4083

Local Color Var = 0.0000
Inconsistency = 0.0000    

Quadratic Regression
(median assignment, normalized parameters)

Concentration Key
60%     40%    50%
30%     10%    20%
90%     70%    80%

Using linear models retains good contrast, and increases interpretability by
coloring concentrations on a meaningful gradient.

10% 20% 30% 40% 50% 60% 70% 80% 90% 

Objects arranged in 
ascending order by 

concentration



Method Comparison18

Preprocessing None MLT • MLT
• Erosion

• MLT
• Erosion
• Channel 

Removal

• MLT
• Erosion
• Channel 

Removal

• MLT
• Erosion
• Channel 

Removal
• Median 

Filter

• MLT
• Erosion
• Channel 

Removal
• Median 

Assign

• MLT
• Erosion
• Channel 

Removal
• Median 

Assign

• MLT
• Erosion
• Channel 

Removal
• Median 

Assign

Colorization UMAP UMAP UMAP UMAP Logistic 
Regression

UMAP UMAP t-SNE Quadratic 
Regression

Metric 
Results

Contrast 0.0082 0.1376 0.1460 0.2378 0.2651 0.2957 0.4908 0.4276 0.4083

Local Color Var 0.0003 0.0815 0.0222 0.0728 0.0444 0.0118 0.0000 0.0000 0.0000

Inconsistency 0.0000 0.0001 0.0001 0.0007 0.0004 0.0025 0.0000 0.0000 0.0000

Note: For each method, best performing methods highlighted in green and worst performing methods highlighted in red.



Future Directions

Develop methods

▪ Automate channel selection for filtering

▪ Improve polynomial regression fit and parameter normalization

▪ Metrics comparing between different scans of objects

Test robustness across different

▪ Materials 

▪ Shapes

▪ Sizes

▪ Arrangements

Understand HCT data

▪ Photon counts (understand/calibrate for drift and detector degradation)

▪ Real-world system (currently under construction)
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Thank you! Questions?
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