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Past Research
= Denoising hyperspectral data
= Material classification with hyperspectral data
= Coloring hyperspectral data using dimension reduction techniques

Objectives
= Represent hyperspectral computed tomography (HCT) data in a single colorized image

= Maximize contrast between distinct materials with similar compositions (different mixture
concentrations of similar materials)

= Maximize smoothness within homogeneous materials

Potential Impact
= Rapid human interpretability of complex HCT signatures
= More robust material identification methods
= |Industrial, medical, and security-based applications
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Data

Patterned-Anode Design:

HCT System .
"

= PHITS simulations

= Patterned anode (tungsten, molybdenum, and silver) ..

= 225kVp electron beam impinging on anode
= Detector channelizing photons into 128 energy channels across 300 keV

Objects
= Cylindrical o
= Mixtures of H,O and H,0,
o ° &
30% 10% 20%
° © o
90% 70% 80%

Reconstructed image of cylinders labeled
with their concentrations of H,0, to H,O
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‘ Preprocessing Methods

Novel “majority vote” thresholding
= Multilevel thresholding on each channel

Majority V
= Each channel result counts as a vote ajority Vote
= Each pixel with <50% of the vote is removed ,r
Final Result
T ..
Note: In the small 3 channel example to the right, it does not remove all e | N
pixels not in objects of interest, but it works well using all 128 channels. / e o o .
,.’;f o \
e e e
\ R /
\ I /
e e ° J
AN S
S —

—

\__\‘
\n
' AN
. \‘
=N ®
IR
/
//
. /
/
/
e
e

..

~

Channel 7 Chaﬁrlgiel 11 Channel 31
//“"/- _H“‘\\\ - — T
/// \ ///
S e e e \ /e °
/ \ /
/ \ i/
{ Vo
e ® o \\ e
\i J‘F \
| [
\\ / \\
\\ ® ® °® / S ®
Ny P AN
e <



Pixel Intensity

Preprocessing Methods

Binary erosion (remove additional remaining artifacts)
Channel filtering (removing uninformative low-energy channels)

Spatial smoothing (box, Gaussian, or median filter)

Clustering (grouping objects by location/channel intensities)
+ object value assignment (channel mean/median or smoothing splines over channels)

Example of Clustering + Object Value Assignment
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; 1 Colorization Methods

Dimension Reduction

= Uniform Manifold Approximation and Projection (UMAP) "' & &
= t-distributed Stochastic Neighbor Embedding (t-SNE) %\
= Others tested but not presented, did not perform as well ‘% -
= Represent 128 channels in 3 dimensions for RGB coloring Example UMAP 2D representation of MNIST digit
images from Mcinnes, Healy, & Melville [12]
Linear Models

Logistic Regression

Predicting concentration from channel intensities
= Quadratic Regression

Using model parameters as RGB color dimensions

A

o ] axis 2z

Example t-SNE to RGB translation I
from Fonville et al. [6]



s | Colorization Assessment Metrics

After the final colorization is produced, there are several visual attributes that we wished to
measure. The metrics to assess these attributes were based on the RGB additive color model.

Contrast

« Color differences between
each pair of objects.

« Think: The visual/color
contrast within an image.

Local Color Variance

Low Contrast High Contrast

Color differences between
neighboring pixels within
objects.

Think: The amount of
speckle within an object.

Inconsistency

Coloring differences within
objects.

Think: How similar all the
objects are in an image
with respect to the
smoothness or speckle.

Low Inconsistency High Inconsistency
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0 | Before Majority-Voting Thresholding + Erosion

Before any preprocessing:

« Many artifacts due to
system noise

 No contrast between
objects of interest

Metric Results (only for objects)
Contrast = 0.0082

Local Color Var = 0.0003
Inconsistency = 0.0000

Concentration Key

60% 40% 50%
30% 10% 20%
90% 70% 80%




1 ‘ After Majority-Voting Thresholding + Before Erosion

After thresholding:

Most non-object pixels
removed

Objects have large amounts
of local color variance and
fairly low contrast

Remaining non-object pixels
are scan boundary artifact
due to reconstruction

Metric Results (only for objects)

Contrast =0.1376
Local Color Var =0.0815
Inconsistency = 0.0001

o

Concentration Key

60% 40% 50%
30% 10% 20%
90% 70% 80%
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2 | After Majority-Voting Thresholding + Erosion m

Concentration Key
60% 40% 50%

. . 30% 10% 20%
After thresholding + erosion: 90% 70% 80%

« All non-object pixels removed

 Slightly more contrast
between objects and much
lower local color variance

* |Issue with edge artifact in
objects, which was localized
to a few low-energy channels @ E ®

Metric Results
Contrast = 0.1460 ,
Local Color Var =0.0222 . @ I

Inconsistency = 0.0001




3 | Edge Artifact Removal

Coloring after removing channels driving object edge artifacts...

Very effective for reference data (high photon count)

Metric Results

Contrast = 0.3961

Local Color Var =0.0215
Inconsistency = 0.0009

Not so effective for sample data

% i @

Metric Results

Contrast =0.2378

Local Color Var = 0.0728
Inconsistency = 0.0007

Concentration Key

60% 40% 50%
30% 10% 20%
90% 70% 80%




14 Median Assignment
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Metric Results

Contrast = 0.4908

Local Color Var = 0.0000
Inconsistency = 0.0000

Median assignment requires object segmentation, but produces high contrast.
Median filtering provides a useful alternative with simple pixel-level processing.

VS. Median Filtering
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Metric Results

Contrast = 0.2957
Local Color Var =0.0118
Inconsistency = 0.0025

Concentration Key

60% 40% 50%
30% 10% 20%
90% 70% 80%




15 UMAP
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Metric Results

Contrast = 0.4908
Local Color Var = 0.0000
Inconsistency = 0.0000

UMAP provides more separation between objects, resulting in better contrast.
However, both methods do not allow easy interpretation of concentrations.

VS. t-SNE

Metric Results

Concentration Key

60% 40% 50%
30% 10% 20%
90% 70% 80%

Contrast=0.4276
Local Color Var = 0.0000
Inconsistency = 0.0000




16 | Linear Model Colorization

Concentration Key
60% 40% 50%

Using linear models retains good contrast, and increases interpretability by 30% 10% 20%
. . . . 90% 70% 80%
coloring concentrations on a meaningful gradient.

Logistic Regression
(on pixels)

Objects arranged in
ascending order by
concentration

& @ & - "X XXIYX L)e

10% 20% 30% 40% 50% 60% 70% 80% 90%

Metric Results

Contrast = 0.2651

Local Color Var = 0.0444
Inconsistency = 0.0004




7 1 Linear Model Colorization

Using linear models retains good contrast, and increases interpretability by
coloring concentrations on a meaningful gradient.

Quadratic Regression
(median assignment, normalized parameters)

Objects arranged in
ascending order by
concentration

O o O 900000600

Concentration Key

60% 40% 50%
30% 10% 20%
90% 70% 80%

10% 20% 30% 40% 50% 60% 70% 80% 90%

Metric Results

Contrast = 0.4083

Local Color Var = 0.0000
Inconsistency = 0.0000




18 | Method Comparison

Metric
Results

Preprocessing | None | MLT * MLT * MLT * MLT * MLT * MLT * MLT * MLT
e Erosion | * Erosion * Erosion * Erosion * Erosion | ¢ Erosion * Erosion
e Channel | ¢ Channel e Channel | « Channel | « Channel | ¢ Channel
Removal Removal Removal Removal Removal Removal
* Median « Median | * Median * Median
Filter Assign Assign Assign
Colorization | UMAP | UMAP | UMAP UMAP Logistic UMAP UMAP t-SNE Quadratic
Regression Regression
Contrast 0.1460 0.2378 0.2651 0.2957 0.4276 0.4083
Local Color Var 0.0222 0.0728 0.0444 0.0118
Inconsistency 0.0001 0.0007 0.0004

Note: For each method, best performing methods highlighted in green and worst performing methods highlighted in red.




Develop methods
= Automate channel selection for filtering

= Improve polynomial regression fit and parameter normalization
= Metrics comparing between different scans of objects

Test robustness across different
= Materials

= Shapes
= Sizes
= Arrangements

Understand HCT data
= Photon counts (understand/calibrate for drift and detector degradation)

= Real-world system (currently under construction)

I
19 | Future Directions m
I



20

Thank you! Questions?
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