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Motivation: AM Structural Parts

Faster Realization of Parts
(Reduction Design and
Qualification Time)

https://www.eos.info/en/

Conventional 6-24

Time to Get Heomtls

Prototype apm 0.5-3
months

Smaller Manufacturing
Facilities
(Small Lots)

Novel Designs and
Architectures
and New Functionalities

Conventional Vs Weight-
Reduced AM Designs




Challenge: Current Design Paradigm

Mechanical Qualification of a System Consisting of Parts
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New Paradigm: Qualification Response Envelope (QRE)

Mechanical Qualification of a System Consisting of AM Parts

Desired System Derived Response . ; QRE for
L < AM Part
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Foundational Research for QRE

Explore Sources of Variability and Connections to Mechanical Response

Manufacturing Mode _ | Flaws and Surface Effects
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Foundational Research for QRE: Mechanical Response

Strain Rate Fatigue

Anisotropy
Yield Strength

Fracture

Al10SiMg Tension
Average Stress-Strain Curves
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Foundational Research for QRE: Using Our Understanding ®

Computational Modeling
Topology Optimization

Design Guidance Inspection

Volume (mm?)




Sandia Research

Qualification Response Envelope (QRE) Fracture in AM Metal Parts
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Sandia Research

Qualification Response Envelope (QRE) Fracture in AM Metal Parts
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10 | Third Sandia Fracture Challenge

Notched Challenge

Tensile Bars Geometry
Transverse Specimens

Tensile Bars
(Before EDM
Cutting)

Direction

Longitudinal
Tensile Bars

Longitudinal 316L Stainless Steel
Tensile Bars
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Variability in Mechanical Response of Base Material
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AM-Finish Base Material Tensile Tests

Longitudinal:
0.05 mm/s Rate

EDM-Finish
Transverse: 0.05
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EDM-Finish
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EDM-Finish
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Y\ Unloading for
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12 | Global Mechanical Response of Structured Parts

SFC3 Challenge Geometry Load vs. Displacement
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13 | Interrupted Testing to Track Fracture Evolution
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Local Fracture Variation in Structured Parts

Specimen B10 Region 3 SpeC|men B33 Reglon 1

3D Reconstructions Highlighting Crack Volume

Strain Interval 1 Straln Interval 2 Straln Interval 3 Viewing Orientations
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Region 3 Region 4 |
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5 | Lessons Learned and Open Questions

What size?

Geometric Stress ‘ Reduced 7
Concentrations Variability in ®  What type of stress

Global Response concentration?

‘ Local Crack
Variation

What Dominates Mechanical Response?

L "+

Geometry-Dominant Transition / Overlap Flaw-Dominant




16 « Sandia Research

Qualification Response Envelope (QRE) Fracture in AM Metal Parts
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7 | Fatigue in AM Ti-6ALl-4V: Variables

AM Ligament Size As-Printed vs. Post-Machined

Printed
Cylinders

R6 Specimen [HERANSEEE Y= To Be
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19 | Fatigue Results

Ti-6Al-4V Fatigue Lives Tensile Bars
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0 | Fatigue Crack

As-Printed Post-Machined

SEM Micrograph of Fracture Surface SEM Micrograph of Fracture Surface
v %

Fewer
Pores

Fracture
Surface
(Red)
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Pores Pores Failure Pore




Fatigue: Future Variables of Interest

Different Post-Machining Methods

Remove Crust Only Polish Machining Marks

TN

Build Direction

ISO view scale: 8:1

Build Orientation

Transverse
Tensile Bars
(Before EDM

Cutting)

Build
Direction

Longitudinal
Tensile Bars

Compare to:
Fatigue of
specimen cut
from part
Fatigue of
entire part
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»» | Sandia Research

Qualification Response Envelope (QRE) Fracture in AM Metal Parts
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.4« | Tension for 102 to 10!
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6 | Stress-Partitioning Tensile Experiments

Schematic of tensile-loading stress . Transverse Longitudinal
partitioning experiment . 3
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27 | Tension and Compression for 104 to 103
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s | Solid Mechanics Modeling Approach

.. .. High fidelity “Full” _
Low fidelity w/elliptical flaws fidelity Experiment

Hierarchical model (within the box) adds fi;jlé{i_iy only
in hotspot regions where its needed.




PAS

High-Rate Material Modeling

EOS model

pressure: p

plate impact
p>>T

& ~10% s 1

strength model

shear: T

uniaxial tension Hopkinson bar
T~p T~Pp

¢~10"3to 10' s &~ 102 to 103 s !

failure model

%

plate impact uniaxial tension

spall ductile failure




50 | EOS and Spall Response
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51 | Quasi-lsentrope Experiments on Z-Machine

Ramp-Release Experiments at Mega-Bar Stresses AM AlSi10Mg exhibits two low pressure
phase changes
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» | Key Insights from AlSi10Mg Study ®

Al10SiMg Tension
Average Stress-Strain Curves

Strain Rate-
Dependent and
Anisotropic

mEbma Behavior at Q.S.
== and

o | intermediate
Strain Rates

s
5
S

Size of Printed
Part and Surface
Finish Matter

[

=
th
=

Engineering Stress (MPa)
— (5]
Bl

g

220005

0.1 0.15

Eng. Strain . 2
Engineenng Strain

—_
W

—Drive
—AM AI10SiMg

—_
AN
IS

Strain Rate-
Dependent and
Behavior at High Phase Changes

Rates, but in an Al Alloy at

Anisotropic High Pressures

Response 1.2 14 1.6 18 2

, . , . A Time (us)
0.8 1 12 : Disappears
Spall Strain Rate (105 s-l)

w

Unexpected

—_
w

—_
S}
i

Spall Strength (GPa)
Particle Velocity (km/s)

—_

o




;3 | Future Work on Strain-Rate Dependent Behavior

Effect of Geometry Improved modeling at all rates

SPPARKS

Design Guidance

Stress Ligament
Concentrations Sizes

Machining
Considerations

https://www.eos.info/en/




s | Summary of Foundational Research for QRE and Future Work

Role of Further Part Geometry Part Performance
Inspection \WENCIE] Effects Predictions
Characterization

Topology
Optimization

|
Future Work for QRE

Sources of Variability in Mechanical Response
* Flaw Structure
+ Surface Finish
* Part Geometry
 Build History (Thermal History)
* Microstructure / Anisotropy

Complex Relationship Between
Part Geometry and Flaw Structure




;5 | Sandia Research to Support Development of AM Structural Parts

Qualification Response Envelope (QRE)
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36 |« Questions




