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ABSTRACT

In this work, we determine the quality of the harmonic balance method (HBM) using a single degree-of-freedom forced Duffing
oscillator with freeplay. HBM results are compared to results obtained using direct time integration with an event location
procedure to properly capture contact behavior and identify non-periodic motions. The comparison facilitates an evaluation of
the accuracy of nonlinear, periodic responses computed with HBM, specifically by comparing super- and sub-harmonic
resonances, regions of periodic and non-periodic (i.e., quasiperiodic or chaotic) responses, and discontinuity-induced
bifurcations, such as grazing bifurcations. Convergence analysis of HBM determines the appropriate number of harmonics
required to capture nonlinear contact behavior while satisfying the governing equations. Hill’s method and Floquet theory are
used to compute the stability of periodic solutions and identify the types of bifurcations in the system. Extensions to multi-
degree-of-freedom oscillators will be discussed as well.
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INTRODUCTION

The harmonic balance method (HBM) is a well-known and popular method for obtaining periodic solutions of dynamical
systems, whether linear or nonlinear, with few or many degrees of freedom (DOF). Its largest advantages over time-integration
numerical methods include much lower computational costs and the ability to capture unstable solution responses otherwise
undetectable even in experiments. Other valuable uses of HBM include computing the nonlinear normal modes (NNMs) of a
system [1,2], bifurcation tracking [3-5], and stability analysis [3,6]. In the past decade, HBM has seen increased application to
problems involving contact, impact, or friction between parts. These kinds of phenomena are non-smooth and can lead to very
complex behavior even in simple systems. Further, a larger number of harmonics is often required to obtain converged results
than is required for smooth systems. Alcorta et al. [4], for example, used 15 modes/harmonics when analyzing a single-DOF
system with both cubic and contact nonlinearities while Detroux et al. [3] analyzed a 37-DOF system and used five harmonics
in their calculations. Residual error analysis can be used to determine the approximate number of harmonics required to get
results accurate to a given error tolerance and to ensure that sub- and super-harmonic resonances are not being missed.

In this work, we determine the quality of the harmonic balance method for a single degree-of-freedom forced Duffing oscillator
with freeplay [7]. HBM results are compared to time-integration results to facilitate an evaluation of the accuracy of nonlinear
periodic responses computed with HBM. Super- and sub-harmonic resonances, regions of periodic and non-periodic (i.e.,
quasiperiodic or chaotic) responses, and discontinuity-induced bifurcations, such as grazing bifurcations are all analyzed to
study HBM solution quality. Convergence analysis is performed to find the appropriate number of harmonics required to
capture nonlinear contact behavior for various nonlinearity strengths. Hill’s method and Floquet theory are used to compute
the stability of periodic solutions and identify bifurcations. In the final conference presentation, extensions to multi degree-of-
freedom oscillators will also be discussed.
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SYSTEM MODELING AND NUMERICAL METHODS
The equations of motion for the Duffing-freeplay system as used by deLangre et al. [7] are given by:
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where @ denotes the cubic stiffness, K. is the contact stiffness, and j1,j2 represent the freeplay boundaries. MATLAB® ode45
with Event Location was used to provide time-integration solutions used as reference data [8] to compare the HBM solution.
The harmonic balance works by assuming the solution, nonlinear forcing terms, and external forcing term(s) can all be
expressed as a Fourier series with the following general form:
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The mathematical details are omitted here but are given by Detroux et al. [3]. The result is a system of nonlinear algebraic
equations. The piecewise-smooth contact force is regularized with a hyperbolic tangent approximating function [9]. This system
is solved iteratively using the Newton-Raphson method. The step-size is adaptively controlled within the continuation algorithm
using the strategy of Colaitis et al. [10] and also controlled by the curvature at each solution point.

CONVERGENCE ANALYSIS

Figure 1(a) shows the frequency response curves of the system for a moderately hard contact stiffness and a small symmetric
freeplay gap. The colored dots correspond to time integration results for various initial conditions (IC), one color for each IC,
and the solid lines correspond to HBM results for 12, 24, and 36 harmonics along with the zero-frequency/DC component.
Overall, all three HBM cases capture the majority of the behavior with good agreement including the isolated subharmonic
resonance between 15-28 Hz. The agreement breaks down at the lower frequencies, though, as more harmonics are required to
capture the various superharmonic resonance responses present between 0-4 Hz. There also appear to be multiple isolated
responses not captured, in addition to chaotic responses which will naturally also not be captured. Figure 1(b) shows the Floquet
stability of the previous HBM result curves excluding the subharmonic resonance. Dots indicate unstable regions. Nearly all
the unstable regions start and end at vertical tangents which indicate saddle-node bifurcations have occurred. The relative
residual error of the three HBM results in the superharmonic resonance region is inset in the upper right and indicates the error
is highest in the frequency ranges where amplitude is large enough for contact to occur. Error reduces by a factor of three
between each curve (Ny = 12—-24-36).
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Fig. 1 (a) Frequency response curves of the system comparing HBM with different numbers of harmonics to time integration
and (b) frequency response divided into stable and unstable regions with relative residual error also inset.



CONCLUSIONS
In this work, we presented convergence and stability analyses of a single degree-of-freedom forced Duffing oscillator with

freeplay using the harmonic balance method. We showed that, for this combination of contact stiffness and freeplay gap size,
the majority of the frequency response can be captured with 12 harmonics including the behavior of the isolated subharmonic
resonance branch. However, the superharmonic resonances can require many more harmonics in order to be captured. Floquet
analysis showed that the system experiences a large number of saddle-node bifurcations at low frequency. The continuation
procedure was subject to some persistent difficulties near turning points; the procedure was robust against turning back on
itself, but it was prone to “jumping” to a previously solved portion of a branch and continuing in reverse. A more robust step-
size control or error control may mitigate this issue.
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