
Finding Electronic Structure Machine Learning Surrogates without Training

Lenz Fiedler,1, 2, 3, ∗ Nils Hoffmann,3 Parvez Mohammed,3 Gabriel A. Popoola,4 Tamar

Yovell,1, 2 Vladyslav Oles,5 J. Austin Ellis,5 Siva Rajamanickam,4 and Attila Cangi1, 2, †

1Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
2Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany

3Technische Universität Dresden, D-01062 Dresden, Germany
4Sandia National Laboratories, Albuquerque, NM 87185, USA
5Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

(Dated: February 24, 2022)

A myriad of phenomena in materials science and chemistry rely on quantum-level simulations of
the electronic structure in matter. While moving to larger length and time scales has been a press-
ing issue for decades, such large-scale electronic structure calculations are still challenging despite
modern software approaches and advances in high-performance computing. The silver lining in this
regard is the use of machine learning to accelerate electronic structure calculations – this line of
research has recently gained growing attention. The grand challenge therein is finding a suitable
machine-learning model during a process called hyperparameter optimization. This, however, causes
a massive computational overhead in addition to that of data generation. We accelerate the con-
struction of machine-learning surrogate models by roughly two orders of magnitude by circumventing
excessive training during the hyperparameter optimization phase. We demonstrate our workflow for
Kohn-Sham density functional theory, the most popular computational method in materials science
and chemistry.

I. INTRODUCTION

The electronic structure of matter can be viewed as na-
ture’s glue [1] that binds atoms together into condensed
systems like molecules and solids, thereby shaping the di-
versity of chemical systems and materials that surround
us. A wide variety of materials characteristics includ-
ing structural, elastic, and response properties are deter-
mined by the electronic structure [2]. Pressing questions
from industry and society such as finding better materials
for photovoltaics, identifying more efficient catalysts, de-
signing future battery technologies, and discovering ma-
terials with novel properties are linked directly to the
electronic structure of matter.

Electronic structure calculations are indispensable for
complementing experimental investigations in materials
science, and the need for ever more accurate and partic-
ularly efficient calculations is unbroken. Currently, the
most widely used electronic structure method is Kohn-
Sham density functional theory (DFT) [3–5] due to its
balance of accuracy and computational efficiency. Under
the assumption of the Born-Oppenheimer approximation
[6], by employing the Kohn-Sham formalism, and the ever
growing variety of exchange-correlation functionals [7],
DFT enables electronic structure calculations for a large
range of systems.

However, large-scale simulations at system sizes reach-
ing millions of atoms, typically encountered in state-of-
the-art molecular dynamics simulations, remain a final
frontier for DFT. While DFT methods may possess fa-
vorable scaling properties compared to other ab-initio
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approaches, DFT calculations can usually only be per-
formed for a few thousand atoms. This applies espe-
cially in dynamical settings [8] or to systems exposed to
high temperatures [9]. Larger calculations can only be
accomplished in special cases with enormous computa-
tional cost and time [10], thereby rendering large-scale
investigations infeasible. The traditional pathway to cir-
cumventing these technical restrictions relies on algorith-
mic advances in software which leads to computationally
more efficient calculations. Alternatively, approximate
models such as average atom models [11–13] are applied
for otherwise unattainable calculations. While they have
a smaller computational overhead, they sacrifice accu-
racy.

However, a drastically different option is to combine
the power of machine learning (ML) with DFT data.
This emergent field of research is growing fast [14–18].It
currently focuses on extracting application-specific infor-
mation from DFT data sets [19–21] and constructing in-
teratomic potentials [22–24] for molecular dynamics sim-
ulations based on Gaussian process regression [25], ridge
regression [26], or neural networks (NNs) [27].

Here, we however focus on using ML to directly tackle
the electronic structure problem in terms of the Kohn-
Sham equations [4]. Pioneering efforts include kernel
ridge-regression [28–30] and deep NN [30] models for pre-
dicting the electronic density. Based on these efforts, NN
models for predicting the local density of states (LDOS)
have recently been developed [31, 32]. These models are
more general than those based solely on the electronic
density. They replace traditional DFT calculations by
enabling direct access to both the electronic structure
and related observables, such as the total energy.

Despite these pioneering efforts [29], a general-purpose
workflow for automated ML applications which can
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FIG. 1. Schematic overview over the proposed workflow. Constructing surrogate models in the traditional fashion (red) is
contrasted with our accelerated workflow (green). Here, h denotes CPU/GPU hours for serial execution or wall-time for
parallel execution. Timings are estimated with justifications given in the Supplementary Note 3. The pictograms show from
left to right: a contour plot of the electronic density of an aluminum cell for z = 0, with atoms close to the plane projected onto
it in red; the descriptor calculation around a grid point (green dot) incorporating information of adjacent grid-points (grey)
and atoms (red) within a certain radius (orange circles), which has to be optimized (light orange dots); different candidate
networks; tuning of network weights; comparison of actual and predicted density of states.

tackle electronic structures has yet to come. The princi-
ple challenge is to overcome the massive computational
overhead due to hyperparameter optimization. More
specifically, a large amount of compute time must be ded-
icated to relatively long and inaccessible training and op-
timization processes, in which high-fidelity data sets have
to be constructed, suitable hyperparameters have to be
identified, and models have to be constructed. The major
bottleneck in this process is not due to the computational
overhead of data generation, as efficient DFT codes and
automation frameworks [33–35] exist. While DFT cal-
culations may require large amounts of computational
power, they can be completed in a reasonable amount of
wall-time by means of efficient parallelization and inde-
pendent individual calculations. Instead, the principal
time constraint for the creation of surrogate ML models
lies in the hyperparameter optimization, which requires
the repeated training of potentially suitable NNs, as illus-
trated in Fig. 1. The computational cost of NN training
quickly becomes excessive, especially when considering
a wide range of hyperparameters. While the training
costs may be amortized by subsequent accelerated dy-
namical simulations, they render ML surrogate models
prohibitive for many applications.

In this paper, we tackle this problem by providing a
highly efficient and automated hyperparameter optimiza-
tion workflow for generating ML surrogate models of elec-
tronic structures. It speeds up this process by two orders
of magnitude (see Fig. 1) and comprises two central com-
ponents – a training-free score and a descriptor surrogate
metric. We adapt the recently developed technique on
neural architecture search without training (NASWOT)
[36] as a training-free score for electronic structures which
does not require any NN training up until an optimal set

of hyperparameters has been identified. It correlates well
with the accuracy of a NN, as we demonstrate in a com-
prehensive comparison with state-of-the-art hyperparam-
eter optimization techniques (see Fig. 2). Furthermore,
we also introduce the average cosine similarity distance
(ACSD) as a highly efficient descriptor surrogate metric
for finding optimal descriptors for particle-mesh data (see
Fig. 6 and Fig. 7).

We hence provide the basis for automated ML [37]
workflows for modeling electronic structures. The result-
ing software framework, MALA [38], enables researchers
to construct DFT surrogate models without extensive
knowledge in ML or access to leadership-class computa-
tional infrastructure. We thus pave the way towards ac-
cessible and large-scale electronic structure calculations
driven by ML.

II. RESULTS

We begin by considering the task of any hyperparam-
eter optimization, namely, finding a set of hyperparame-
ters λ, such as the number or width of layers in an NN,
that minimizes a loss term L. Generally, this is an opti-
mization problem where we need minimize the loss

L = L
(
Y, Ỹ (X)[λ]

)
, (1)

where Y is the function we seek to model and Ỹ is its
prediction based on input data X. Solving this complex
optimization problem is a formidable task and forms a
computational bottleneck in all ML applications [39].

For applications in the realm of electronic structures,
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we choose

L = L
(
d(ε, r), d̃(ε, r), N

)
, (2)

where d denotes the LDOS and N the total number of
atomic snapshots. Our surrogate NN model M [λ] yields
as output the predicted LDOS

d̃(ε, r) = M(B(j, r))[λ] (3)

at each point in space r for a given descriptor B(j, r).
Each NN is trained until a stopping criterion is reached.
Further details of our particular NN surrogate model are
provided in the Supplementary Methods Section and in
Ref. 32. We select the Spectral Neighborhood Analysis
Potential (SNAP) [40–43] as a suitable descriptor as in-
put to our NN model. It is calculated in terms of the
atomic positions R, i.e., B(j, r) = B(j, r)[R] with com-
ponents j. Note that R is a shorthand notation for the
collection of the cartesian coordinates of all atoms. The
SNAP descriptor provides a suitable representation of
the local atomic environment around a grid-point r in
the simulation cell.

Multiple loss metrics are conceivable in Eq. (2). Since
we are not interested in the LDOS itself, L is chosen
to be the mean absolute error (MAE) of some quantity
calculated via the LDOS. This quantity is chosen to be
the total free energy A, and the loss metric becomes

L =
1

N

N∑
i=1

∣∣∣A[di]−A[M(Bi)[λ]
]∣∣∣ , (4)

where di is the reference LDOS obtained from DFT for
an atomic configuration labelled by the index i, while the
NN aims to reproduce di using the SNAP descriptors Bi.
During hyperparameter optimization, the A functional
is sometimes replaced by the band energy Eb functional
due to better computational accessibility, and Eq. (4) is
evaluated only at the very end.

Based on Eq. (3), we have carried out large-scale hy-
perparameter optimizations in order to identify the most
suitable techniques for automated DFT surrogate model
generation. Our results below are divided into two cate-
gories – (i) those for optimizing hyperparameters deter-
mining the NN architecture and (2) methods for choos-
ing the most suitable descriptors. The former technique
can be applied to any ML workflow which deals with a
mapping of vector quantities, while the latter highlights
how physical insight can be used to accelerate modeling
specifically in the materials science domain.

A. Training-free hyperparameter optimization
score

We achieve training-free hyperparameter optimization
in building NN surrogate models for electronic structure
applications by implementing the NASWOT method [36]

in our MALA framework. The NASWOT method relies
on the correlation between the input and output of a NN.
Here, this correlation is quantified in terms of a Jaco-
bian J which is defined as the derivative of the predicted
LDOS w.r.t. the SNAP descriptors. It assigns a score to
a given NN upon initialization defined as

SNASWOT =

Nbatch∑
i

[
log(σJ,i + k) + (σJ,i + k)

−1
]
. (5)

Here, Nbatch denotes the size of a subset of the training
data passed through the NN from Eq. (3), σJ,i the eigen-
values of the correlation matrix obtained from the Jaco-
bian, and k a small parameter which ensures numerical
stability. We then calculate the NASWOT mean score
across five network initializations in terms of Eq. (5) as

S′NASWOT = S̄T
NASWOT + σ

(
ST
NASWOT

)
, (6)

where S̄T
NASWOT denotes the mean and σ

(
ST
NASWOT

)
the

standard deviation across the T individual scores. This
is done to increase robustness of ST

NASWOT w.r.t. network
initialization. S′NASWOT then serves as a metric to deter-
mine how well an untrained NN can distinguish between
given data points. The underlying assumption is that a
network performing well at this task upon initialization
will also yield a high accuracy after training. Further de-
tails on the implemented NASWOT mean score are pro-
vided in the Supplementary Methods Section. Assuming
S′NASWOT is sufficiently correlated with the prediction
accuracy of a NN after training, Eq. (6) provides a com-
putationally inexpensive means for performing hyperpa-
rameter optimization. It replaces the usual loss metric,
such as in Eq. (4), which is computationally heavy, be-
cause it needs to be computed after training.

We compare NASWOT mean score with state-of-the-
art hyperparameter optimization methods and highlight
its utility as a superior alternative. These optimizations
share the common goal of identifying a NN architecture
and training routine with a minimal prediction error in
the shortest amount of time. Ideally, the accuracy of
a NN should be independent of the NN initialization,
while the inference time should be minimal. To that end,
we compare the following hyperparameter optimization
strategies:

1. Direct search approach [44, 45], as performed in
Ref. [32],

2. Tree-structured Parzen Estimator (TPE) [46] as
implemented in the software library Optuna [47],

3. Optuna coupled to a NASWOT-based pruner,

4. Orthogonal Array Tuning OAT [48] and

5. NASWOT [36], both with fixed and optimized
training schemes.
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FIG. 2. The training-free score, which we implemented as the NASWOT mean score (red), provides a speed up by two orders
of magnitude compared to state-of-the-art hyperparameter optimization methods. We report the mean absolute errors (MAE)
across 10 atomic configurations vs. the computational demand. Markers indicate the average MAE and antennas the standard
deviation over these MAE. The reported optimal NN architectures are obtained by completing five training cycles within each
hyperparameter optimization method. The same methodology is employed in the subsequent figures.

We provide further details of these algorithms in the Sup-
plementary Methods Section.

In order to assess these hyperparameter optimization
techniques, we consider a simulation cell containing 256
aluminum atoms at room temperature (298 K) and am-
bient mass density (2.699 g/cc) [49]. This system repre-
sents the complexity of learning electronic structure data
while still being computationally tractable for extended
studies [32].

To better quantify the accuracy of each hyperparam-
eter optimization method, we train the model identified
as optimal five times, each time using a different network
initialization. Then, for each initialization, inference was
performed across 10 atomic configurations available in
Ref. [32]. Using these prediction results, the MAE was
calculated according to Eq. (4). In doing so, we get five
MAEs, one for each network initialization per hyperpa-
rameter optimization method. We use this information to
assess both accuracy and robustness of the listed hyper-
parameter optimization techniques. Details on the hy-
perparameter ranges used in these experiments are pro-
vided in Table 1 of Supplementary Note 1.

Our central result is illustrated in Fig. 2. It shows the
MAE vs. total compute time for a NN identified by the
considered hyperparameter optimization techniques. It
demonstrates that our training-free score implemented

as the NASWOT mean score (red) provides a speed-up
of two orders of magnitude while maintaining high ac-
curacy comparable to the other methods. The average
accuracy of the NASWOT NN is better then obtained
from the direct search (black) and OAT (orange). Only
the Optuna-based methods outperform it slightly, but at
the price of a massive computational cost. Generally, it is
quite evident that for the most part, increasing computa-
tional time yields more accurate NNs, and, as quantified
by the standard deviation over the inference accuracy,
more robust training routines. However, the pure Op-
tuna approach (blue) identifies an NN with excellent in-
ference and training performance at a cost almost two
orders of magnitude higher then a direct search. The
NASWOT mean score yields a NN with relatively large
variances with respect to NN initializations. These are
explained by the fact that NASWOT itself has no means
to adjust parameter such as the learning rate. There-
fore a fixed choice is required. Performing a small Op-
tuna study afterwards (brown) drastically reduces this
variance, while at the same time introducing an addi-
tional computational overhead. The length of such an
Optuna study varies depending on demands for accuracy
and availability of computational resources. Chiefly, a
huge reduction in compute is enabled by our training-
free score if a larger variance between network initializa-
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tions can be tolerated. Even more accurate NNs become
attainable with subsequent and slightly larger Optuna
studies.

Naturally, one is often not directly interested in the to-
tal core hours, which measure both time and resources,
but rather in the total time-to-result. To this end, Fig. 3
assesses speed-ups due to parallelization of the hyperpa-
rameter studies. While this improves the performance
across all hyperparameter optimization techniques, no
drastic changes in their order can be observed. OAT has
a more favorable scaling behavior then the direct search
algorithm leading to a smaller runtime. Using Optuna to
optimize training hyperparameters of the NASWOT NN
yields the most accurate network in runtime of two days.
Yet the principal result remains the same as in Fig. 2:
NASWOT outperforms the other hyperparameter tech-
niques again by two orders of magnitude. The central
result displayed both in Fig. 2 and Fig. 3 is the first step
towards automated ML surrogate model generation for
electronic structures.
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FIG. 3. The training-free score (red) also provides a speed-
up by two orders of magnitude when the time to solution is
considered. Reported MAE (across 10 atomic configurations)
vs. computational demand for different hyperparameter op-
timization techniques discussed above, with maximum ex-
pected speed-ups; actual speed-ups may differ slightly. Note
that there are upper limits for parallelization. If too many
GPUs are used for the Optuna parallelization, trials will be
too independent, leading to slower convergence. The upper
limit for OAT is the number of trials, since these are com-
pletely independent of each other. However, only a serial ver-
sion of OAT was implemented for now. For the direct search,
one GPU can be assigned per choice. For NASWOT there is
no principal upper limit, but the same number of eight GPUs
as in the Optuna study was chosen.

The NASWOT method relies on the correlation be-
tween the training-free score calculated upon initializa-
tion of an NN and the performance of said NN after train-
ing. Thus, the performance of NASWOT as shown in
Fig. 2 and Fig. 3 itself is not sufficient to assess whether
it is a reliable tool for automated surrogate model gen-
eration. Care has to be taken to ensure that such re-

sults are actually representative of a useful underlying
correlation and not caused by, e.g., an imprecise problem
statement. To this end, the correlation between the NAS-
WOT mean score and the NN performance is analyzed
in Fig. 4. The data basis for this figure is the Optuna
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FIG. 4. Training-free score (NASWOT mean score) vs. band
energy prediction on the validation set of the Optuna study.
The optimial NN architecture identified by NASWOT and
Optuna are marked in red and orange, respectively.

study itself. Therefore training related hyperparameters
can vary between different trial NNs. In doing so, it is
ensured that the performance score assigned through this
analysis is actually representative of suitable NN candi-
dates. In order to save computation time, only the band
energy rather then the total free energy was calculated for
each candidate NN. The resulting comparison still pro-
vides the necessary insight, as it was shown in Ref. [32]
that errors in the total free energy are dominated by er-
rors in the band energy. It can be seen both visually and
from the calculated Kendall τ coefficient [50] of −0.318
that the quantities shown in Fig. 4 are negatively cor-
related. While NASWOT and Optuna do not agree in
their choice for the optimal NN architecture, the over-
all difference is not drastic; the optimal Optuna NN is
still within the 15 best NNs according to the NASWOT
score, while the NASWOT result yields a reasonable ac-
curacy in the band energy. Based on these results, the
NASWOT mean score is a suitable metric for identify-
ing a NN capable of learning the LDOS to the desired
accuracy.

Furthermore, the two clusters of points in Fig. 4 sug-
gest that NASWOT can be used to optimize hyperpa-
rameter studies which are based on Optuna. A pruner
can be constructed, that discards all candidate NNs be-
low a certain threshold score. When treating new mate-
rials, such a threshold will be unknown beforehand and
has to be estimated during runtime from preceding tri-
als. Yet for first tests this simple implementation suf-
fices. As shown in Fig. 3, the resulting hyperparameter
optimization technique labelled as Optuna with NAS-
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WOT pruner (green) provides high accuracy and little
uncertainty while coming at a significantly lower compu-
tational cost than the direct use of Optuna. However,
one has to keep in mind that for unknown systems, ad-
ditional computation time has to be included to accom-
modate for the incremental construction of the pruning
threshold. Thus, such an approach is only a viable alter-
native to the NASWOT algorithm if computation time
is not scarce, but yet not as abundant as necessary for a
full Optuna study. Naturally, other pruning algorithms
could be used to perform a similar task. OAT has been
found to give an intermediate performance compared to
the aforementioned methods. OAT is in principal highly
parallel, giving it the best performance after NASWOT
(provided enough GPUs are avaialble), while at the same
time outperforming a traditional direct search in terms
of accuracy.

A final, important aspect of hyperparameter optimiza-
tion is the identification of an efficient NN architecture.
For initial studies, the size of a NN might not be as cru-
cial. But if surrogate models are to replace DFT cal-
culations in dynamical simulations, then a minimal NN
architecture resulting in minimal inference times would
be desirable. To this end, Fig. 5 shows how the NNs
identified by the different hyperparameter optimization
methods differ greatly. The direct search favors a large
NN, while the NASWOT mean score favors a small, sin-
gle layer NNs. Optuna provides a middle ground, with a
shallow NN, as does OAT. We deduce from Fig. 2 that the
Optuna NN is close to the globally optimal NN architec-
ture. The NASWOT mean score captures this optimum
to a sufficient degree, while providing a massive reduction
in computation time which is further illustrated in Sup-
plementary Note 1. Overall, all of the NNs identified by
the considered methods are smaller than those predicted
by the direct search algorithm, resulting in drastically
decreased inference times.
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FIG. 5. NN architectures identified as optimal by different
hyperparameter optimizations.

B. Descriptor surrogate metric

While the aforementioned hyperparameter optimiza-
tion is important to any conceivable ML problem that
aims to map a vector quantity to another vector, there
are, however, hyperparameters that are inherent to iden-
tifying suitable descriptors. In our grid-based approach
to learning the electronic structure, we rely on descriptors
that encode the local atomic environment around a point
in the simulation cell. Since there is no clear physical
relation between the NN prediction accuracy and the hy-
perparameters characterizing the way such a local envi-
ronment is captured, data preprocessing itself requires a
hyperparameter optimization. This requires the repeated
training of a NN using a wide range of descriptors. The
NASWOT mean score cannot be employed here, as it is
not the network architecture we seek to optimize. We
therefore introduce a descriptor surrogate metric called
ACSD which is based on similarity measures. It facil-
itates identifying the optimal choice of descriptors for
particle-mesh data. Similar to NASWOT, it is highly
efficient and achieves a speed-up of two orders of magni-
tude compared to conventional NN training, because it
enables a training-free optimization.

In our workflow, we employ the SNAP descriptors [40–
43] to capture local environments. However, local de-
scriptors may be based on other established fingerprint-
ing schemes for atomic configurations, such as SOAP [51],
the Coulomb matrix [52], BoB [53], FCHL [54], or
ACE [55, 56]. Assuming that we investigate cells con-
sisting only of one chemical species, SNAP descriptors
are calculated via the local atomic density around a grid-
point

ρ(r) = δ(0) +
∑

rk<Rcut

fc(rk;Rcut)δ(rk) , (7)

after placing said grid-point at the origin. In Eq. (7),
rk with rk = |rk| is the position of atom k and Rcut is
the cutoff radius which determines the length scale of the
atomic environment considered by the SNAP descriptor.
This local atomic density is represented in terms of four-
dimensional hyperspherical coordinates. The number of
terms in this expansion is denoted by j with a dimen-
sionality governed by Jmax; the higher Jmax, the more
components per grid-point are taken into account.

Our proposed surrogate metric is based on analyzing a
similarity measure between the output and input vectors
of the NN, namely the SNAP vectors which are the input
and the LDOS vectors which are the output. Given two
points on the real space grid of a simulation cell r1 and
r2, we compute the cosine similarity SC for either two
LDOS vectors d(ε, r) and two SNAP vectors B(j, r) as

SC(X1, X2) =
X1 ·X2

‖X1‖‖X2‖
(8)

with X1 = d(ε, r1), X2 = d(ε, r2) or X1 = B(j, r1), X2 =
B(j, r2). We then calculate a cloud of 2D points
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Si
C(B), Si

C(d)
}

with Si
C(B) = SC {B(j, rt), B(j, rs)},

Si
C(d) = SC {d(ε, rt), d(ε, rs)} for Nsim points {t, s} sam-

pled from the simulation cell. We consider Nsim =
200 × 200 = 40, 000 points, i.e., for each grid point in
a set of 200 grid points, these distances are determined
w.r.t. 200 randomly drawn points.

The optimal choice of descriptors is determined by the
hyperparametersRcut and Jmax. We need to consider two
limiting cases: (i) when Si

C(B)� Si
C(d), even drastically

dissimilar descriptors might yield the same LDOS, and
modeling becomes trivial from a ML perspective. This
case applies when Rcut is small. However, this in turn
means physically less informed descriptors and therefore
lower prediction accuracy, because the length scale of the
atomic environment is small. If we instead choose Rcut

to be large, the descriptors will be physically well in-
formed. But we risk approaching (ii) Si

C(B) � Si
C(d),

which makes our problem difficult to model in terms of
ML. For a fixed choice of Rcut, the number of expansion
coefficients governed by Jmax determines which of these
limiting cases is approached. As we aim for optimal per-
formance w.r.t. both accuracy and data footprint, we ar-
gue that finding a combination of maximum Rcut and
minimum Jmax for which Si

C(B) ≈ Si
C(d) is the optimal

choice.
To judge whether such a combination has been found,

we introduce the ACSD. It is defined as the average dif-
ference

ACSD =
1

Nsim

Nsim∑
i

|Si
C(d)− Si

C(B)| , (9)

between all points within the 2D point cloud{
Si
C(B), Si

C(d)
}

and
{
Si
C(B), Si

C(B)
}

, where Nsim de-
notes the number of sample points. The ACSD thus
measures the average over the distribution of similari-
ties that deviate from the Si

C(B) = Si
C(d) line. Eq. (9)

can be evaluated rapidly in contrast to lengthy NN train-
ing required for a traditional hyperparameter search. To
investigate the accuracy of the ACSD, we consider 20
snapshots of 128 beryllium atoms at room temperature
(298 K) and ambient mass density (1.896 g/cc) [57].

To assess the utility of the ACSD as a rapid and re-
liable descriptor surrogate metric, we compare the pre-
dicted ACSD with actual MAE of the total energy in-
ferred from the NN. To that end we consider the hyper-
parameters Rcut = 4.676Å and Jmax = 5 which were
identified as accurate in Ref. [32]. We then vary both hy-
perparameters, one at a time with the other held fixed.
The reference result was calculated for all these hyperpa-
rameter combinations. This involved generating SNAP
descriptors, training the NNs, and predicting the total
free energy based on these NNs. The central results of
this assessment are shown in Fig. 6 for a fixed number
of components Jmax and varying cutoff radius Rcut, and
vice versa in Fig. 7.

It is evident in Fig. 6 that the NN prediction (green)
becomes more accurate with increasing Rcut, up until a
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FIG. 6. NN errors when using SNAP descriptors with differ-
ing Rcut. Jmax was kept at 5.

minimum at 4.676 Å, after which a slight decrease is ob-
served. This behavior is reproduced, almost exactly, by
the ACSD surrogate metric (red). These results follow
the intuitive expectation: a small Rcut means that in-
dividual SNAP descriptors carry less information about
the atomic environment, making it harder for a NN to
actually predict the electronic structure from the data
provided. On the other hand, very large values of Rcut

lead to SNAP descriptors that incorporate information
from almost the entire simulation cell. These tend to be
similar to one another, even though the actual electronic
structure at a particular grid point differs. Consequently,
we expect the optimal Rcut in between these extremes,
which is correctly identified by the ACSD. Furthermore,
Fig. 6 confirms the prior assertion that ML modeling be-
comes increasingly more challenging as Rcut increases,
as is evident from the increasing spread in the network
prediction errors.

The computational speed-up of this method is drastic.
The conventional method of finding optimal descriptors
is a computationally heavy task, because it requires mul-
tiple NN model optimizations. Contrarily, the evaluation
of the ACSD surrogate metric can be done in a matter
of minutes on a single CPU. This results in a speed-up
of around two orders of magnitude, while qualitatively
yielding the same results.

The assessment for a fixed cutoff radius Rcut and and
varying Jmax yields a similar trend which is illustrated in
Fig. 7. As long as Jmax is chosen sufficiently large, there
is little effect on the accuracy of the NN (green). This
trend is not fully reflected by the ACSD surrogate metric
(red). However, this can be explained due to the nature
of this numerical experiment. An increase in components
leads to additional components being added that are gen-
erally small in value. These in turn cause slightly larger
deviations for almost identical SNAP vectors, but do not
carry meaningful information for the NN. This leads to
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FIG. 7. NN errors when using SNAP descriptors with differ-
ing Jmax. Rcut was kept at 4.676Å .

almost unnoticeable differences in NN accuracies. How-
ever, minimal Jmax values leading to reasonable accuracy
is indeed reflected by the ACSD surrogate metric. Based
only on the surrogate metric, one could choose the first
data point for which the ACSD encounters a minimum,
in this case Jmax = 3. The NN accuracy of this data set is
comparable to that for higher Jmax at reduced computa-
tional cost, thus demonstrating the utility of our ACSD
surrogate metric.

III. DISCUSSION

We tackle the complex optimization problem inherent
to any ML surrogate model construction in the context of
electronic structures. This constitutes a major computa-
tional bottleneck in addition to data generation. We pro-
vide a highly efficient and automated hyperparameter op-
timization workflow for generating ML surrogate models
of electronic structures. It speeds up this process by two
orders of magnitude (see Fig. 1), as we demonstrate in
terms of a comprehensive comparison with state-of-the-
art techniques. Our workflow consists of two advances –
a training-free score for rapid hyperparameter optimiza-
tion of NNs and a descriptor surrogate metric enabling an
efficient search for suitable descriptors of particle-mesh
data.

We have first assessed the accuracy and efficiency of
our workflow against multiple hyperparameter optimiza-
tion techniques such as the direct search, OAT, and
the standard Optuna library. We achieve large gains in
computational efficiency in hyperparameter optimization
by adapting the NASWOT method [36] as a NASWOT
mean score into our workflow. This method does not re-
quire any NN training up until an optimal set of hyperpa-
rameters has been identified. With our NASWOT mean
score we are able to calculate a surrogate model in a few

hours, whereas the state-of-the-art methods take days.
In addition, if higher accuracy is needed, we showed that
combining Optuna with the NASWOT mean score out-
performs traditional search approaches. We also found
that our hyperparameter optimization workflow impacts
model performance. NN architectures identified as opti-
mal by the NASWOT mean score algorithm are equally
robust as the direct search, but yield smaller NNs with
optimal inference performance.

Furthermore, we have developed the ACSD descriptor
surrogate metric to find hyperparameters for the calcula-
tion of suitable particle-mesh descriptors without having
to train any NN models. Likewise, our algorithm speeds
up the state of the art by two orders of magnitude.

By incorporating these two developments, we have de-
vised a highly efficient ML surrogate modelling workflow
shown in Fig. 1. All steps in this workflow can easily be
automated with the algorithms considered here. These
tools will enable a breadth of future applications in which
large parts of the data processing for DFT surrogate
models can be automated or executed with minimal user
input. Our final workflow reduces the time required to
construct surrogate models by two orders of magnitude.
It thus provides a pathway to employing DFT surrogate
models in large-scale investigations of materials under a
variety of conditions.

METHODS

Density Functional Theory The electronic structure
of the materials under investigation was calculated using Finite-
Temperature Density Functional Theory (DFT) in the Kohn-Sham
picture [4, 5]. All DFT calculations were carried out using the
QuantumESPRESSO software library [58–60]. Suitable atomic
configurations were obtained by coupling DFT simulations to a
molecular dynamics (MD) simulation, i.e., a classical mechanical
treatment of the ions. DFT-MD calculations were performed using
either QuantumESPRESSO (beryllium systems) or VASP [61–63]
(aluminum systems). For the beryllium data set, a 11 × 11 × 11
k-grid has been used and for the aluminum data set a 8 × 8 × 8
k-grid has been used. In either case, Monkhorst-Pack [64] sam-
pling was employed. All DFT-MD calculations were performed at
the Γ-point. All DFT calculations were carried out using a plane-
wave basis set, with beryllium calculations using a cutoff energy of
40 Ry (both DFT and DFT-MD) and an ultrasoft pseudopotential
[65, 66], while all aluminum DFT calculations were performed using
a cutoff energy of 100 Ry and a norm-conserving Vanderbilt [67]
pseudopotential. Aluminum DFT-MD calculations were performed
using a 240 eV cutoff energy and a PAW pseudopotential [68, 69].
The PBE exchange-correlation functional [70] has been used for all
beryllium calculations as well as for the aluminum DFT-MD cal-
culation, while the PBEsol functional was used for the aluminum
DFT calculations [71].

Neural Networks Neural networks are powerful regres-
sion models consisting of layers of so called neurons or perceptrons
[72]. Each neuron performs a linear operation using weights W and
biases b on provided inputs x and thereafter applies a non-linear
activation function σ, yielding intermediate outputs y as

y = σ(Wx + b) , (10)

which serve as input for subsequent neurons. In connecting multi-
ple layers containing an arbitrary number of neurons, in principle
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any function can be approximated, as long as the neural network is
tuned on an appropriate amount of data in a process called training
[73, 74]. Such a training process is usually performed using gradient
based methods in an iterative fashion, based on back-propagation
[75]. For the training of a NN, the available data is divided into a
training data set (to calculate the gradients), a validation data set
(to monitor NN accuracy during training) and a test data set (un-
seen during training and used to verify performance after training
is completed). Each pass of the entire training data set through
the network is labelled an epoch. Neural network performance is
highly dependent on the correct choice of hyperparameters that
characterize both architecture and training policy for a neural net-
work, such as the number and width of individual layers. We use
feed-forward neural networks, in which each neuron of a layer is
connected to all neurons of subsequent layers, to map one vector
quantity to another. Neural networks were constructed using the
PyTorch library [76] and trained on a single GPU.

Hyperparameter optimization Hyperparameter op-
timization tackles Eq. 1. This can be done by a direct search
algorithm, automated libraries, or custom algorithms. Hyperpa-
rameter optimization algorithms suggest trial or candidate NNs,
which are trained and then judged and/or analyzed to determine
an optimal set of hyperparameters. For this study, we employed
the Optuna library, and provide our own implementations of the
NASWOT and OAT algorithms in the MALA package. Details for
these implementations and performed experiments are provided in
the Supplementary Methods section and Supplementary Note 1.

DFT Surrogate Models Scalable DFT surrogate mod-
els are constructed using a workflow based on the local density of
states d(ε, r) (LDOS) to compute quantities of interest. The LDOS
of a system is a spatially and energy resolved intermediate quan-
tity of electronic structure calculations. Surrogate models based on
the LDOS are capable of accurately reproducing other intermedi-
ate quantities (electronic density n(r), electronic density of state
D(ε)) as well as observables (total free energy, atomic forces). Most

importantly, the fundamental calculation of the total free energy
in Kohn-Sham DFT

ABO
total[n] = TS[n] − kBτSS[n] + U [n] + EτXC[n] + Eei[n] , (11)

can be replaced by

ABO
total[d] =Eb[D[d]] − kBτSS[D[d]] − U [n[d]] + EτXC[n[d]]

−
∫
dr vτXC(r)n[d](r) , (12)

which solely depends on the LDOS through the electronic density
and density of states. Here, TS denotes the Kohn-Sham kinetic
energy of non-interacting fermions, SS the Kohn-Sham entropy of
non-interacting electrons, U the Hartree energy, EτXC the exchange-
correlation energy, Eei the energy associated with the electron-
ion interaction, vτXC(r) the exchange-correlation potential, τ the
electronic temperature, and kB the Boltzmann constant. During
hyperparameter optimization, the band energy

Eb[d] =

∫
dε fτ (ε)εD[d](ε) (13)

is used instead of ABO
total[d] for monitoring the intermediate accuracy

of the NN. The mathematical foundation of this workflow is briefly
outlined in the Supplementary Methods Section and explained in
detail in Ref. [32].

Data and code availability All machine-learning ex-

periments and post-processing analysis have been carried out with

the MALA code, version 1.0.0. Training data and benchmark mod-

els for aluminum experiments can be found in [49] and for beryllium

experiments in [57]. Code used to conduct hyperparameter opti-

mization as well as the relevant models can be found in [77].
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