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Machine Learning (ML) Classifier

0 – CO2 ads < 0.052 mol/kg

1 – CO2 ads >= 0.052 mol/kg

▪ 11 different classification ML models were evaluated for 

different MOF featurization techniques

▪ All the features were customized (denoted by ‘_cf’ in plot ) 

with geometric features such as surface area, pore size, 

electrostatics, and dispersion term

▪ Customized RAC_cf (revised auto-correlation) featurization 

yielded the best accuracy of all the models

▪ Light Gradient Boosting model (LGBM) algorithm performed 

the best
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Approach Results: Flexible force-field validation and 

CO2 sorption at ambient condition

Computational Screening of Metal Organic Frameworks (MOFS) for Carbon Capture

▪ Flexible force-fields yielded CO2 sorption for MOFs with pore size < 3 Å
▪ Ranking of MOFs based on CO2 sorption was different for flexible models 

and rigid models, which underscores the importance of incorporating 

flexibility for estimation of CO2 sorption

▪ LGBM yielded about 75% accuracy in identifying low CO2 adsorbing 

MOFs and high CO2 adsorbing MOFs

▪ MOF geometric features (pore size, density, surface area) along with 

electrostatic and dispersion terms were found to be the most important 

features for the ML model

▪ MOFs are organic inorganic crystalline materials

▪ MOFs have excellent CO2 sorption

▪ MOF design space is enormous due to a wide variety of 

constituents 

▪ Subtle flexible modes and large framework volume changes 

can influence MOF performance regarding adsorption-based 

applications1

▪ Most of the studies have focused on using fixed-atom force-

fields (MOF atoms do not move), which are less accurate

▪ Flexible force-field describes movement of the MOFs 

environment, which is a more realistic model

Software Packages:

Molecular Simulation: LAMMPS4, RASPA5

Machine Learning: PyCaret6

▪ Flexible force-field yields CO2 adsorption in 
MOFs with small pore sizes

▪Rigid force-field yields no CO2 adsorption for 
MOFs with pore size less than 3 Å

▪ For some MOFs, rigid force-field overestimates 
the CO2 adsorption 

▪ In general, flexibility enhances the CO2

adsorption in MOFs

▪Spearman’s ranking correlation coefficient is 
0.021

▪ This is a different ranking of top MOFs for 
flexible and rigid MOF force-fields

ML Results

▪ ML model has an average accuracy of 75%, which is how often 

the model correctly identifies a MOF as 0 (low CO2 adsorbing 

or 1 (high CO2 adsorbing)


