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2 I Agenda

oMode structure can be used to influence circuit
behavior

oSimple non-linear system
oData
oConclusions



The "complicated” mode structure of a A/2
resonator
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NDTIN films provide nonlinearity to the resonator

 A/2 resonator
» 4 fF input/output caps
* 11.4 mm length N

* 2um line/30 um gaps = s Pl SEM image
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System has distributed nonlinearity



Nonlinearity is evident as measurement power increases

logmag(S21)

Peaks translate to lower frequency due to increased kinetic inductance (L,) as power increases
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« I Even at the lowest powers, non-linearity is evident
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7 I Fun things you can do with non-linear resonators
fixed @
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Parametric Amplification .
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Frequency comb in driven SC oscillators

(similar to results by Erickson et al. PRL 113, 187002 (2014).

data taken using a 3 um signal line
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Above a critical driving power, a single input tone produces a frequency comb—tunable with

frequency and power!
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o | Details on frequency mixing

below P_. Only f1
above P_: 1,13, & f5

+ modes 1 &2

P. = bifurcation power

A

Weak overlap, contributions
cancel.

- Coupling suppressed by
symmetry!

modes 1 & 3
+
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~ N

Strong overlap
- Coupling enhanced by symmetry!




‘ Shifting f, by applying power to f,

Power applied on

Lineshape remains
P P_ for f, resonance to f,

Lorentzian! \
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“Cross’ Kerr effect
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so points leave the line

Power in mode 2 is influencing the frequency of mode 1



12 I Theoretical understanding...

starting with the L l
resonant condition: h= Lk dx = de 21 f /vy
Ignore caps
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3 1 Fast turn on/off
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02" mode &f = 56 kHz The 8" mode &f ~ 10 MHz. So switch on/off in ~100 ns.

Can use higher even mode to switch on/off fast at the cost of higher power




4 | Take Aways

o Multi-mode systems + nonlinearity = interesting
physics

o Engineering mode structure enables useful function
o Some modes couple. Some just influence each other
o Tunable filter is a simple example
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the end.



