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Solar Thermochemical Hydrogen (STCH) Production

temperature

x—s+68H,0— MO, +6H,

Tes ~1000K

}

High-conversion water splitting (HCWS)
Ayield ~20% at H,0/H, < 10 is very desirable

Two-step cycle:
1. High temp reduction - O,
2. Low-temp oxidation in steam -2 H,

Key factors in material design:
1. Stability
2. Redox capacity (Ad)

« oxygen vacancy formation energy (k)

3. H, yield (mole H,/mole O-atom in solid)
 ease of reoxidation in steam

Practical limits of STCH materials?
« Temp required for reduction
« H,-tolerance during oxidation
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STCH Production Materials : Perovskites

* (CeQ, is the '‘benchmark
STCH cycle material
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How do we improve material design? AR, EmIemE)

1. Extensive materials characterization
2. Computational modeling
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BaCe,,:Mn,-:0,;(BCM)

H, production (umol/g)

250

200

150

100

I | I L] l L I ]
| Ceria @ Tg=1500°C and Ty = 1000°C

SLMA4664

[ BCM

I Ceria @ Tp=1400°C and T,= 1000°C i

— == —
Ceria

750 800 850 900 950
Oxidation temperature (°C)

» |ower reduction temperature relative to CeO,

0.00 [t ' R ! i

5 0051

§ -0.10 SLMA4664 | -
= B ! ]
S -0.15 BC25M75 ] -
© - , -
@ -0.20f | —
-..6 | : SLMA6464:: -
O -0.251 ! " -
E 2030 | Reduction " Oxidation N
X i |\ @1350°C ! liq @1000°C ]

-0.35}- | -

-0.40 | -
B | 1 | 1 | ] | ]
100 150 200 250
Time (min)

CeO, (Ceria) Adva r%tggtesfoftBk_C l\/lt.'
BaCeO, (BCO) exnibits fast kinetics
BaMnO, (BMO)

SrLaMnAIlO, (SLMA)

* higher tolerance for H, during re-oxidation than SLMA

Energy Environ. Sci., 2019, 12, 13609.
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BaCe,,:Mn,-:0;5: 12R Polytype

Characterization Methods :
Thermogravimetric Analysis (TGA)
Synchrotron X-ray Diffraction (XRD)

X-ray Absorption Spectroscopy (XAS)
Selected-area electron diffraction (SAED)
Energy dispersive spectroscopy (EDS)
Electron energy loss spectroscopy (EELS)
Atomic-resolution imaging
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BaX;,:Mn,-:05 (BXM; X = Ce, Pr, Nb)

e Substitution of Ce results in

I ' |
similar 12R polytype with 1000 UHP Argor
different redox capacities: Tr=1350C :
X2 095} BCM -
BCM < BNM < BPM @ : .
@ ' '

E g90f : -
S : .
Ce = [Xe] 42652 3 ; :

Pr = [Xe] 43652 = #8ar o t [ oseamo,

NDb = [Kr] 44557 ' ') To=1100-1350°C
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Experimental Conditions
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H, Production in 40% H,0 : BCM vs. BPM

O2 Signal
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* Slower kinetics

« Lower redox capacity (delta)
* Lower H, yield (mol H2/mol O solid)
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HCWS Data for H,0O:H, 1333:1
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Post-WS Characterization : SEM-EDS

Phases:
« BCM
BMO
« BCO

BCM After WS
Bulk BCM (Ba : Ce : Mn) 1:0.20:0.75
BMO (Ba : Mn) 1:0.66
BCO (Ba : Ce) 1:0.71
BCM #2 (Ba : Ce : Mn) N/A

Phases:

« BPM

« BMO

* Multiple
BPM
phases

BPM After WS
Bulk BPM (Ba : Ce : Mn) 1:0.24:0.61
BMO (Ba : Mn) 1:0.58
BPM #2 (Ba : Ce : Mn) 1:0.49:0.35
BPM #3 (Ba : Ce : Mn) 1:0.38:0.51
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Post-WS Characterization : HAADF-STEM Imaging

BCM \ BPM

...................................

IIIIIIIIIIIIII

ooooooooooooooooo
......................

OOOOOOOOOOOOOOOO
.................................

- ! Not12R

BPM undergoes an unknown phase change during cycling

What is the mechanism of this transformation?
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Post-WS Characterization : STEM-EELS
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Summary

1. BCM shows good capacity for
HCWS

2. BMO, BCO, and a minor
secondary BCM phase form
during cycling

3. Defects form during thermal
cycling but no overall phase
change observed

4. Ce does not reduce

. BPM loses redox capacity

during HCWS

. Multiple BPM phases form
. BPM undergoes a phase

transition from 12R to a
currently unknown phase

. Prreduces
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