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Solar Thermochemical Hydrogen (STCH) Production
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Two-step cycle:
1. High temp reduction  O2

2. Low-temp oxidation in steam  H2

Key factors in material design:
1. Stability
2. Redox capacity (∆d)

• oxygen vacancy formation energy (EV)
3. H2 yield (mole H2/mole O-atom in solid) 

• ease of reoxidation in steam 

Practical limits of STCH materials?
• Temp required for reduction
• H2-tolerance during oxidation

High-conversion water splitting (HCWS)
A yield   ̴20% at H2O/H2 < 10 is very desirable 



STCH Production Materials : Perovskites
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How do we improve material design? 
1. Extensive materials characterization
2. Computational modeling

• CeO2 is the ‘benchmark’ 
STCH cycle material 

• SrxLa1-xMnyAl1-yO3 is the 
highest performing 
perovskite to-date 

× Tr = 1500°C
 Retains performance in 

H2O/H2 environment 

 Tr = 1350°C
× Loses performance in 

H2O/H2 environment 
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BaCe0.25Mn0.75O3 (BCM)

Advantages of BCM :
• exhibits fast kinetics
• lower reduction temperature relative to CeO2
• higher tolerance for H2 during re-oxidation than SLMA

CeO2 (Ceria)
BaCeOx (BCO)

BaMnOx (BMO)
SrLaMnAlOx (SLMA)

Energy Environ. Sci., 2019, 12, 1369.
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BaCe0.25Mn0.75O3 : 12R Polytype

• Characterization Methods :
1. Thermogravimetric Analysis (TGA)
2. Synchrotron X-ray Diffraction (XRD)
3. X-ray Absorption Spectroscopy (XAS)
4. Selected-area electron diffraction (SAED)
5. Energy dispersive spectroscopy (EDS)
6. Electron energy loss spectroscopy (EELS)
7. Atomic-resolution imaging

Ce
Mn
Ba
O
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BaX0.25Mn0.75O3 (BXM; X = Ce, Pr, Nb)

12R

• Substitution of Ce results in 
similar 12R polytype with 
different redox capacities:

BCM < BNM < BPM

X
Mn
Ba
O

Ce =  [Xe] 4f26s²
Pr = [Xe] 4f36s2

Nb = [Kr] 4d⁴5s¹
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Experimental Conditions

1. WS in 40% H2O
2.  WS in H2O:H2 1333:1

One Cycle
1. Reduction 

Tr = 1350°C for 330s
2. Oxidation 

To = 850°C for 1200s

O2 Signal

H2 Signal



8

H2 Production in 40% H2O : BCM vs. BPM

BCM BPM

BPM exhibits:
• Slower kinetics

• Lower redox capacity (delta)
• Lower H2 yield (mol H2/mol O solid)

202, 98, 80

60, 71, 78
109, 90, 81
140, 164, 164
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HCWS Data for H2O:H2 1333:1

BCM BPM

Why does BPM lose redox capacity 
during HCWS in H2O:H2 1333:1?

111, 44
1413

117, 19
987
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Post-WS Characterization : SEM-EDS

BCM After WS

Bulk BCM (Ba : Ce : Mn) 1 : 0.20 : 0.75

BMO (Ba : Mn) 1 : 0.66

BCO (Ba : Ce) 1 : 0.71

BCM #2 (Ba : Ce : Mn) N/A

BPM After WS

Bulk BPM (Ba : Ce : Mn) 1 : 0.24 : 0.61

BMO (Ba : Mn) 1 : 0.58

BPM #2 (Ba : Ce : Mn) 1 : 0.49 : 0.35

BPM #3 (Ba : Ce : Mn) 1 : 0.38 : 0.51

BCM BPM

Phases:
• BCM
• BMO
• BCO

Phases:
• BPM
• BMO
• Multiple 

BPM 
phases
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Post-WS Characterization : HAADF-STEM Imaging

12R Not 12R

BCM BPM

BPM undergoes an unknown phase change during cycling

What is the mechanism of this transformation?



Post-WS Characterization : STEM-EELS 
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BCM

BPM

• Extent of Mn reduction  BPM>BCM
• Dual reduction of Pr in BPM

O K-edge Mn L-edge

Ce M-edge

Pr M-edge
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Summary

1. BPM loses redox capacity 
during HCWS

2. Multiple BPM phases form
3. BPM undergoes a phase 

transition from 12R to a 
currently unknown phase

4. Pr reduces

1. BCM shows good capacity for 
HCWS

2. BMO, BCO, and a minor 
secondary BCM phase form 
during cycling

3. Defects form during thermal 
cycling but no overall phase 
change observed

4. Ce does not reduce


