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Introduction

• The breakdown of SiO2 gate dielectrics is preceded by the 
formation of traps in the oxide [1–4], as well as at the Si/SiO2 
interface [5,6]

• This trap generation causes time-dependent dielectric 
breakdown (TDDB), an important reliability issue

• Oxide traps contribute to the formation of a percolation path 
that greatly reduces the oxide resistance, leading to a spike 
in leakage current, and results in the breakdown of the 
device [7]
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Introduction (cont.)

• Several physical mechanisms have been proposed for the generation 
of these traps  [8–11]; however, only very limited and somewhat 
tentative experimental evidence about the identities of the traps 
currently exists [12–15]

• Understanding the nature of these stress-induced defects is key to 
understanding TDDB and stress-induced leakage currents (SILC)

• Electrically detected magnetic resonance (EDMR) and near-zero-field 
magnetoresistance (NZFMR) can provide chemical and physical 
information about these stress-induced traps
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Background- Electron Paramagnetic Resonance
• The parent technique of EDMR is electron paramagnetic resonance (EPR)

E
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Illustration of Zeeman splitting

Spin-orbit coupling
Electron-nuclear 
hyperfine interactions
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EDMR Experiment
• The device sits in a high-Q 

microwave cavity 
• A large electromagnet 

sweeps field across 
resonance condition 

• Spin-dependent change in 
current contains chemical 
and physical information 
about paramagnetic defects

• Lock-in detection and signal 
averaging are used to 
improve sensitivity  5



Spin-Dependent Currents

Spin-dependent recombination 
(SDR)

Spin-dependent trap-assisted tunneling 
(SDTAT)

[16] [17]
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Other Experimental Details

• We report measurements of SDR and SDTAT currents on arrays of 
126 Si/SiO2 n-channel MOSFETs with 7.5nm gate thickness

• Devices were subjected to constant gate voltage or constant gate 
current stress, with interruptions for EDMR/NZFMR measurements

• We utilize the dc I-V biasing scheme to create recombination current 
at MOSFET interfaces, measuring the recombination current from 
the substrate [18]

• Tunneling currents through the gate dielectric were used to create 
SDTAT current
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SDR Current and dc I-V Biasing

dc-IV biasing creates SRH 
recombination at the 

MOSFET interface 

dc-IV peak in substrate current is 
used to calculate interface trap 
density [18]. Very few traps are 

observed pre-stress.  A large 
increase occurs after stressing

EDMR is conducted with the 
device biased at the peak in dc-

IV current. The field is swept 
and the resonance response is 

observed after stressing
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Interface Defect Density, SDR, and TDDB

• SDR current tracks well 
with interface trap 
density as a function of 
stress time

• This remains true for a 
wide variety of gate 
stressing conditions

• Traps build up quickly 
near the start of stress, 
then more slowly as the 
stress continues

Vg = -9V

Vg = -8VVg = -7VIg = -1nA

Vg = +9V Vg = +10V
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SDR EDMR Interface Trap Identification

• Interface traps are a 
combination of Pb0 and Pb1 Si 
dangling bonds [19,20]

• Less Pb1 contribution at (+) 
gate stress

Vg = 
+10V
t = 20s

Pb0

Pb1

Vg = -8V
t = 41 hr

Pb0

Pb1

Ig = -1nA
t = 77 hr

Pb0

Pb1
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SDR EDMR after High-Field 
Stress at Low Temperature

• In low temperature (T = 200K) SDR EDMR 
measurements of high-field stressed 
MOSFETs, spectra are still dominated by Pb0 
and Pb1 defects

• Small, additional response appears at higher 
field, almost certainly due to near-interface 
E’ centers. The E’ center is a silicon dangling 
bond in the SiO2, often described as a hole 
trapped at an oxygen vacancy [21]

• Low temperature measurements increase 
sensitivity to E’ centers
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Near-Zero-Field Magnetoresistance (NZFMR)

• Similar measurement to EDMR, but does not require microwave 
photons [22]

• Spin-dependent change in current is observed when sweeping 
through zero applied field

• Same spin pairs involved in SDR or SDTAT
• Mixing of singlet/triplet states occurs due to local hyperfine fields 

[23]
• NZFMR response is dependent on hyperfine coupling at the defect, 

and recombination/tunneling rates [23]
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NZFMR (cont.)

SiDefect electron spin 
aligns with applied field 

Conduction electron

Weak local hyperfine 
field

Triplet Pair:  ΔE α µ*B  = 0  for all B  

Defect electron 
spin aligns with 

LOCAL hyperfine 
fields, not applied 

field

• So, at B = 0, singlet and triplet energy are both =0, and the spins states can “mix”
• This affects recombination probability (and thus recombination current) 

Si

Applied Field 

Conduction electron

Singlet Pair: ΔE α µ*B  = 0  Only at B = 0

No Applied Field 
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NZFMR (cont.)
• Similar to EDMR, but 

without the need for 
microwave source and 
cavity

• Field is swept across 0 
rather than resonance 
condition 

• SDR NZFMR 
measurements were 
conducted after 
different levels of device 
stress
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• Here, the integrated (and normalized) 
NZFMR spectra are compared at 
different points in device lifetime

• Subtle, but repeatable lineshape 
differences are seen between the 
NZFMR spectra

• These changes are due to changes in 
the local hyperfine environment of the 
defects

• The only mobile magnetic nuclei in the 
system is hydrogen, indicating that H is 
redistributed near the interface during 
TDDB 

Vg = -9V
t = 30s

t = 300s
t = 1800s
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SDR NZFMR and Device Lifetime

Note: pre-stress response cannot be 
resolved for adequate comparison



SDTAT Setup

• SDTAT EDMR measurements were 
made with on gate leakage current 
after various lengths of gate stress

• No pre-stress SDTAT response is 
visible

• These leakage currents are very 
small (1x10-10 A), which affects 
EDMR sensitivity
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Spin-Dependent Trap Assisted Tunneling EDMR

• A weaker EDMR response is 
detected via SDTAT through the 
MOSFET gate

• The response is also dominated by 
Pb0 and Pb1 interface dangling bonds, 
and the response increases with 
stress time

• The lack of E’ oxide trap response is 
surprising considering the 7.5nm 
thickness of the gate dielectrics

g = 2.005 
Combination of 
Pb0 and Pb1

Vg = -9V
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But… Where are the Oxide 
Defects?

• In low temperature (T = 200K) SDR 
EDMR measurements of high-field 
stressed MOSFETs, a small E’ center 
signal is seen

• We know E’ centers are present, and likely 
involved in TDDB [24]

• Given the oxide thickness of 7.5nm, we 
would expect oxide trap – oxide trap 
tunneling events to dominate

• The rate limiting tunneling event must 
be the oxide trap – interface trap step

18



Summary of Atomic Scale Processes in TDDB
• We have extended the physical 

understanding of TDDB in MOS oxides 
using new methods (EDMR/NZFMR) 

• EDMR and NZFMR results point to the 
following conclusions:

1. Interface dangling bond generation 
throughout device lifetime 

2. At least some oxide E’ trap generation 
near the interface

3. Hydrogen redistribution near the 
interface

4. An important rate-limiting trap-assisted 
tunneling step between oxide and 
interface traps

Rate-limiting hop 19
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