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Introduction

* The breakdown of SiO, gate dielectrics is preceded by the
formation of traps in the oxide [1-4], as well as at the Si/SiO,
interface [5,6]

* This trap generation causes time-dependent dielectric
breakdown (TDDB), an important reliability issue

* Oxide traps contribute to the formation of a percolation path
that greatly reduces the oxide resistance, leading to a spike
in leakage current, and results in the breakdown of the
device [7]



Introduction (cont.)

* Several physical mechanisms have been proposed for the generation
of these traps [8—11]; however, only very limited and somewhat
tentative experimental evidence about the identities of the traps
currently exists [12—15]

* Understanding the nature of these stress-induced defects is key to
understanding TDDB and stress-induced leakage currents (SILC)

* Electrically detected magnetic resonance (EDMR) and near-zero-field
magnetoresistance (NZFMR) can provide chemical and physical
information about these stress-induced traps



Background- Electron Paramagnetic Resonance

* The parent technique of EDMR is electron paramagnetic resonance (EPR)
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EDMR Experiment
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Spin-Dependent Currents

Shockley-Read-Hall Model for Recombination
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Other Experimental Details

* We report measurements of SDR and SDTAT currents on arrays of
126 Si/SiO, n-channel MOSFETs with 7.5nm gate thickness

* Devices were subjected to constant gate voltage or constant gate
current stress, with interruptions for EDMR/NZFMR measurements

* We utilize the dc |-V biasing scheme to create recombination current
at MOSFET interfaces, measuring the recombination current from
the substrate [18]

* Tunneling currents through the gate dielectric were used to create
SDTAT current



SDR Current and dc I-V Biasing

v ot 5 x107 _
T =V, < Vy —— ~—~ =~ |—— pre-stress
| | g pre stresf Vi = -0.33V e After Vg =8V
|| V. V.=V After Vg— c 2 |=— g
| I s:¥d= VF < 29| ™ gvfor 30 min S for 30min
0 = - s
& 2 S 1]
= o
O15 20 —
Q =
o E 1l
g <
i
3
= -2 |
? 05 -
I
D L i L L X | _3 ! i i i i |
@ I 2 15 41 05 0 0.5 332 334 336 338 340 342
Gate Voltage (V) Field (mT)
dc-IV biasing creates SRH dc-1V peak in substrate current is EDMR is conducted with the
recombination at the used to calculate interface trap device biased at the peak in dc-
MOSFET interface density [18]. Very few traps are IV current. The field is swept
observed pre-stress. A large and the resonance response is
increase occurs after stressing observed after stressing .



Interface Defect Density, SDR, and TDDB

* SDR current tracks well
with interface trap
density as a function of
stress time

* This remains true for a
wide variety of gate
stressing conditions

* Traps build up quickly
near the start of stress,
then more slowly as the
stress continues
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SDR EDMR Interface Trap Identification
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SDR EDMR after High-Field
Stress at Low Temperature

* In low temperature (T = 200K) SDR EDMR
measurements of high-field stressed
MOSFETSs, spectra are still dominated by P,
and P, defects

* Small, additional response appears at higher
field, almost certainly due to near-interface
E’ centers. The E’ center is a silicon dangling
bond in the SiO,, often described as a hole
trapped at an oxygen vacancy [21]

* Low temperature measurements increase
sensitivity to E’ centers
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Near-Zero-Field Magnetoresistance (NZFMR)

* Similar measurement to EDMR, but does not require microwave
photons [22]

* Spin-dependent change in current is observed when sweeping
through zero applied field

* Same spin pairs involved in SDR or SDTAT

* Mixing of singlet/triplet states occurs due to local hyperfine fields
[23]

* NZFMR response is dependent on hyperfine coupling at the defect,
and recombination/tunneling rates [23]



NZFMR (cont.)
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NZFMR (cont.)
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SDR NZFMR and Device Lifetime

* Here, the integrated (and normalized)
NZFMR spectra are compared at N
different points in device lifetime

* Subtle, but repeatable lineshape
differences are seen between the
NZFMR spectra

* These changes are due to changes in
the local hyperfine environment of the

defects

* The only mobile magnetic nuclei in the
system is hydrogen, indicating that H is | | | | | |
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SDTAT Setup

* SDTAT EDMR measurements were
made with on gate leakage current
after various lengths of gate stress

* No pre-stress SDTAT response is
visible
* These leakage currents are very

small (1x101° A), which affects
EDMR sensitivity
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Spin-Dependent Trap Assisted Tunneling EDMR
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But... Where are the Oxide
Defects?

* In low temperature (T = 200K) SDR
EDMR measurements of high-field
stressed MOSFETSs, a small E’ center
signal is seen

* We know E’ centers are present, and likely
involved in TDDB [24]

e Given the oxide thickness of 7.5nm, we
would expect oxide trap — oxide trap
tunneling events to dominate

* The rate limiting tunneling event must
be the oxide trap — interface trap step
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1.

Summary of Atomic Scale Processes in TDDB

We have extended the physical
understanding of TDDB in MOS oxides
using new methods (EDMR/NZFMR)

EDMR and NZFMR results point to the
following conclusions:

Interface dangling bond generation
throughout device lifetime

At least some oxide E’ trap generation
near the interface

Hydrogen redistribution near the
interface

An important rate-limiting trap-assisted
tunneling step between oxide and
interface traps
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