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Abstract

The U.S. Department of Energy has identified exascale-class wind farm simulation as critical
to wind energy scientific discovery. A primary objective of the ExaWind project is to build
high-performance, predictive computational fluid dynamics (CFD) tools that satisfy these
modeling needs. GPU accelerators will serve as the computational thoroughbreds of next-
generation, exascale-class supercomputers. Here, we report on our efforts in preparing the
ExaWind unstructured mesh solver, Nalu-Wind, for exascale-class machines. For computing
at this scale, a simple port of the incompressible-flow algorithms to GPUs is insufficient. To
achieve high performance, one needs novel algorithms that are application aware, memory
efficient, and optimized for the latest-generation GPU devices. The result of our efforts are
unstructured-mesh simulations of wind turbines that can effectively leverage thousands of
GPUs. In particular, we demonstrate a first-of-its-kind, incompressible-flow simulation using
Algebraic Multigrid solvers that strong scales to more than 4000 GPUs on the Summit
supercomputer.
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Talk OQutline

* Motivation

Modelling strategy

Linear solver innovations for GPUs
e Assembly
* AMG setup

* Fast smoothers

Computational results
 Single-turbine, low-resolution performance
 Single-turbine, high-resolution performance
* Role of processor, compiler, and MPI-implementation on performance

Emerging systems

Looking forward



Motivation

* Exawind project goal is to build high-performance,
simulation software capability of modeling entire wind
farms.

e Algorithms must be able to resolve
* micron-scale boundary layers around turbine blades

* kilometer-scale atmospheric boundary layers in which
the turbines operate

* Software must handle blade-deformation and turbine
motion in a complex environment including offshore.

» Software must be high-performance for scientific
exploration & engineering optimization.

* Nalu-Wind : unstructured blade-resolved solver (todays
topic)

*  AMR-Wind : structured background-solver
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Modeling Strategy

* Decoupled overset mesh methodology used to model
flow past turbine structure

* A Nalu-Wind mesh is a composition of multiple
independent meshes that move with respect to one
another.

* Mesh motion (i.e. blade rotation around the rotor)
requires continuous connectivity updates.

* Primary benefits

* Simple mesh creation process for wind farm
simulations

* Remove the need to reinitialize matrices at each
time step

* Enables a path to exascale AMR-Wind/Nalu-Wind
coupling for many turbines
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Nalu-Wind Software Stack

e STK (Sierra Toolkit) : handles the mesh data structures
 TIOGA : handles overset mesh capabilities
» Kokkos : Portable, parallel execution constructs
* Linear System Solvers :
* Hypre : Boomer AMG, CUDA/HIP backends
e Trilinos : Muelu, Tpetra, Kokkos
e Zoltan2 : Domain decomposition with ParMETIS, Scotch, RCB algorithms
* NetCDF/HDF5 : 10
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Nalu-Wind Assembly

* Decoupled overset enables computation
of the exact sparsity pattern for the
global matrix for the entire simulation

e Each rank has an owned part, i.e.
contributions to the matrix rows/rhs
values on this rank

* Each rank might have a shared part, i.e.
contributions to the matrix/rhs values
on other ranks

e matrix/rhs contributions from mesh
elements of same type (i.e. tetrahedron)
are computed via atomics in a single e Owned on rank 2
Kokkos kernel

® Ownedonrank 1

e Owned on rank 1, Shared on rank 2
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Hypre Assembly

Hypre Assembly API receives coordinate

(coordinate) matrix with buffers of size
MMNZocai = MZoywned T MAX(MNZgpared M Zrecy)

Before assembly (MPIl Messaging), data are
stacked with owned part followed by shared

After MPI Messaging, shared elements are
overwritten by the values received from
other ranks

thrust::stable_sort by key and
thrust::reduce by key are used to complete
the global matrix assembly

St. Louis, MO

row and column indices
* Topline:rank 1
¢ Bottom line: rank 2

Matrix values memory schematic. Similar data structures for

* Dotted line: space is allocated but not used

I

3

Possibly modified entries

New column entries on rank
1 from thrust operations
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lJ interface on GPUs: the same interface as on CPUs

. . HYPRE IJMatrix A;
column indices int nrows = 3, ncols[3] = {5, 4, 3}, rows[3] = {4, 5, 6};
0o 1 2 3 4 5 6 7 8 int cols[12] = {1,3,4,5,7, 2,4,5,8, 3,6,7};
4 -1 -1 4 -1 —1 double values[12] = {-1,-1,4,-1,-1, -1,-1,4,-1, -1,4,-1};
rows 35 -1 -1 4 -1 /* set matrix coefficients several rows at a time */
6 -1 4 -1 HYPRE IJMatrixSetValues (A, nrows, ncols, rows, cols,
values) ;
= Can use the same “CSR”-format input with all GPU pointers
. L. “ ” . Time of assembling 7pt 800 x 200 x 200 Laplacian on 4 GPUs
= Alternatively, a more efficient “COO”-format input N ‘ .
= Assembly uses thrust: sort by key, reduce by key
= Set/AddTo matrix coefficients in big chunks for efficiency! | |
it Trows = 12, Ticols = NULL; 5
int rows[12] = {4,4,4,4,4, 5,5,5,5, 6,6,6}; /* on GPU */ sl |
int cols[12] = {1,3,4,5,7, 2,4,5,8, 3,6,7};
double values[l12] = {-1,-1,4,-1,-1, -1,-1,4,-1, -1,4,- oL |
1};
/* set matrix coefficients several rows at a time */ 1 50 100 1000 10000
HYPRE IJMatrixSetValues (A,nrows,ncols,rows,cols, #Nchunks

| values) ;

—e— CPU-OMP(10) —=— GPU-CSR —e— GPU-COO
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BoomerAMG setup on GPUs

Coarsening algorithm: PMIS
* massively parallel algorithm to find maximal independent set
* uses cuRAND to generate random numbers on GPUs

* Aggressive coarsening to reduce the grid and operator complexity
* corresponding two-stage interpolation

Interpolation algorithms: direct interpolation and matrix-matrix based extended interp.

* Bootstrap AMG (BAMG) direct interpolation by
solving a local optimization problem |/ HYPRE MM, O1d cusPARSE AP (Cuda 10)
CUSPARSE MM, New cuSPARSE API (Cuda 11)

* Distance-2 interp. in the form of mat-mat for better portability P+ CUSPARSE MM, Old cuPARSE AP (Cuca 10)

- [(DFF + Dy)_l(AIS:F + Dﬁ)] [DgtAfc]

* More variants M-M ext+i/ ext+e
Galerkin product RAP: use hypre’s Sp GEMM kernel
* Better performance than cuSPARSE T peimenthumber

—&— HYPRE MM, New cuSPARSE API (Cuda 11)

PCG Setup Time (s)
N w S v o ~
s |

[ ]
.
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Boomer AMG Smoothers optimized for GPUs

* GMRES Krylov solver for momentum and pressure continuity
* Neumann Gauss-Seidel preconditioner and AMG smoother for pressure
* Based on theiterationforAx =b, A=D+L+ U, rn, =b — Ax;

n
Xp+1 = X + Z(—DL)k D™'n
k=0

Exploits sparse matrix-vector products (SpMV)
SpMV are 25 to 50 times faster than direct triangular solver Lx = b on GPU

Iterate fork = 1,2
New smoother option in Hypre-BoomerAMG from LLNL
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Computational Studies

e Results for 2 Turbines
* Low-Resolution, Single-Turbine: 23 million mesh nodes
* High-Resolution, Single-Turbine: 635 million mesh nodes
* Simulation parameters
* 50 times steps
* 4 Picard iterations per time step. Each picard iteration has
* 1 pressure-Poisson solve, 3 momentum solves (decoupled), 2 scalar transport solves (TKE
and SDR)
e Solver residual tolerances set to 1.e-5
* All systems solved with Hypre

* Key Measurements
* Per equation performance : average time spent solving each equation system
e pressure-Poisson : Boomer AMG with 2 stage GS preconditioner
* momentum and scalar transport : 2 stage GS preconditioner
* Application-level performance : average time per time step
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Pressure-Poisson/Hypre Boomer AMG

CPU Pressure-Poisson : Low-Resolution

GPU Pressure-Poisson : Low-Resolution

30 30
I Hypre Precon Setup BN Hypre Precon Setup
@ Hypre GMRES Solve I Hypre GMRES Solve
BN Nalu-Wind Assemble BN Nalu-Wind Assemble
251 B Hypre Assemble 251 B Hypre Assemble
. == Nalu-Wind Other . mmm Nalu-Wind Other
G 5
[= [=
o o
@ 20 - 3 201
i o
o o
L L
wv (%]
% [
£ £
5 154 5 154
@ @
o o
[ [0
: “ “ “ [] :
=) =
210 210
o o
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Summit: Number of Power9N100 Nodes

GPU implementation of Boomer AMG is substantially faster when there is
substantial work per device!

Summit: Number of Power9/V100 Nodes
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Momentum

% CPU Momentum : Low-Resolution % GPU Momentum : Low-Resolution

I Hypre Precon Setup BN Hypre Precon Setup
@ Hypre GMRES Solve I Hypre GMRES Solve
BN Nalu-Wind Assemble BN Nalu-Wind Assemble
B Hypre Assemble I Hypre Assemble
== Nalu-Wind Other mmm Nalu-Wind Other

N
(8]
N
w

N
o

Average time per timestep (seconds)
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Average time per timestep (seconds)
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Summit: Number of Power9/V100 Nodes Summit: Number of Power9/V100 Nodes

GPU accelerated Krylov solves with simple, but effectlve preconditioners are
competitive with CPU implementations down to O(10°) unknowns per device.
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Low- vs High-Resolution Strong Scaling
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w
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ORNL Summit : Low-Resolution ORNL Summit : High-Resolution
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Application performance is good compared to CPUs when there is substantial work per device
though the scaling is degraded.
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System Dependence

° NREL Eag|e node configu ration NREL Eagle vs ORNL Summit : Low-Resolution
\ ¢ stem 1 (slope=-0.
» 36 cores/Intel(R) Xeon(R) Gold 6150 CPU @ $ 3 ot iisiemiisloiezﬁééi
27OGHZ 151 -- Perfect Scaling
- GCC8.4.0 N

e 2 NVIDIA V100 PCIE per node
* MPI:HPE MPT
*  ORNL Summit node configuration
e 42 cores/POWER9 @ 3.8 GHz
« GCC7.4.0
* 6 NVIDIA V100 SXM2
* Spectrum MPI 10.3
e All GPU resources per node utilized 5
* Eagle is 15% faster with half the number of GPUS./ ! .
Most of the gain is achieved in pressure-Poisson 12 B 21 % 3% @ gig'gssfz 9% 120 144
preconditioner setup and solve

-
=
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Average time per time step (seconds)
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Emerging Architectures, Krylov Solve performance
Summit vs Spock

Continuity Solve Time

Execution Time (seconds)
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AMD M100 GPUs show substantial gains in performance over V100s.
This bodes well for the Exawind software stack on Frontier!
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Looking Forward

In order to simulate entire Wind
Farms, Exawind team is adopting a
hybrid solver technique

* Nalu-Wind around turbines

e AMR-Wind everywhere else

* TIOGA couples ALL the meshes

Initial GPU version of the hybrid-
solver nearly working
* Loose coupling via TIOGA allows us

to easily partition ALL compute
resources (CPU/GPU)

St. Louis, MO
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