aperidescribes| obiective technical results andlanalysis.JAnylsubijectivelviewsjorjopinionsjthat]
thth flithejU.S JDepartmentoflEnergyforfthejUnited|

.............

Preparing an Incompressible-Flow Fluid
Dynamics Code for Exascale-Class Wind
Energy Simulations

Paul Mullowney (NREL), Ruipeng Li (LLNL), Stephen Thomas

(NREL), Shreyas Ananthan (NREL), Ashesh Sharma (NREL), Jon S.
Rood (NREL), Alan B. Williams (SNL), Michael A. Sprague (NREL)

SandialNationalfLaboratoriesfislalmultimissionflaboratoryimanagediand|
subsidiaryjof[Honeywelljinternationalfinc. fforjthe]U.S IDepartment

loperatedibyiNationall Technologyl&lEngineeringlSolutionslofiSandia ILLC fal
oflEnergy'sfNationallNuclearSecurityJAdministrationfunderlcontractDE-NA0003525 |

ﬂﬂ SAND2021-12703C]
States]Government,

= SC21

St L.OUIS science
MO 8begond

>;: &21 St. Louis, MO | science & beyofd.

Abstract

The U.S. Department of Energy has identified exascale-class wind farm simulation as critical
to wind energy scientific discovery. A primary objective of the ExaWind project is to build
high-performance, predictive computational fluid dynamics (CFD) tools that satisfy these
modeling needs. GPU accelerators will serve as the computational thoroughbreds of next-
generation, exascale-class supercomputers. Here, we report on our efforts in preparing the
ExaWind unstructured mesh solver, Nalu-Wind, for exascale-class machines. For computing
at this scale, a simple port of the incompressible-flow algorithms to GPUs is insufficient. To
achieve high performance, one needs novel algorithms that are application aware, memory
efficient, and optimized for the latest-generation GPU devices. The result of our efforts are
unstructured-mesh simulations of wind turbines that can effectively leverage thousands of
GPUs. In particular, we demonstrate a first-of-its-kind, incompressible-flow simulation using
Algebraic Multigrid solvers that strong scales to more than 4000 GPUs on the Summit
supercomputer.

\{" &21 St. Louis, MO

Talk OQutline

* Motivation

Modelling strategy

Linear solver innovations for GPUs
e Assembly
* AMG setup

* Fast smoothers

Computational results
 Single-turbine, low-resolution performance
 Single-turbine, high-resolution performance
* Role of processor, compiler, and MPI-implementation on performance

Emerging systems

Looking forward

Motivation

* Exawind project goal is to build high-performance,
simulation software capability of modeling entire wind
farms.

e Algorithms must be able to resolve
* micron-scale boundary layers around turbine blades

* kilometer-scale atmospheric boundary layers in which
the turbines operate

* Software must handle blade-deformation and turbine
motion in a complex environment including offshore.

» Software must be high-performance for scientific
exploration & engineering optimization.

* Nalu-Wind : unstructured blade-resolved solver (todays
topic)

* AMR-Wind : structured background-solver

\{" &21 St. Louis, MO

Modeling Strategy

* Decoupled overset mesh methodology used to model
flow past turbine structure

* A Nalu-Wind mesh is a composition of multiple
independent meshes that move with respect to one
another.

* Mesh motion (i.e. blade rotation around the rotor)
requires continuous connectivity updates.

* Primary benefits

* Simple mesh creation process for wind farm
simulations

* Remove the need to reinitialize matrices at each
time step

* Enables a path to exascale AMR-Wind/Nalu-Wind
coupling for many turbines

\{" &21 St. Louis, MO

Nalu-Wind Software Stack

e STK (Sierra Toolkit) : handles the mesh data structures
 TIOGA : handles overset mesh capabilities
» Kokkos : Portable, parallel execution constructs
* Linear System Solvers :
* Hypre : Boomer AMG, CUDA/HIP backends
e Trilinos : Muelu, Tpetra, Kokkos
e Zoltan2 : Domain decomposition with ParMETIS, Scotch, RCB algorithms
* NetCDF/HDF5 : 10

\{" &21 St. Louis, MO

Nalu-Wind Assembly

* Decoupled overset enables computation
of the exact sparsity pattern for the
global matrix for the entire simulation

e Each rank has an owned part, i.e.
contributions to the matrix rows/rhs
values on this rank

* Each rank might have a shared part, i.e.
contributions to the matrix/rhs values
on other ranks

e matrix/rhs contributions from mesh
elements of same type (i.e. tetrahedron)
are computed via atomics in a single e Owned on rank 2
Kokkos kernel

® Ownedonrank 1

e Owned on rank 1, Shared on rank 2

)= SC21

Hypre Assembly

Hypre Assembly API receives coordinate

(coordinate) matrix with buffers of size
MMNZocai = MZoywned T MAX(MNZgpared M Zrecy)

Before assembly (MPIl Messaging), data are
stacked with owned part followed by shared

After MPI Messaging, shared elements are
overwritten by the values received from
other ranks

thrust::stable_sort by key and
thrust::reduce by key are used to complete
the global matrix assembly

St. Louis, MO

row and column indices
* Topline:rank 1
¢ Bottom line: rank 2

Matrix values memory schematic. Similar data structures for

* Dotted line: space is allocated but not used

I

3

Possibly modified entries

New column entries on rank
1 from thrust operations

St. Louis, MO

lJ interface on GPUs: the same interface as on CPUs

. . HYPRE IJMatrix A;
column indices int nrows = 3, ncols[3] = {5, 4, 3}, rows[3] = {4, 5, 6};
0o 1 2 3 4 5 6 7 8 int cols[12] = {1,3,4,5,7, 2,4,5,8, 3,6,7};
4 -1 -1 4 -1 —1 double values[12] = {-1,-1,4,-1,-1, -1,-1,4,-1, -1,4,-1};
rows 35 -1 -1 4 -1 /* set matrix coefficients several rows at a time */
6 -1 4 -1 HYPRE IJMatrixSetValues (A, nrows, ncols, rows, cols,
values) ;
= Can use the same “CSR”-format input with all GPU pointers
. L. “ ” . Time of assembling 7pt 800 x 200 x 200 Laplacian on 4 GPUs
= Alternatively, a more efficient “COO”-format input N ‘ .
= Assembly uses thrust: sort by key, reduce by key
= Set/AddTo matrix coefficients in big chunks for efficiency! | |
it Trows = 12, Ticols = NULL; 5
int rows[12] = {4,4,4,4,4, 5,5,5,5, 6,6,6}; /* on GPU */ sl |
int cols[12] = {1,3,4,5,7, 2,4,5,8, 3,6,7};
double values[l12] = {-1,-1,4,-1,-1, -1,-1,4,-1, -1,4,- oL |
1};
/* set matrix coefficients several rows at a time */ 1 50 100 1000 10000
HYPRE IJMatrixSetValues (A,nrows,ncols,rows,cols, #Nchunks

| values) ;

—e— CPU-OMP(10) —=— GPU-CSR —e— GPU-COO

\{" &21 St. Louis, MO

BoomerAMG setup on GPUs

Coarsening algorithm: PMIS
* massively parallel algorithm to find maximal independent set
* uses cuRAND to generate random numbers on GPUs

* Aggressive coarsening to reduce the grid and operator complexity
* corresponding two-stage interpolation

Interpolation algorithms: direct interpolation and matrix-matrix based extended interp.

* Bootstrap AMG (BAMG) direct interpolation by
solving a local optimization problem |/ HYPRE MM, O1d cusPARSE AP (Cuda 10)
CUSPARSE MM, New cuSPARSE API (Cuda 11)

* Distance-2 interp. in the form of mat-mat for better portability P+ CUSPARSE MM, Old cuPARSE AP (Cuca 10)

- [(DFF + Dy)_l(AIS:F + Dﬁ)] [DgtAfc]

* More variants M-M ext+i/ ext+e
Galerkin product RAP: use hypre’s Sp GEMM kernel
* Better performance than cuSPARSE T peimenthumber

—&— HYPRE MM, New cuSPARSE API (Cuda 11)

PCG Setup Time (s)
N w S v o ~
s |

[]
.

\{" &21 St. Louis, MO

Boomer AMG Smoothers optimized for GPUs

* GMRES Krylov solver for momentum and pressure continuity
* Neumann Gauss-Seidel preconditioner and AMG smoother for pressure
* Based on theiterationforAx =b, A=D+L+ U, rn, =b — Ax;

n
Xp+1 = X + Z(—DL)k D™'n
k=0

Exploits sparse matrix-vector products (SpMV)
SpMV are 25 to 50 times faster than direct triangular solver Lx = b on GPU

Iterate fork = 1,2
New smoother option in Hypre-BoomerAMG from LLNL

\{" &21 St. Louis, MO

Computational Studies

e Results for 2 Turbines
* Low-Resolution, Single-Turbine: 23 million mesh nodes
* High-Resolution, Single-Turbine: 635 million mesh nodes
* Simulation parameters
* 50 times steps
* 4 Picard iterations per time step. Each picard iteration has
* 1 pressure-Poisson solve, 3 momentum solves (decoupled), 2 scalar transport solves (TKE
and SDR)
e Solver residual tolerances set to 1.e-5
* All systems solved with Hypre

* Key Measurements
* Per equation performance : average time spent solving each equation system
e pressure-Poisson : Boomer AMG with 2 stage GS preconditioner
* momentum and scalar transport : 2 stage GS preconditioner
* Application-level performance : average time per time step

St. Louis, MO

Pressure-Poisson/Hypre Boomer AMG

CPU Pressure-Poisson : Low-Resolution

GPU Pressure-Poisson : Low-Resolution

30 30
I Hypre Precon Setup BN Hypre Precon Setup
@ Hypre GMRES Solve I Hypre GMRES Solve
BN Nalu-Wind Assemble BN Nalu-Wind Assemble
251 B Hypre Assemble 251 B Hypre Assemble
. == Nalu-Wind Other . mmm Nalu-Wind Other
G 5
[= [=
o o
@ 20 - 3 201
i o
o o
L L
wv (%]
% [
£ £
5 154 5 154
@ @
o o
[[0
: “ “ “ [] :
=) =
210 210
o o
g 2
) Hy U
i [[AN | | [T TNl
Ommn“mnll L 0- “ L
2345678 9101112 20 24 2345678 9101112 20 24

Summit: Number of Power9N100 Nodes

GPU implementation of Boomer AMG is substantially faster when there is
substantial work per device!

Summit: Number of Power9/V100 Nodes

\{" &21 St. Louis, MO

Momentum

% CPU Momentum : Low-Resolution % GPU Momentum : Low-Resolution

I Hypre Precon Setup BN Hypre Precon Setup
@ Hypre GMRES Solve I Hypre GMRES Solve
BN Nalu-Wind Assemble BN Nalu-Wind Assemble
B Hypre Assemble I Hypre Assemble
== Nalu-Wind Other mmm Nalu-Wind Other

N
(8]
N
w

N
o

Average time per timestep (seconds)
G

Average time per timestep (seconds)
= (]
w o

=
w o
I
. L)
.
L
[
A |
L]
-

=
o

0 B B o II II lll“l,l“lllllllll Bl B =
23456789101112 16 20 24 234567 89101112 16 20 24
Summit: Number of Power9/V100 Nodes Summit: Number of Power9/V100 Nodes

GPU accelerated Krylov solves with simple, but effectlve preconditioners are
competitive with CPU implementations down to O(10°) unknowns per device.

St. Louis, MO

Low- vs High-Resolution Strong Scaling

N
w
=

ORNL Summit : Low-Resolution ORNL Summit : High-Resolution
60 1
55 1% T # GPU System 1 (slope=-0.47) 70 $ GPU System 1 (slope=-0.40)
501 ® GPU baseline gg i ¥ CPU (slope=-0.79)
451 £ % CPU (slope=-0.98) 55 | By ---- Perfect Scaling
40 “?Ir ---- Perfect Scaling Y
a5k o 50 “
30 “\ \\ -‘3 1 \\ \%\

k, S401 TN
25 @
20 ; i E 50 %
3 : N

15— e

101 & ‘?‘\i

Average time per time step (seconds)

—o
I
i
et
A —
—_
I
Average time per time step (s
N
o
7
/
/
/
i
/
—
i
v
bt —
S s
F—e——
o

=
w

\
. \
\
A \\
\ <
. x
N
N
. s N
. \ \
~ N, ™ ~,
~ , N N,
N,
< 5 R
~IN N ~ ~ ~,
e, ~, N, Y N
‘-‘ A = ~,
3 ~, X, = A
~ & \. ;S .
NE N e 8
~ ~ >, S oy
-~ % . N
<, ~ s \, ”,
N, Na N ¥ S
S (I . 2o
S \, .,
N

~ o ~
~Ta ~ s
{9 ~2, ~
~ N *g AN -~
51 % 3 N . ~
< . ~ -
] N
S 10 N [
X \\ \\

2 3 4 5 6 7 8 9101112 16 20 24 60 90 120 150 180210240 300 360 480 600 720
Summit: Number of Power9/V100 Nodes Summit: Number of Power9/V100 Nodes

Application performance is good compared to CPUs when there is substantial work per device
though the scaling is degraded.

\{" &21 St. Louis, MO

System Dependence

° NREL Eag|e node configu ration NREL Eagle vs ORNL Summit : Low-Resolution
\ ¢ stem 1 (slope=-0.
» 36 cores/Intel(R) Xeon(R) Gold 6150 CPU @ $ 3 ot iisiemiisloiezﬁééi
27OGHZ 151 -- Perfect Scaling
- GCC8.4.0 N

e 2 NVIDIA V100 PCIE per node
* MPI:HPE MPT
* ORNL Summit node configuration
e 42 cores/POWER9 @ 3.8 GHz
« GCC7.4.0
* 6 NVIDIA V100 SXM2
* Spectrum MPI 10.3
e All GPU resources per node utilized 5
* Eagle is 15% faster with half the number of GPUS./ ! .
Most of the gain is achieved in pressure-Poisson 12 B 21 % 3% @ gig'gssfz 9% 120 144
preconditioner setup and solve

-
=
.

o

~
s

Average time per time step (seconds)

St. Louis, MO

Emerging Architectures, Krylov Solve performance
Summit vs Spock

Continuity Solve Time

Execution Time (seconds)

0.77 1

0.68 -

0.59 1

0.50

0.40

o
W
o

©
)
N

0.13

Momentum Solve Time

@® Hypre: Cuda 11.3.1, Spectrum MPI| 10.4 (slope=-0.57)
hd @® Hypre : ROCM 4.3, MPICH (slope=-0.57)
\,
N
\\
.
S 2N
S
N\,
oy
\,
N
3 1,
3. %
o AN
AN
N,
N i
\
N
o $
' 2
12 1/4 2/8 4/16 8/32 16/64 32/128

Summit/Spock: Number of Nodes/GPUs

@ Hypre: Cuda 11.3.1, Spectrum MPI 10.4 (slope=-0.45)

1831 e @ Hypre: ROCM 4.3, MPICH (slope=-0.35)

1.641 N

1.454

\\

. 1.26{
) \,
T N
g P
o b
§1071 o
[
£
= \,
E 0.88 1 \\
‘é §\\ [y
[} N,
<
w

0.69 1 !

L} *
i L]
s " [] .
0501 L
172 1/4 2/8 4/16 8/32 16/64 32/128

Summit/Spock: Number of Nodes/GPUs

AMD M100 GPUs show substantial gains in performance over V100s.
This bodes well for the Exawind software stack on Frontier!

)= SC21

Looking Forward

In order to simulate entire Wind
Farms, Exawind team is adopting a
hybrid solver technique

* Nalu-Wind around turbines

e AMR-Wind everywhere else

* TIOGA couples ALL the meshes

Initial GPU version of the hybrid-
solver nearly working
* Loose coupling via TIOGA allows us

to easily partition ALL compute
resources (CPU/GPU)

St. Louis, MO

){\ &21 St. Louis, MO | science & beyofid.

Acknowledgements

The National Renewable Energy Laboratory (NREL) is operated by Alliance for Sustainable Energy,
LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08G028308. Lawrence
Livermore National Laboratory operates under DOE Contract DE-AC52-07NA27344 (LLNL-PROC-
821116). Sandia National Laboratories is a multi-mission laboratory managed and operated by
National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International Inc., for the DOE’s National Nuclear Security Administration (NNSA) under
contract DE-NA0003525. This report followed the Sandia National Laboratories formal review and
approval process (SAND2021-4327 C). As such, the technical report is suitable for unlimited release.
This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the DOE Office of Science (SC) and the NNSA, and was performed using computational
resources of the Oak Ridge Leadership Computing Facility, which is a DOE SC User Facility supported
under Contract DE-AC05-000R22725, and computational resources sponsored by the DOE's Office
of Energy Efficiency and Renewable Energy and located at NREL. The views expressed in the article
do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government
retains and the publisher, by accepting the article for publication, acknowledges that the U.S.
Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or
reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

