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EXECUTIVE ABSTRACT 

The Workbench initiative was launched in FY-2017 within the Nuclear Energy Advanced 
Modeling and Simulation (NEAMS) program to facilitate the transition from conventional tools 
to high-fidelity tools. The NEAMS Workbench provides a common user interface for model 
creation, real-time validation, execution, output processing, and visualization for integrated 
codes.  

The integration of the Argonne Reactor Computation (ARC) suite of codes into the NEAMS 
Workbench through the PyARC module was initiated in FY-2017. The ARC codes, which focus 
on fast reactor multiphysics analysis, contain both legacy codes like DIF3D and REBUS-3 that 
were developed with over 30 years of experience, and newer NEAMS additions like MC2-3, 
PERSENT, and PROTEUS. Recent work expended this integration to other tools to support the 
U.S. fast reactor community such as DASSH for sub-channel thermal-hydraulics, Griffin for 
high-fidelity deterministic transport calculations, and OpenMC for Monte Carlo simulations 
(with Shift integration planned for FY-2023).  

The integration of the “extended ARC” suite of codes into the NEAMS Workbench interface 
relies on the PyARC and PyGriffin modules to handles the pre- and post-processing of these 
codes input, and the runtime environment. The PyARC module together with the NEAMS 
Workbench interface are both released under Open Source Software licenses.  

Integrating the extended ARC codes into the Workbench directly benefits the advanced 
reactor modeling community by: 

- Providing a set of controlled, maintained, documented and validated scripts to 
generate inputs, which promotes best practices, reduces the learning curve, and 
facilitates project collaboration.  

- Improving the user experience: the Workbench interface provides assistance for 
building an input through auto-completion, real-time validation, document navigation, 
and geometry and results visualization.  

- Automatize complex calculations and workflows for reactor analysis. 

- Helping users transition to high-fidelity NEAMS codes, through Griffin integration 
within the same input logic as the legacy ARC codes. 

The report provides complete description of Workbench/PyARC and PyGriffin, while 
highlighting recent developments. In FY-2021 and FY-2022, the effort focused on integrating 
DASSH (Section 3.8), Monte Carlo (in Section 3.9 with OpenMC and planned Shift integration 
in FY-2023) and Griffin (Section 4) simulation workflows into newly released PyARC version 
2.0.0. Additional capabilities were also integrated in response to user requests, such as the 
automation of the reactivity coefficient post-processing for safety analyses codes (in Section 
3.10.2). Significant effort was continued to train and support users from ANL, University of 
Michigan, Oklo, Moltex, IDOM, and Westinghouse to apply these tools for LFR, MSR, micro-
reactor, and SFR core design analyses.  

https://code.ornl.gov/neams-workbench/PyARC/-/releases/pyarc-2.0.0
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1 Introduction 

One of the objectives of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) 
Workbench is to facilitate the deployment of the high-fidelity codes developed within the NEAMS 
program. The Workbench [1] initiative was launched in FY-2017 to facilitate the transition from 
conventional tools to high fidelity tools [2]. The Workbench provides a common user interface for 
model creation, real-time validation, execution, output processing, and visualization for 
integrated codes. The integration of the Argonne Reactor Computation (ARC) suite of codes into 
the NEAMS Workbench was initiated in FY-2017 [3][4][5][6]. 

The ARC suite of codes [7] gathers neutronics, thermal hydraulics, safety, and fuel behavior 
analysis codes. Until FY-2020, the Workbench integration of the ARC codes focused on the 
deterministic neutronic codes. It includes MC2-3 [8] for multi-group cross-section processing, 
DIF3D [9] for flux calculation, REBUS-3 [10] for depletion and equilibrium calculations, PERSENT 
[11] for perturbation theory calculations (perturbation, sensitivity and uncertainty quantification), 
GAMSOR [12] for gamma heating calculations, PROTEUS-Nodal transport solver [13], and ORIGEN-
S [14] for detailed depletion calculations. In FY-2021 and FY-2022, a wider range of fast reactor 
modeling capabilities with the sub-channel code DASSH [15], the Monte Carlo code OpenMC [16], 
and the high-fidelity deterministic code Griffin [17], were integrated in the NEAMS Workbench 
through PyARC and PyGriffin, as shown in Figure 1-1. For simplicity, the “extended ARC suite of 
codes” will be referenced and combines the legacy ARC codes together with all the reactor 
modeling codes integrated in PyARC (PROTEUS, Griffin, OpenMC, DASSH, ORIGEN-S, etc).  

 

Figure 1-1. Layout of PyARC and PyGriffin with development status of different capabilities. 
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These “extended ARC” codes are used at national laboratories, universities, and companies for 
advanced reactor analyses. They gather more than 30 years of development, went through 
extensive validation and verification, and can solve complex physics phenomena in a very efficient 
way. However, these codes require knowledge on reactor physics and experience on fast reactor 
design in order to be familiar with the extent of their capabilities, and users mostly rely on scripts, 
developed based on their experiences, to generate inputs. Integrating them into the NEAMS 
Workbench was initiated in FY-2017 through the development of the PyARC module to address 
these challenges and to improve user experience with these codes by taking advantage of the 
various benefits brought by the Workbench interface. Both the Workbench and PyARC are being 
distributed under Open Source Software licenses (PyGriffin is not yet licensed for distribution).  

The status of the ARC and NEAMS fast reactor modeling code integration in the NEAMS 
Workbench is described in this report, focusing on FY-2022 developments (highlighted in this 
report) and on description of the new released version 2.0.0 of PyARC. The code integration 
framework in the PyARC bundle of the Workbench is reminded in Chapter 2. The status of the 
capabilities integrated in PyARC are discussed in Chapter 3. The new PyGriffin tool is described in 
Chapter 4. Finally, Chapter 5 draws the conclusions and discusses future developments. 

 

https://code.ornl.gov/neams-workbench/downloads
https://code.ornl.gov/neams-workbench/PyARC
https://code.ornl.gov/neams-workbench/PyARC/-/releases/pyarc-2.0.0
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2 Framework for extended ARC Tools Integration 

Figure 2-1 illustrates how the Workbench interface connects with the extended ARC codes. This 
is a “black box” type of integration where the Workbench must rely on an opaque runtime module 
(called PyARC) that conducts the native input formatting. One of the benefits of the “black box” 
type of integration is that the user is shielded from the original input of the legacy codes. There 
are several components to the integration that are described in this section: 

• Workbench interface: It is developed at ORNL and several components of this interface 
are required for a code’s integration: 

o Common input  

o Templates 

o Visualization  

• PyARC module: this is a python module required for “black box” integration that contains 
the logic for processing the code’s inputs, generating the legacy ARC code input, running 
them, and post-processing the outputs. This module is the glue between the Workbench 
interface and the extended ARC codes. 

• PyGriffin module: similar to PyARC, this python module provides a “black box” integration 
of Griffin that contains the logic for generating the Griffin (and ultimately Shift) inputs, 
mesh and cross-section files, running them, and post-processing the outputs. 

 

 

Figure 2-1. Structure of the extended ARC codes integration in the Workbench. 

2.1 The Workbench Interface 
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codes. For instance, the user is guided by the auto-completion capability in the Workbench to 
build its core model in the “common input” structure. 

2.1.1 Common input 

The Workbench input format adopted is described as the “common input” since it is used to 
generate inputs for all the tools within the extended ARC for integrated problem-dependent 
cross-section preparation, core analysis, depletion, and sensitivity/uncertainty quantification. The 
main benefits of the “common input” strategy is to insure every native input uses consistent 
information and to facilitate project collaboration (since one PyARC or PyGriffin input contains all 
the problem definition, while each of the extended ARC inputs only contain part of the 
information).  

This “common input” for PyARC allows modeling a reactor geometry in an intuitive and flexible 
way and was developed with continuous involvement of ARC users. It uses the open source 
Workbench Analysis Sequence Processor’s (WASP) Standard Object Notation (SON) [20] format 
that enables the auto-completion, real-time input validation, and access to templates, through 
the Workbench interface. The structure of the PyARC input is shown in Figure 2-1 and a tutorial 
was developed (detailed in Section 2.4) to explain in detail the input logic to new users. The 
common input is defined in the “arc.sch” file that takes ~5000 lines of code. Detailed 
documentation of all the input options is provided (in the “PyARC_README.html” file of the 
PyARC package). The user has direct access to the input keyword definitions through the 
Workbench user-interface upon auto-completion. The input is automatically validated for 
correctness by the WASP Hierarchical Input Validation Engine (HIVE) upon edit by the user from 
within the NEAMS Workbench and upon by PyARC.   

The inputs used by PyGriffin are further discussed in section 4. 

2.1.2 Templates 

The Workbench, through its WASP subcomponent, contains the HierarchicAL Input Template 
Engine (HALITE) developed to expand hierarchical input data into code-specific input. Templates 
are used to assist users in generating the common input within the Workbench. The common 
input templates were developed in parallel to the schema and the common input. Those are 
blocks of input with default values accessible for convenience to the user. A total of 180 templates 
were generated for PyARC and 5 templates were generated for PyGriffin. Templates are also relied 
upon by the Dakota/PyARC coupling, as explained in Section 2.3.2. 

2.1.3 Visualization 

The Workbench provides different built-in types of visualization capabilities that PyARC benefits 
from. In particular, it provides visualization of user input problems through built-in input 
visualization capabilities (see Figure 2-1). This visualization capability supports 2D/3D hexagonal 
and Cartesian geometries.  

The ParaView tool [21] is integrated into the Workbench (versions 4.0 and after) and allows direct 
visualization of the ARC post-processed outputs. The Workbench interface supports plotting 
capabilities using line plots, histograms, bar charts, etc. Two types of line plots were implemented 

https://code.ornl.gov/neams-workbench/wasp
https://code.ornl.gov/neams-workbench/wasp/tree/master/waspson/README.md
https://code.ornl.gov/neams-workbench/wasp/blob/master/wasphive/README.md
https://code.ornl.gov/neams-workbench/wasp/tree/master/wasphalite/README.md
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to display the multi-group cross sections processed by MC2-3 (as illustrated in Figure 2-1), and the 
region-wise flux spectrum printed by DIF3D and REBUS-3 (also shown in Figure 2-1). 

A utility script provides the user 2D plot generation of the core geometry, as shown in Figure 2-2, 
and of the assembly peak or integrated results obtained with DIF3D in standalone-DIF3D 
simulations (as illustrated in Figure 3-3) or together with GAMSOR, PERSENT, REBUS, or PROTEUS. 
Similar plots can be generated for DASSH thermal-hydraulics results leveraging directly DASSH 
native plotting capability as discussed in Section 3.8. 

 

Figure 2-2. Automatic generation of core layout. 

2.2 PyARC Module 

2.2.1 PyARC Module Introduction 

The PyARC module is the glue between the Workbench interface and the ARC codes. It is being 
released by ANL under an open-source software license and is bundled with the Workbench install 
for user convenience. For a “black box” integration, this wrapper is essential as it contains the 
logic to: 

• process information from the common input  

• perform additional verifications on the core model that the validation engine of the 
Workbench cannot perform  

• pre-process the information, calculating for instance homogenized atom densities in 
different regions 

• generate the ARC codes’ native inputs 

https://code.ornl.gov/neams-workbench/PyARC/-/tree/master
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• handle the runtime environment, which can be very complex. For instance, running MC2-
3 elementary cell calculations in parallel to calculate fine-mesh cross-sections, followed by 
TWODANT to calculate region-wise flux spectrum, then by MC2-3 for broad-mesh 
condensation of the cross-sections, then by REBUS to calculate depleted compositions, 
then by PERSENT to calculate neutronic feedback coefficients on depleted core 
compositions, etc. 

• post-process the outputs, gathering the main results of the different codes’ and creating 
a single summary file. 

The PyARC module is developed through a collaborative environment on GitLab so that new 
additions are tracked and reviewed. The PyARC module relies on the following sub-modules: 

• PyARCModel: loads the input, performs list of additional verification, performs pre-
processing on the input 

• PyARCUtils: contains utilities procedures 

• PyARCUserObject: defines variables and procedures that are used throughout the code 

• PyMCC3, PyREBUS, PyPERSENT, PyGAMSOR, PyREBORS, PyPROTEUS, PyDASSH, PyMCSim: 
contain the logic for input writing, execution, and post-processing for each code 

• PyRzmflxCode: contain the logic for input writing, execution, and post-processing for 
TWODANT 

• PyGriffinConnect: connects PyARC to PyGriffin  

• The PyARC module also relies on the PySCL module that is developed by ORNL to provide 
the standard composition library (SCL) 

• Several additional plotting or postprocessing utilities 

Tests are developed for regression testing after each code modification and prior to committing 
and pushing modifications to the protected master branch. Currently, more than 295 unit tests 
are implemented to check the common input processing, interpretation of the standard 
composition library, input generation (of MC2-3, DIF3D, REBUS-3, TWODANT, PERSENT, GAMSOR, 
PROTEUS, ORIGEN-S, DASSH, Griffin, and OpenMC), execution of the codes, and post-processing 
of the outputs. Consequently, the unit tests check the pre-processing, input writing, execution, 
and post-processing logic of PyARC. In V2.0.0, many tests checking error messages returned to 
the users were implemented. 

The PyARC software also uses continuous integration (CI) testing and deployment (CD) bundle 
infrastructure. This checks all tests at each ‘push’ to the code repository and ensures all features 
are functional on Linux and Mac operating systems, and subsequently bundles the new PyARC 
version into an easily deployable file.  

2.2.2 PyARC Workflow 

PyARC takes a “.son” input that is generated through the Workbench interface (or using any text 
editor) following the formatting defined in Section 2.1.1. Examples of inputs are provided in the 

https://code.ornl.gov/neams-workbench/PyARC
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training material described in Section 2.4. In addition to the main input, additional input files may 
be requested to provide decay chain (with REBUS native structure), fission yields of lumped fission 
products, covariance matrix for uncertainty calculations, etc. A repository of such pre-built files is 
made available. 

PyARC simulations are executed through the “run” button on the Workbench interface. 
Alternatively, the following commend can be used to execute PyARC input: 

/link/to/Workbench/rte/entry.sh  /link/to/PyARC/PyARC.py -i my_pyarc_input.son 

Every PyARC simulations will generate the following output files: 

• “.summary”: summary of the output files from each extended ARC simulations, with 
“.extended.summary” provided more detailed summary results when applicable. 

• “.timeline.out”: timeline of calculation for real-time check of the status of the calculation, 
and to save the computational time spent at every step of the workflow. 

• “.inp”: all input files generated by PyARC concatenated into one single file 

• “.out”: all output files generated from ARC runs concatenated in one single file 

• “.vtk”: region-wise results in a ParaView-readable format 

• “.zip”: gathers all input, output, isotxs, and summary files 

• “.user_info.out”: important information about the model, including errors, warnings, 
description of the automatically computed 1D and RZ geometries (see Section 3.1) and of 
the volume fractions. In particular, the list of isotopes and region IDs are detailed to 
facilitate advanced ARC users understanding the PyARC-generated native code inputs. 

Additional output files may be generated when running different codes, as discussed in Section 3. 

 

2.3 PyARC Applications in Complex Workflows 

PyARC streamlines complex ARC workflows (exchange of files and data within MC2-3, DIF3D, etc.), 
but it also can be used within complex workflows for reactor design, optimization, and uncertainty 
analyses. This can be done through scripting (running PyARC instances within a python script) or 
coupling with optimization or sensitivity analyses codes such as DAKOTA, as discussed in this 
section. 

2.3.1 PyARC Coupling with WATTS [23] 

New in V2.0.0  

The WATTS (Workflow and Template Toolkit for Simulation) is an open-source workflow 
management tool developed at Argonne (under LDRD funding). This framework is meant at 
streamlining interaction within the various integrated reactor design and economics modeling 
tools. A plugin to PyARC was developed which provides its users knowledgeable with Python to 
perform a wide range of analyses as demonstrated with several tutorial examples. WATTS can be 
especially useful to define complex workflows (involving various PyARC steps for instance, or 

https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/AdditionalFiles
https://github.com/watts-dev/watts
https://github.com/watts-dev/watts/tree/development/examples


 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench 
September 30, 2022 

 

ANL/NEAMS-20/2 Rev. 1 8  
 

involving tools outside of PyARC), and performing sensitivity/optimization analyses on such 
workflow. 

2.3.2 PyARC Coupling with Dakota within Workbench (could be applied straightforwardly also 
to PyGriffin) 

The Workbench provides a common user interface for model creation allowing for its integrated 
codes to communicate and work together with limited coupling development. The feasibility and 
benefits of using the Workbench as a coupling mechanism between the Dakota [24] code and 
PyARC was demonstrated in [25],[26],[27], and [28]. The Dakota software maintained by Sandia 
National Laboratory is a sensitivity analysis/uncertainty quantification (SA/UQ) and optimization 
toolkit with over 20 years of supporting development. Dakota provides advanced mathematical 
methods to vary one code’s input parameters and analyze the output results for optimization and 
uncertainty quantification analyses.  

2.3.2.1 Workflow Implemented 

The workflow in Figure 2-3 was developed to allow Dakota to drive the PyARC calculations within 
the Workbench interface. For SA/UQ or optimization analyses, the PyARC input is perturbed by a 
sequence of random values from Dakota. After the ARC runs are performed with different 
sampled input values, Dakota evaluates the user-specified responses of interest. For SA/UQ types 
of analyses, Dakota performs statistical analysis on response functions. For optimization 
problems, it selects best performing solutions and generate new samples.  

 

Figure 2-3. Schematic of the Dakota/PyARC coupling. 

Three files are required in this workflow: 

- Dakota input: Input built by the analyst with the aid of the Workbench that describes the 
sensitivity, uncertainty or optimization problem options. 

- PyARC “common input”: This is the PyARC input built by the analyst with the aid of the 
Workbench, but saved in a template format where some input values are replaced with 
variables defined in the Dakota input. 
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- PyARC.driver: Input built by the analyst with the aid of the Workbench that connects the 
Dakota input to the PyARC application. It contains the logic to extract (with customizable 
grep commands or links to post-processing scripts) different results from the ARC output 
summary file. 

The main PyARC results of interest (core lifetime, inventory, fissile enrichment, peak power, peak 
fast flux, etc.) are returned in the “.summary” output file so that the user does not need to develop 
his own postprocessor logic to extract such results to return to Dakota. An example of 
Dakota/PyARC coupling is detailed in Sample #11.  

2.3.2.2 Benefits of the Dakota/PyARC Coupling 

The Dakota/ARC coupling would be a significant effort to set up outside of the Workbench since 
the individual ARC codes use different input logic. This would require developing a script that 
propagates the input parameters sampled throughout the different codes, which is effectively 
done with the PyARC module. This coupling enables new capabilities for ARC users since Dakota 
can be used for driving sensitivity analysis and uncertainty quantification (SA/UQ) calculations 
[25], [26], and core design optimization with the ARC codes [27], [28].  

• Optimization problems 

Mathematical optimization methods can be used to investigate a space of input options and find 
the most promising solutions (usually a compromise between targeted performance). This is 
especially well suited for advanced reactor design work, where many core options need to be 
evaluated (size and number of fuel pins, different fuel forms, etc.) to assess their impact on core 
performance (irradiation testing capabilities, inherent safety performance, etc.). Dakota provides 
a wide range of advanced optimization methods that can be used to effectively investigate the 
design space and find the best performing core concepts.  

• SA/UQ problems 

Dakota extends the SA/UQ capability currently available in the ARC codes (with PERSENT) to 
propagate the uncertainty on any type of input parameter, and to observe its impact on any 
output result. In fact, there are different benefits/challenges associated with solving SA/UQ 
problems through adjoint-based perturbation theory (available with PERSENT [11]) and through 
stochastic sampling (with Dakota [24]) making both approaches complimentary to each other. The 
adjoint-based method is usually cheaper in terms of computational resources, is well suited to 
treat a large number of uncertain parameters such as uncertainties on multi-group cross-sections, 
and can provide detailed information such as the impact of cross-section values in any energy 
group, in any core location, on different core parameters. It is usually applied to see the 
uncertainty impact on the eigenvalue, on reactivity effects and on reaction rates. The stochastic 
sampling method provides a more general approach that can be applicable to any uncertainty 
problem considered (including those with changes in core geometry), to analyze the impact 
uncertain parameters may have on any output of the problem. However, it may require many 
simulations to reach targeted levels of confidence. An analysis using Dakota to drive PyARC 
simulations for SA/UQ problems is proposed in Appendix C of [5]. 

https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/Sample_11_Dakota_Sens_Opt
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2.4 Training Material 

Training material is available to assist a user getting started. It is based on the Advanced Burner 
Test Reactor (ABTR) design [29], which is a small SFR concept designed for irradiation testing. 
Discussion of ABTR modeling results and accuracy of the different PyARC solvers are discussed in 
Appendix A.  The training material consists in a list of sample problems provided within the PyARC 
released bundle, that are documented and that demonstrate and explain the most popular 
capabilities: 

• Sample #1 - MC2-3 cross-section processing with 1step approach, and modeling full-core 
with DIF3D diffusion. 

• Sample #2 - DIF3D calculation with VARIANT for full-core simulation. 

• Sample #3 - MC2-3 cross-section processing with 1D heterogeneous model and 2steps 
(TWODANT) calculation, modeling full-core with DIF3D finite diffusion. 

• Sample #4 - MC2-3 cross-section processing with homogeneous - 1step calculation, and 
core once-through fuel depletion calculation with REBUS with DIF3D finite difference 
option with third core symmetry. 

• Sample #5 - REBUS equilibrium calculation with DIF3D finite difference option with third 

core symmetry (no reprocessing). 

• Sample #6 - REBUS equilibrium calculation with DIF3D finite difference option with third 
core symmetry (with reprocessing and one iteration between MC2-3 and REBUS 
equilibrium). 

• Sample #7 - GAMSOR calculation for gamma transport calculation. 

• Sample #8 - REBUS once-through fuel depletion calculation with explicitly defined fuel 
management strategy and third core symmetry. 

• Sample #9 - PERSENT perturbation calculations to process needed reactivity coefficients. 

• Sample #10 - PERSENT sensitivity calculations to perform SA/UQ analyses on k-eff and 

reactivity coefficients. 

• Sample #11 - Dakota coupling with PyARC to run SA/UQ and Optimization problems 

• Sample #12 - PROTEUS-NODAL calculation 

• Sample #13 - PROTEUS-NODAL calculation with molten salt fuel (MSR) 

• Sample #14 - REBUS to ORIGEN-S calculation 

• Sample #16 - DASSH for sub-channel thermal-hydraulics calculations 

• Sample #17 - PyGriffin calculation for k-effective at BOL 

• Sample #18 - PyMCSim (with OpenMC) calculation for k-effective at BOL 

 

https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_1_MCC3_DIF3DFD/README.md#sample1
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_2_VARIANT/README.md#sample2
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_3_TWODANT_DIF3DFD/README.md#sample3
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_4_MCC3_REBUS1T/README.md#sample4
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_5_REBUSEQ1/README.md#sample5
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_6_REBUSEQ2/README.md#sample6
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_7_GAMSOR/README.md#sample7
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_8_REBUS1TShuffling/README.md#sample8
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_9_PERSENT_pert/README.md#sample9
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_10_PERSENT_sens/README.md#sample10
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_11_Dakota_Sens_Opt/README.md#sample11
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_12_PROTEUS_NODAL/README.md#sample12
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_13_PROTEUS_MSR/README.md#sample13
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_14_ORIGENS/README.md#sample14
https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/Sample_16_ABTR_DASSH
https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/tutorial/Sample_17_ABTR_PyGriffin
https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/tutorial/Sample_18_ABTR_MCSim_OpenMC
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Those Sample problems are available in the “PyARC/tutorial” folder that also contains the 
AdditionalFiles folder where the user has access to different decay chains, lumped fission 
products, and covariance matrices. It also contains the inputs to the SFR-UAM benchmark 
problems [30][5]. 

 

 

https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/AdditionalFiles


 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench 
September 30, 2022 

 

ANL/NEAMS-20/2 Rev. 1 12  
 

3 Capabilities Integrated in PyARC 

One of the benefits of the “black box” type of integration adopted with the PyARC module is that 
the user is shielded from the original input of the legacy codes. The associated challenge is that 
some of the options and code’s capabilities may not be made available to the user through the 
“black box”. The ARC integration focuses on the popular and important capabilities of each code 
to streamline most user’s workflows. This section summarizes the status of the extended ARC 
codes integration within the NEAMS Workbench, while highlighting the work completed in FY-
2022.  

3.1 MC2-3 [8] 

The MC2-3 code is developed within the NEAMS program for multi-group cross-section processing 
for both fast and thermal spectrum reactors. From the Workbench, one can generate cross-
sections for pre-generated or user-defined energy-group structure with different scattering 
orders. The user can merge cross-sections to define lumped fission products used in REBUS-3. 
Neutron slowing down equation can be solved over a homogenized cell or over a heterogeneous 
geometry [31] based on 1D cylindrical or slab geometries.  

For region-wise group condensation, two approaches were implemented within the Workbench. 
The first approach consists in generating neutron leakage files from the fuel regions that can be 
used as external sources in the non-fuel regions (for instance, reflector), as demonstrated in 
Sample #1. The second approach consists of using TWODANT [32] which is a Sn neutron transport 
equation solvers, for fine-group (1000 – 2000 groups) flux calculation using an equivalent 2D (RZ 
or XY) core model. The option to use PARTISN was removed due to a lack of users and difficulty 
to maintain it. This approach is demonstrated in Sample #3. In terms of output processing, the 
multi-group cross-sections generated in the ISOTXS file can be plotted automatically in the 
Workbench interface, as illustrated in Figure 3-1.  

Upon completion, PyARC returns the TWODANT and MC2-3 inputs and outputs (in the “.inp” and 
“.out” files) and the multi-group cross-section files: 

- The “.isotxs” files are binary files that can be re-used by DIF3D/REBUS/PERSENT to avoid 
re-running the initial MC2-3 calculation. 

- The “.isotxs.edit” files are text files containing all the multi-group XS results that can be 
opened directly with the Workbench to plot automatically the cross-section using the 
“ISOTXS – ISOTOPE XS” processor (as shown in Figure 3-1). 

Different “isotxs” files may be generated at different depletion steps, the following nomenclature 
logic is used: 

o “.isotxs_R_0”: Reference (un-perturbed), depletion time-step 0 (provided composition or 
beginning of equilibrium cycle); 

o “.isotxs_D_4”: “D” perturbation, depletion time-step 4. 

Additional Notes: 

• PyARC provides the option to give a lower threshold to the atom density in heterogeneous 
regions using the option “min_dens_het_calc”. This option is especially useful for 

https://code.ornl.gov/neams-https:/code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_1_MCC3_DIF3DFD/README.md#sample1C3_DIF3DFD/README.md
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_3_TWODANT_DIF3DFD/README.md#sample3
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simulating coolant void coefficient when using the heterogeneous treatment in MC2-3 
since its 1D transport solver provides convergence issues with very low-density regions. 

• MC2-3 is also applied for computing the DLAYXS, GAMISO and PMATRX required for 
PERSENT (delayed neutron fraction), PROTEUS (MSR) and GAMSOR calculations, as further 
discussed in Sections 3.4, 3.5, and 3.6. 

• Automatic generation of RZ geometry for TWODANT and 1D geometries for MC2-3 are 
available to facilitate the use of these options by reducing pre-processing time to the user 
and risks of mistakes. These methods are only available for hexagonal-z core geometries. 
Description of the methods developed and benchmark calculations is provided in 
Appendix A of [5]. Sample #3 provides an example to get started with these options. 

 

Figure 3-1. Example of multi-group XS plot automatically generated with the Workbench from 
ISOTXS edit file. 

3.2 DIF3D [9] 

The DIF3D code is a legacy ARC tool used for neutron and gamma flux calculations on various 
types of geometries, based on pre-generated multi-group cross-sections. The multi-group cross-
sections can be generated using MC2-3 calculations or a compatible set of previously calculated 
multi-group cross-sections.  

The 2D/3D-Hexagonal and 2D/3D-Cartesian types of geometries are supported through the 
Workbench. The DIF3D code includes 3 neutron solvers (Nodal, Finite Difference, and VARIANT 
[33]) that were all enabled. This is illustrated with Samples #1 (Finite Difference) and #2 
(VARIANT). Both neutron flux and gamma flux (discussed in Section 3.5) calculations are 
integrated into the Workbench.  

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_3_TWODANT_DIF3DFD/README.md#sample3
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_1_MCC3_DIF3DFD/README.md#sample1
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_2_VARIANT/README.md#sample2
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PyARC returns the full DIF3D input and output (in the “.inp” and “.out” files). Post-processing of 
DIF3D output was implemented by printing the main information of interest to a user (e.g., the 
neutron flux in different core areas, integrated flux and power per assemblies) in the summary 
file (“.summary”). When opening this “.summary” file with the Workbench, the user can use the 
“flux spectrum” processor to automatically plot the neutron flux spectrum. Direct visualization of 
the power density, neutron flux, atom densities, etc., is enabled by opening the generated “.vtk” 
file with ParaView through the Workbench, as also illustrated in Figure 3-2.  

As discussed in Section 2.1.3, new 2D visualization is available, through an external script run on 
the generated summary file, or directly through the PyARC workflow by using the input line: 
“calculations/plot_2d = true”. An example of peak power density radial distribution is provided in 
Figure 3-3. 

 

Figure 3-2. Example of visualizations available for DIF3D and REBUS-3: neutron flux spectrum 
(left) and power map (right) calculated and plotted with the Workbench. 

 

Figure 3-3. Example of 2D plot visualization of peak power density per assembly for hexagonal 
and Cartesian geometry. 
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3.3 REBUS-3 [10] 

REBUS-3 is a legacy ARC code used for fuel cycle analysis using DIF3D solvers. It allows a wide 
range of fuel cycle modeling options such as assembly shuffling, enrichment or cycle length search 
at equilibrium state. In terms of post-processing, the same capabilities developed for DIF3D are 
made available with REBUS-3 at every time-step of the depletion calculation. In particular, the 
“.rebus_X.vtk” file is generated by REBUS-3 at time X days. Some specific information are also 
printed out in the “.summary” file such as the peak burnup and fast fluence, the optimized 
enrichment (computed for equilibrium calculation), etc. 

PyARC integration of REBUS-3 allows its user specifying its own decay chain by directly providing 
an external text file containing the decay chain input from REBUS-3 (cards 09, 24, 25), which is 
being parsed in PyARC. Some examples of decay chains (and associated fission yields) are provided 
in AdditionalFiles. 

The once-through depletion capability is illustrated in Sample #4. The original option to re-
calculate the multi-group cross-sections at different time-steps of the depletion was implemented 
in the case of the once-through depletion, as illustrated in Figure 3-4. This capability can be 
especially relevant when modeling very high burnup fuel or a reactor with thermalized neutron 
flux. 

 

Figure 3-4. Multi-step depletion procedure implemented in PyARC. 

The enrichment or cycle length search options at equilibrium state were also integrated, where 
the user can define reprocessing plants, external feeds, and fuel-cycle strategies, as illustrated in 
Samples #5 and #6. The original option was implemented to iterate between the multi-group 
cross-sections computed with MC2-3 at beginning of equilibrium cycle, and the equilibrium search 
calculation performed with REBUS-3, as illustrated in Figure 3-5.  

 

Figure 3-5. Equilibrium cross-section iteration procedure implemented in PyARC. 

The explicit fuel management capability of REBUS is enabled using the “once_through_shuffling” 
option. This option allows defining different cycles and the paths for each assembly, allowing to 
discharge, move or reload assemblies. Sample #8 illustrates this capability and explains the input 
logic. 
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https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/AdditionalFiles
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_4_MCC3_REBUS1T/README.md#sample4
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_5_REBUSEQ1/README.md#sample5
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_6_REBUSEQ2/README.md#sample6
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_8_REBUS1TShuffling/README.md#sample8
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The REBUS-3 code relies on simplified decay chain tracking “only” ~200 isotopes. For higher 
fidelity depletion calculations that are typically needed for decay heat simulations, the ORIGEN-S 
code can be used, as discussed in Section 3.7. 

3.4 PERSENT [11] 

PERSENT is a perturbation theory code developed within the NEAMS program and based on the 
neutron transport equation in a 2D or 3D geometry. It allows calculating reactivity feedback 
coefficients, sensitivity coefficients [34], and nuclear data uncertainties. Perturbation and 
sensitivity calculations were implemented on eigenvalue, beta and lambda problems and can be 
automatically run at different depletion steps (computed with REBUS-3). The user can define 
which materials are perturbed with a change in density or in temperature or which surfaces are 
perturbed (only for direct DIF3D perturbations, as explained below). The cross-sections of the 
perturbed composition can be automatically re-calculated both for perturbation and for 
sensitivity calculations. The nuclear data uncertainties can be estimated on the eigenvalue, beta, 
lambda, and on the reactivity coefficients automatically by providing a covariance matrix (in a 
PERSENT-compatible file format).  

Direct DIF3D calculations are enabled as an alternative to PERSENT perturbation theory 
calculations. This can be especially useful for double checking the perturbation theory result and 
for modeling geometric perturbations such as the axial and radial feedback coefficients or the 
control rod worth. Second, to optimize the workflow of PERSENT calculations, one added the 
option to perform preliminary un-perturbed DIF3D calculations to use generated flux files (adjoint 
and forward) in different PERSENT runs. Finally, every PERSENT or DIF3D calculations can be run 
in parallel on different CPUs. 

Visualization of the perturbation results is enabled within the Workbench using ParaView [21]: for 
instance, “.persent_P_ref.vtk” is the vtk file generated by PERSENT for perturbation P. For 
illustration purposes, Figure 3-6 shows the distribution of the sodium void worth calculated on an 
SFR design and plotted by ParaView within the Workbench.  

Perturbation calculations can be run based on already perturbed geometry or compositions using 
the “ref_is_pert_config” option. This allows simulation of the voided Doppler coefficient, or of any 
reactivity coefficients with control rods inserted at critical location through a geometry 
perturbation. Samples #9 and #10 were developed to train users in correctly computing reactivity 
coefficients feedback as required for safety analyses (using SAS4A/SASSYS). 

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_9_PERSENT_pert/README.md#sample9
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_10_PERSENT_sens/README.md#sample10
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Figure 3-6. Sodium void worth distribution [kg-1] calculated and plotted within the Workbench. 

3.5 GAMSOR [12] 

The GAMSOR code is a legacy code developed within the ARC suite to assist analysts in calculating 
gamma heating. GAMSOR computes the gamma flux through a sequence of MC2-3 for neutron 
and gamma cross-section preparation, and DIF3D calculations to solve the neutron flux, the 
gamma flux, and then to combine the results for summary edition. This complex workflow is 
summarized in Figure 3-7.  

The GAMSOR Workflow is fully integrated within the PyARC interface and Sample #7 provides 
training material. The GAMSOR user input proposed through PyARC only requires the energy-
group structure of GAMMA calculation and the list of depletion time-steps on which to perform 
GAMMA calculations.  

In terms of post-processing, similar capabilities as developed for DIF3D are made available, as 
illustrated in Figure 3-8. The user has access to summary tables with assembly-integrated neutron 
and gamma powers in the “.summary” file. Automatic 2D plotting of the power map is also 
available. The ParaView visualization tool can be used for 3D visualization of the neutron and 
gamma power. Finally, the region-wise neutron and gamma power levels are provided back to the 
user in the “.zip/gamsor_table_*.out” files. 

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_7_GAMSOR/README.md#sample7
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Figure 3-7. GAMSOR workflow implemented in PyARC. 

 

Figure 3-8. Example of enabled GAMSOR input and result visualization. 
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3.6 PROTEUS Nodal [13] 

The PROTEUS code developed under NEAMS project is a high-fidelity deterministic neutron 
transport code based on unstructured finite element meshes, which solves the steady-state and 
transient neutron transport problem using the method of characteristics (MOC) or the discrete 
ordinate (SN) method as high-fidelity neutron transport solvers. Additionally, the nodal transport 
method (NODAL) option for structured geometries is available to provide a fast running solution 
option within the same framework so that a user can choose a level of solution fidelity and 
computational resource requirements depending on its need. The PROTEUS codes were 
integrated into the NEAMS Workbench interface to improve the usability by taking advantage of 
the PyARC framework. For the PROTEUS integrations, the extension of the PyARC module referred 
to its PyPROTEUS sub-module was developed for connecting the Workbench interfaces using the 
“black box” approach of code integration. Figure 3-9 illustrates how the Workbench interface 
connects with the PROTEUS codes through the PyPROTEUS/PyARC wrappers. Currently, only 
NODAL is fully integrated for steady-state calculations. The integration supports all the features 
of the Workbench/PyARC framework (input generation, workflow management, post-
processing). The MOC solver was partially integrated for steady-state and transient calculations. 
However, this MOC module was removed from deployed version of PyARC due to lack of 
maintenance and of user-base. SN solver has not been integrated. 

Workbench
• Input Editing
• Geometry Visualization
• Post-processing
• Plotting and Visualization

PyARC Module
• Pre-processing - Interpretation of Workbench ARC Input 
• Runtime Environment

PyPROTEUS: Extension for PROTEUS
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• Post-processing
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Figure 3-9. Structure of the PROTEUS integration in the PyARC and the Workbench.  

The PROTEUS-NODAL code is a nodal transport solver based on homogenized assemblies that 
provides a conventional fidelity level in a consistent PROTEUS code framework. Two solver 
methodologies were implemented on that framework that constitute the nodal solver 
capabilities: PN and Simplified PN (SPN). The PN approach is the identical methodology used in 
VARIANT although the release version only handles diffusion theory on Cartesian and hexagonal 
grids. For the SPN approach, a transverse integrated nodal methodology was built on the 
hexagonal grid model utilizing up to a SP3 approximation. The PROTEUS-NODAL code has 
capabilities to solve steady-state and transient problems. Additionally, the flowing fuel modeling 
capability enables to model the impact on the neutron precursor distribution for a flowing fuel in 
molten salt reactor (MSR) analyses. Currently, only the steady-state and MSR analysis capabilities 
are fully integrated into the Workbench, while transient analysis capability should be 
implemented in the future.  

The workflow for PROTEUS-NODAL calculations was built upon the existing sub-modules for DIF3D 
calculations and the implemented workflow is illustrated in Figure 3-10.  The PyPROTEUS modules 
return the following input files for PROTEUS-NODAL execution:  

- Mesh: defines geometrical dimensions, region configurations, and boundary conditions. 
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- Assignment: defines compositions and assigns them to the geometrical regions.  

- Driver: defines the simulation parameters such as power level, convergence criteria, and 
iteration limits. 

Along with these PROTEUS-specific input files, the PyARC module generates the cross sections and 
the optional delayed neutron parameters in the ISOTXS and DLAYXS file formats respectively. The 
PROTEUS-NODAL calculation is executed via the runtime environment of PyARC. Once the 
calculation is completed, the PROTEUS-NODAL code produces three basic types of outputs as: 

- Main Text-based Screen Output: contains confirmation that the input was imported 
successfully, computing timing summaries, and eigenvalue iteration history results. 

- Detailed Summary Output: contains full solution in the entire domain which is exported to 
an organized ASCII file for detailed analysis.  

- Visualization Output: contains the solutions of primary variables such as flux and power in 
the VTK file format which is readable by ParaView (within the Workbench). 

Similar to the DIF3D calculation capability, post-processing of PROTEUS-NODAL output was 
implemented by printing the main information of interest to a user in the summary file 
(“.summary”). When opening this “.summary” file with the Workbench, the user can use the “flux 
spectrum” processing to automatically plot the neutron flux spectrum. The direct visualization of 
the primary variables is enabled by opening the generated “.vtk” file with ParaView through the 
Workbench. The implemented post-processing capabilities are illustrated in Figure 3-11. A sample 
input #12 demonstrating the Nodal workflow was developed within the released tutorial. 

 

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_12_PROTEUS_NODAL/README.md#sample12
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Figure 3-10. PROTEUS-NODAL workflow implemented in PyARC. 

 

 

Figure 3-11. Example of post-processing for PROTEUS-NODAL: visualization of flux map (left) and 
assembly-wise summary table (right). 

 

For enabling the MSR analysis capability within the Workbench interfaces, as illustrated in Figure 
3-12, the additional pre-process logic was implemented to translate the Workbench input format 
of flowing fuel model description into the associated PROTEUS-NODAL input format. The DLAYXS 
file generation process was streamlined within the execution logic of PROTEUS-NODAL to provide 
delayed neutron precursor parameters. A sample input #13 demonstrating the MSR modeling was 
developed within the released tutorial. 

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_13_PROTEUS_MSR/README.md#sample13
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Figure 3-12. Example of MSR calculation within the Workbench.  

3.7 ORIGEN-S [14] 

The ORIGEN-S code deployed within the SCALE package is used by ARC users for detailed depletion 
and decay calculations. This is required to compute decay heat, detailed isotopic composition, 
radio-activity, neutron sources, etc. ORIGEN-S traces more than 1,300 nuclides by solving 
Bateman equations using pre-generated one-group neutron libraries. A coupling procedure was 
developed by ARC users to generate problem-dependent one-group cross sections and to 
reproduce the REBUS depletion simulation using ORIGEN-S. This procedure was integrated into 
PyARC within the PyREBORS.py function. Figure 3-13 shows the coupling procedures for depletion 
calculations using ORIGEN-S along with the REBUS-3 physics code.  

In this PyREBORS procedure, problem-dependent effective one-group cross sections are obtained 
from the depletion calculations using the REBUS-3 code. However, since the physics code handles 
only about tens or hundreds of nuclides in the depletion calculation, the available one-group 
cross-sections are limited to the nuclides that are modeled by the ARC codes (limited to the ~200 
isotopes available in the MC2-3 library). The one-group cross sections are generated by using the 
COUPLE code [14] in the coupling-procedure with the ORIGEN-S code. It is noted that the SCALE 
code package has multi-group libraries with 238, 200, 49, or 40 group structures for thermal and 
fast systems. Thus, the one-group cross sections is generated by condensing those libraries using 
the problem-dependent neutron spectra obtained from the depletion calculations using REBUS-
3. 

The user input of the new “rebus_to_origens” block in the PyARC is shown in Figure 3-14 
(extracted from Sample #14 in the tutorial). The ORIGEN-S calculation re-produces the once-
through burnup simulation modeled with REBUS in the PyARC sub-assemblies selected by the 
user. The rebus calculation can be skipped by providing a pre-generated REBUS output using the 
“rebus_output_file” option. The one-group XS (capture, fission and (n,2n)) computed by REBUS-3 
will be used by ORIGEN-S for the isotopes specified by “list_isotope_XS_transfer”. The other 1-gp 
XS (for other actinides, reactions, fission products, etc.) are computed based on a detailed flux 
structure that can be specified with an external file “detailed_flux.isotxs”, or by using the REBUS-
generated flux spectrum (option by default) - the flux is automatically being linearly interpolated 
by PyARC to match the ORIGEN structure selected. The ORIGEN-S irradiation is then computed 
based on the initial power or on the flux at each step in every sub-assembly selected (using the 

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_14_ORIGENS/README.md#sample14
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“power_or_flux” option). Following irradiation, decay calculations is completed using the 
cumulative steps specified in “decay_cumul_steps”. 

 

Figure 3-13. Workflow implemented of the REBUS-3 to ORIGEN-S coupling. 

 

 

Figure 3-14. Example of coupled depletion PyARC input and summary output. 

The ORIGEN input and output are provided back in the “*.zip/origen_XXXX.*”, and the main 
results are extracted in the “.summary” file as shown in Figure 3-14. The results extracted are the 
nuclide concentration for all the actinides concentrations throughout irradiation and decay, 
together with their contribution to the total radioactivity and decay heat computed after 
discharge throughout decay simulation. 

Important Notes: 

- Only the ORIGEN-S version from the Scale 6.1.3 package was tested. 

- The depletion implemented only represent the initial loading of heavy nuclei, while 
activation products are not tracked yet. 

- The default branching ratio of Am-241 are representative of a fast neutron spectrum. 

REBUS-3
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- The ORIGEN-S irradiation is only used to re-produce once-through depletion calculation in 
a sub-assembly – it is currently not suitable to represent equilibrium search and assembly 
shuffling problems. 

This methodology coupling REBUS-3 to ORIGEN-S should be verified comparing the masses of the 
main heavy nuclides of the discharged fuel compositions provided by REBUS-3 to the detailed 
composition generated by ORIGEN-S. Future work should include addressing some of the 
limitations of the current implementation above-discussed.  

3.8 DASSH [15] 

New in V2.0.0 (with initial releases starting from V1.5.0) 

The Ducted Assembly Steady-State Heat Transfer software (DASSH) is a full-core sub-channel 
thermal hydraulics code. It is integrated in PyARC to enable sub-channel thermal-hydraulic 
calculations for hexagonally gridded fast reactor cores with ducted assemblies. The DASSH 
integration in PyARC provides the users with the capabilities of DASSH in a much-facilitated 
workflow. For instance, PyARC executes the DASSH code directly following GAMSOR, and it 
transfers the proper binary files from one application to another. The PyARC-DASSH input only 
requires DASSH-specific options with minimum overlap with geometry specifications provided in 
the main PyARC geometry block. 

With the multi-dimensional power distribution in the reactor from the DIF3D/GAMSOR 
calculations in PyARC, DASSH performs direct sub-channel thermal hydraulic calculations at any 
depletion step to calculate coolant, structure, and fuel temperatures within the reactor core by 
solving energy balance equations. DASSH offers multiple models for inter-assembly heat transfer, 
calculates the pin-by-pin temperature distributions in the core, and determines pressure drop as 
well as other important thermal-hydraulic parameters. Almost all of the currently available DASSH 
modeling capabilities have been integrated in PyARC, and upcoming DASSH features will be 
integrated as they are released. The DASSH plotting capabilities are enabled within PyARC, with 
some examples from the tutorial Sample #16 shown in in Figure 3-15. 

 

Figure 3-15. Examples of plots from DASSH for subchannel temperatures within 1 assembly (left) 
core-wide subchannel temperatures (right). 

https://githubmemory.com/repo/dassh-dev/dassh
https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/tutorial/Sample_16_ABTR_DASSH
https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/tutorial/Sample_16_ABTR_DASSH


Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench 
September 30, 2022 

 

 25 ANL/NEAMS-20/2 Rev. 1 

To execute DASSH with PyARC using Workbench (version 5.0.0 or later), DASSH needs to be 
accessible from the Workbench Python API. To accomplish this, a special installation and 
execution process has been implemented for DASSH that leverages the Workbench Conda 
distribution. A script called “dassh_install.sh” was added to PyARC to create a DASSH-specific 
virtual environment for DASSH; DASSH and its dependencies are installed within this environment 
as a Python package. Then, at runtime, the “dassh_run.sh” script is called to activate the virtual 
environment and run DASSH. This development offers a streamlined installation and execution 
process for DASSH. 

3.9 Monte Carlo 

New in V2.0.0 

The PyMCSim module was developed for PyARC which adds the capability to run Monte Carlo 
(MC) eigenvalue and volume calculation simulations using the PyARC SON geometry input. This 
module is designed to be code-agnostic meaning it can be used for multiple MC codes without 
additional input from the user. The current implementation runs full eigenvalue and volume 
calculations with OpenMC [16], but the module is aimed at being compatible with the SCALE Shift 
code [35] in the future.  

To use this module, the user supplies a reactor geometry input in the standard PyARC SON  
geometry input and then sets simulation parameters in the “mcsim” block of the calculations in 
the SON input. Simulation parameters that can be set include number of histories, source 
parameters, physics treatment, whether to run a volume calculation, parallelism parameters, and 
output information. 

The PyMCSim module reads the standard PyARC SON geometry input and converts it to the 
appropriate material and geometric definitions using the MC code’s Python API. The simulation 
parameters supplied in the mcsim code block are then used for defining runtime parameters, and 
a simulation using the designated MC code is launched by PyARC. Once the simulation is complete, 
the relevant output from the MC code is processed and added to the PyARC summary file. 

3.9.1  Shift [35] 

Due to delay in obtaining an RSICC license for SCALE/Shift in FY-2022, the focus for PyMCSim 
development was on OpenMC integration. Although Shift has yet to be integrated into PyMCSim, 
the framework has been developed such that it will be interchangeable with OpenMC when 
available.  

3.9.2 OpenMC [16] 

OpenMC is an open-source Monte Carlo tool that can be used for eigenvalue (k-effective) 
calculations, fixed source simulations, and stochastic volume calculations. OpenMC has been 
integrated into the PyMCSim module for eigenvalue and volume calculations. The module will first 
read the material information from the SON input. All types of material, blend, and lumped 
element definitions supported in the SON input are also supported as OpenMC material 
definitions. After the materials are defined in the OpenMC format, the module will generate the 
OpenMC geometry by generating surfaces, cells, and universes with the defined materials and 



 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench 
September 30, 2022 

 

ANL/NEAMS-20/2 Rev. 1 26  
 

lattice structures. Models for both 2D and 3D hexagonal or square reactor/pin lattices can be 
generated. Verification of the generated OpenMC geometry is provided in Appendix B. 

After the generation of the geometric model, additional desired physics options, source settings, 
and run settings are read from the SON input and applied. Three files are then exported that are 
required for running OpenMC: materials.xml (contains material definitions), geometry.xml 
(contains geometry definition and material assignments), and settings.xml (contains source, 
physics, and run settings). OpenMC is then invoked and the simulation is run. Upon successful 
completion of the simulation(s), the binary HDF5 output files from OpenMC are processed by 
PyARC and relevant simulation information is added to the summary output and available in the 
results of the user_object Python object. Results that are processed include: 

• Eigenvalue calculation: 

o K-effective (combined) 

o K-collision 

o K-absorption 

o K-tracklength 

o Leakage 

• Volume calculation: 

o Volume of each cell 

o Volume of each material 

Because OpenMC is implemented into PyARC using its Python API, special setup and handling of 
the runtime environment is required if using PyARC from Workbench. A script called 
“setup_openmc.sh” has been added to PyARC which acts as a one-time installation of OpenMC 
into Workbench’s base Conda environment (only available with Workbench-5.0.0 and later). This 
allows OpenMC to be available as a Python package. 

A demonstration of the OpenMC capabilities is shown using the ABTR reactor model within the 
tutorial Sample #18. Figure 3-16 shows the relevant mcsim SON input block and a sample of the 
OpenMC simulation output in the messages window of Workbench. 

https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/tutorial/Sample_18_ABTR_MCSim_OpenMC
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Figure 3-16. Image of Workbench showing the mcsim input block of the SON input and partial 
output from OpenMC in the messages window. 

 

3.10 Additional Utility Scripts 

Additional utility scripts are made available in the PyARC repository to support users with various 
reactor physics simulations. Some of those scripts can be run within or outside PyARC (similar to 
the 2D plotting script mentioned in Section 2.1.3). 

3.10.1 CovMat Utility 

This utility streamlines generation of covariance matrix of nuclear data uncertainties on reactivity 
coefficients, which is used for uncertainty propagation through transient simulations [35]. The 
workflow implemented in this utility is detailed in Appendix A of [6]. Online documentation is also 
available. This workflow is run completely outside of PyARC. 

https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/utilities_covmat/tutorial
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3.10.2 SafetyCodes Utility 

New in V2.0.0 

This utility script was developed to help users postprocess PyARC results into a format that is more 
directly useable by safety and transients analyses codes such as SAS4A [37] and SAM [38]. 
Documentation is available online for this script to describe the blocks of this utility script: 

o  Decay heat curve fitting 

The objective of this script is to generate an exponential fit of a decay heat curve that is used for 
instance in transients analyses by the SAS4A code. Such decay heat curve is typically generated 
by ORIGEN-S (through the PyARC REBUS to ORIGEN-S procedure described in Section 3.7). Safety 
analyses codes will require exponential fitting of such decay heat curve 𝐷𝐻𝑜𝑟𝑖𝑔𝑒𝑛(𝑡) in the format: 

𝐷𝐻𝑓𝑖𝑡(t)  =  ∑ 𝐵𝑖 ∗ e−𝐿𝑖∗ t

𝑖

 

The script developed intends to provide the optimum ( 𝐵𝑖 , 𝐿𝑖 ) that minimizes: 
  

∑ [1 −
𝐷𝐻𝑓𝑖𝑡(𝑡)

𝐷𝐻𝑜𝑟𝑖𝑔𝑒𝑛(𝑡)
]

2

𝑡

 

This script uses a brute force approach to solving this problem by using the scipy.minimize 
function using the Sequential Least Squares Programming (SLSQP) method to search for the set 
of (𝐵𝑖, 𝐿𝑖) that minimizes the difference between the fitted and original decay heat curves. An 
iterative approach is used where 1 to 24 sets of (𝐵𝑖, 𝐿𝑖) are researched, and the one providing 
best results is provided. 

This decay heat fitting procedure is executed within PyARC directly following ORIGEN-S 
calculation. It can also be executed outside of PyARC by providing a decay heat curve to fit.  

o  Reactivity coefficients summary 

This script simply postprocess the power data (from GAMSOR) and reactivity coefficients (from 
PERSENT) and sums them radially over all the assemblies within a channel. This is used to merge 
the detailed power and reactivity coefficient distribution in each thermal-hydraulic channel, 
which typically corresponds to a grouping of assemblies with similar power level and flow level.  

This utility script is executed by PyARC following GAMSOR and PERSENT calculations if a user 
specifies channel distribution. It can also be executed outside of PyARC by providing appropriate 
output files.  

 

 

https://code.ornl.gov/neams-workbench/PyARC/-/blob/development/utilities_SafetyCodes/README.md
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4  PyGriffin 

New in V2.0.0 

4.1 Introduction to PyGriffin Module 

The NEAMS program initiated development of PyGriffin in FY-2022 with the objective to 
streamline Griffin workflow to facilitate and improve user experience leveraging the Workbench 
user interface. PyGriffin is still under active development and some key features need to be 
developed for useful application (especially outside of PyARC). This section summarizes the 
capabilities envisioned by PyGriffin, and its development plan. The following list of benefits are 
planned for Griffin users: 

- PyGriffin to streamline Griffin workflow: 

o multigroup cross-section generation with MC2-3 or Shift (not yet available) 

o mesh generation using MOOSE mesh generators [22] 

o facilitate Griffin input generation with correct mapping between block ID of mesh 
(from MOOSE mesh generator) and material ID of cross section library (from MC2-
3 or Shift) 

o Griffin execution  

o results post-processing  

- Workbench to support user experience: 

o Assist SON and MOOSE input development (autocompletion, validation, etc.) 

o Visualize geometry through build-in Workbench visualization 

o Visualize mesh and results using Workbench built-in ParaView 

o Visualize Griffin postprocessed results and ISOXML cross-sections through built-in 
Workbench chart plotting (not yet available) 

o Manage remote launch execution  

 

PyGriffin is a unique toolbox that handles the Griffin workflow logic. A user can interact with 
PyGriffin through two different pathways described below: 

- Standalone PyGriffin - as described in Section 4.2. This path enables more flexibility for 
Griffin modeling on any type of geometry (modeled within MOOSE Mesh System). Future 
effort is required to fill out key missing capabilities required to make this path fully 
attractive to Griffin users. 

- Through PyARC - as described in Section 4.3. This path is readily available within PyARC 
V2.0.0 to run and post-process Griffin simulations from PyARC model, as demonstrated in 
Tutorial #17. 

https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/tutorial/Sample_17_ABTR_PyGriffin
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4.2 Path #1: Standalone PyGriffin Analyses 

This reference path enables the largest amount of modeling flexibility – any model that can be 
built through the MOOSE MeshGenerator will be supported. It is currently planned to be 
compatible only with cross-section generation from the Shift Monte Carlo code [35]. Figure 4-1 
provides an example of PyGriffin input to show how a user would interact with PyGriffin. In this 
path, the Griffin user interacts with 2 input files: 

• (1) PyGriffin “SON” input: to specify Griffin options and link to MOOSE mesh generator file. 
Additional options to provide pre-generated: 

o ISOXML or ISOTXS file with appropriate material mapping  

o Exodus mesh file 

o Griffin input 

• (2) MOOSE MeshGenerator input: can be edited in Workbench – the user will specify a 
reactor geometry used by PyGriffin to automatically generate the Shift model (planned for 
FY-2023). Real-time geometry visualization through Workbench built-in tool (3) is 
proposed for future work. 

Finally, the PyGriffin results can be visualized through Paraview, as illustrated in (4) of Figure 4-1. 

To summarize, through Workbench/PyGriffin, the user will have the following steps facilitated or 
automated: 

• Support MOOSE MeshGenerator input generation (through autocompletion features 
within Workbench) 

• Automated generation and execution of Shift for cross-section tallying (this is the key 
missing part as of end of FY-2022) 

• Automated execution of ISOXML and mesh files generation 

• Support selection of Griffin options (through autocompletion features within Workbench) 
and input of correct mapping between mesh and cross-section regions 

• Post-processing of Griffin results 
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Figure 4-1. Illustration of envisioned standalone PyGriffin pathway with 1) PyGriffin SON input, 
2) MOOSE meshgenerator input, 3) geometry visualization and 4) mesh/results visualization. 

 

4.3 Path #2: PyARC/PyGriffin Connection  

This is the Griffin implementation path through PyARC that currently enables straightforward use 
of PyGriffin/Griffin. This path is most applicable for Fast Reactor core modeling relying on cross-
section generation through MC2-3. An example of input and visualized geometry is shown in 
Figure 4-2. An Advanced Burner Test Reactor (ABTR)-based tutorial example that calls PyGriffin 
through PyARC can be found in Sample #17 of the PyARC tutorial. 

Through PyARC, the user only needs to specify Griffin solver options within the PyARC “SON” input 
(1 of Figure 4-2), and the PyARC/PyGriffinConnect module handles the following: 

- Run MC2-3 and TWODANT for ISOTXS generation (leveraging existing workflow discussed 
in Section 3.1) – or skip this calculation if pre-generated ISOTXS is provided by the user. 

- Generate MOOSE mesh generator input generation. 

- Geometry visualization through Workbench and Mesh/results visualization through 
Paraview (2 and 3 of Figure 4-2, respectively). 

- Execute PyGriffin module described in Section 4 that will handle the following: 

- ISOTXS to ISOXML conversion 

4)2)

3)1)

https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/tutorial/Sample_17_ABTR_PyGriffin
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- Griffin input generation 

- Execute MOOSE to generate exodus mesh file 

- Execute Griffin 

- Post-process Griffin results  

 

 

Figure 4-2. Illustration of PyARC/PyGriffin pathway with 1) PyARC SON input specifying Griffin 
solver options, 2) geometry visualization through Workbench, and 3) results (and mesh) 
visualization through ParaView. 

 

4.4 Status and plan for future development  

The status and plan for future development of PyGriffin is summarized in Table 4-1. At the end of 
FY-2022, the software infrastructure was developed, and initial capabilities were demonstrated. 
Path #2 was completely implemented, with ongoing testing and improvement planned moving 
forward. Path #1 is currently missing the key XS generation step, which currently limits the 
benefits envisioned in the longer term. 

 

 

 

1)
2)

3)
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Table 4-1. capabilities planned for PyGriffin and implementation as of end of FY-2022. 

Capabilities implemented Path #1 – Standalone 
PyGriffin 

Path #2 –PyGriffin through 
PyARC 

Workbench features 
Workbench input generation X X 

Workbench geometry 
visualization 

FY-2023+ X (through PyARC) 

Mesh and results 
visualization 

X (through Paraview) 

ISOXML visualization End of FY-2022 

Remote launch 
demonstration 

Yes – on ANL clusters 

PyGriffin workflow 

Workflow for XS generation FY-2023+ (through Shift) X (through PyARC/MCC3) 
Workflow for mesh 
generation 

X X (only for hexagonal geom) 

Workflow for postprocessing Initiated - FY-2023+ 
 

 

Assuming continued support, the following tasks are planned for implementation in FY-2023 by 
the NEAMS Workbench team: 

• Monte-Carlo (Shift) integration into PyGriffin workflow for cross-section generation 

• Workbench built-in visualization for MOOSE mesh generation 

• Continue integrate Griffin post-processing capabilities  

• Add Workbench visualization of ISOXML (leveraging the ISOXML Python processing 
developed in PyARC utility) 

• Setup PyARC/PyGriffin on NCRC and demonstrate remote launch  

• Extend PyARC/Griffin to cartesian geometry (once Cartesian geometries supported by 
MOOSE meshgenerator) 

• Development of training material and documentation 

In the longer term, PyGriffin will be updated to support new solvers and new workflows. The 
PyGriffin approach may be generalized to facilitate use of other physics tools and MultiApp 
coupling with Griffin. 

 

 

https://code.ornl.gov/neams-workbench/PyARC/-/tree/isoxml/isoxml
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5 Conclusions and Future Work 

This report details the status of the extended ARC and NEAMS codes capabilities integrated into 
the NEAMS Workbench. Integrating these codes into the Workbench benefits directly the 
advanced reactor community (within the DOE national laboratories, universities and companies) 
by: 

- Providing a set of controlled, maintained, documented and validated scripts to generate 
codes’ inputs, which promotes best practices, reduces the learning curve, and facilitates 
project collaboration.  

- Improving the user experience: the Workbench interface provides assistance for building 
an input through auto-completion, real-time validation, document navigation, and 
geometry and results visualization.  

- The PyARC and PyGriffin modules facilitates and automatizes complex calculations and 
workflows for reactor analysis. The Dakota/PyARC coupling in the Workbench was also 
demonstrated to enable mathematical optimization and sensitivity analysis/uncertainty 
quantification (SA/UQ) techniques with ARC neutronic simulations. It could be extended 
to PyGriffin as well (but this hasn’t been attempted as of yet). 

- Helping users transition to high-fidelity NEAMS codes such as Griffin. 

In FY-2021 and FY-2022, effort focused on integrating the DASSH sub-channel thermal-hydraulic 
code, the Griffin high-fidelity deterministic code, and the OpenMC Monte Carlo code. Those 
capabilities were made available in version 2.0.0 of PyARC release (PyGriffin hasn’t been released 
yet). Various minor improvements were completed to enable additional modeling options and to 
respond to user requests. 

The ARC and NEAMS codes are currently used at ANL, Westinghouse, INL, and NCSU through the 
Workbench by nuclear engineers for LFR, MSR, micro-reactor, and SFR core design analyses [28], 
[39], [40], [41], [42]. Additional verification work and code-to-code comparison was recently 
completed under the ARDP-Natrium project [43] and under the DOE-NE ART Fast Reactor program 
[44]. 

Future efforts will focus on continuously adding new and existing modeling capabilities available 
with the ARC and NEAMS codes (especially Shift to both the PyARC and PyGriffin workflows), 
training new users and supporting them to continue building user experience. 

 

https://code.ornl.gov/neams-workbench/PyARC/-/releases/pyarc-2.0.0
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Appendix A : Results Comparison for ABTR Tutorial Model 

This section discusses the PyARC results obtained on the Advanced Burner Test Reactor (ABTR) 
[29] model available in the tutorial. The detail reference core configuration and geometrical 
dimensions for the core fueled with U-TRU-10%Zr is obtained from the ABTR pre-conceptual 
report. The ABTR is a pool-type sodium-cooled fast reactor and its radial core layout is displayed 
in Figure A-1. It displays 199 assemblies – 54 driver fuel assemblies, 78 reflector assemblies, 48 
shield assemblies, 9 test assemblies for material test and fuel test purposes, and 10 primary and 
secondary control rods. The reactor core is radially divided into two enrichment zones: inner core 
region and outer core region composed of 24 and 30 driver fuel assemblies, respectively. 

 

 

Figure A-1. Layout of ABTR model obtained through (left) PyARC 2D plotting utility script (right) 
Workbench visualization. 

 

Code to code comparison was completed as part of the PyARC tutorial using the OpenMC Monte 
Carlo code [16] to provide a reference solution for the eigenvalue calculation on the fresh ABTR 
core described above. Initial comparison was published in [45], but was updated with OpenMC 
and Griffin solutions obtained directly within PyARC 2.0.0.  

All the results are obtained using the ENDF/B-VII.0 nuclear data libraries [46]. OpenMC uses 
explicitly defined fuel and control rod regions, while the other regions were homogenized (similar 
to the geometry displayed in the left of Figure A-1). The results of this comparison are summarized 
in Table A-1 and links to the different input and output files stored in the PyARC tutorial are 
provided. Various deterministic approaches are available with PyARC to provide different levels 
of accuracy, which is especially important for small fast neutron reactors such as ABTR.  

The MC2-3 code is used to calculate the homogenized 33-group cross-sections for DIF3D with 2 
different processes. In the “Low-fidelity XS”, the MC2-3 code directly condenses cross sections 
into 33 energy groups, with a buckling search applied to the fuel regions, while the flux estimated 
in the fuel regions is used for cross-section condensation in non-fuel regions. This simplified XS 
generation process leads to ~1,300 pcm of added discrepancy (under-estimation) for the ABTR 
model when compared to the “high-fidelity XS” generation process. In the high-fidelity approach, 
the first step in MC2-3 uses a fine 2082-energy-group structure and cross sections are condensed 

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/README.md#tutorial
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into 1041 energy groups. It is followed by a flux calculation step using the 2-D Sn transport solver 
TWODANT for an approximated equivalent 2-D cylindrical core with a P3 scattering approximation 
and 1041 energy groups. During the third step, the cross sections are condensed into 33 groups 
using the flux spectrum obtained from TWODANT for each region. Heterogeneous cross-section 
treatment is applied in this second step to the driver fuel and control rod regions using MC2-3 
based on an equivalent 1-D model to account for geometrical self-shielding [31].  

The whole-core flux calculation is performed with the DIF3D code using the Diffusion (finite 
difference solver) and the Transport (variational nodal transport solver VARIANT with the 3rd order 
angular flux and 1st order scattering approximations) options, and using the 33-energy group 
discretization. The Diffusion approximation leads again to ~800pcm of added discrepancy (under-
estimation) on the ABTR model when compared with the Transport option.  

The highest fidelity option considered with PyARC (High-fidelity XS and Transport solution with 
VARIANT) results in only 50 pcm of discrepancy when compared with the OpenMC solution 
obtained through PyARC. Such high level of agreement may conceal some error cancellation. 

Preliminary Griffin results are obtained through PyARC/PyGriffinConnect using a low fidelity XS 
treatment (with homogeneous treatment), the MOOSE mesh generator system for mesh 
generation, and Griffin’s DFEM-SN transport solver with CMFD acceleration. The mesh 
discretization used in the input mesh divided each homogenized hexagonal assembly meshes into 
2 quadrilateral elements, and uniformly refines the resulting mesh by a factor of 2. Moreover, a 
Level-Symmetric quadrature with a quadrature order of 8, an anisotropic order of 2 is used with 
3 polar angles and 4 azimuthal angles. About 900pcm of discrepancy with OpenMC solution is 
observed. Further discrepancies in the eigenvalue results are likely to be reduced by using a finer 
mesh discretization and higher order approximations to the transport solver, together with 
application of higher-fidelity cross-section treatment.  

Table A-1. Eigenvalue comparison between different PyARC methods and integrated codes. 

Code Method K-eff Diff to Ref. [pcm] 

PyARC/OpenMC Monte Carlo  1.08064 +/- 
0.00011 

Ref. 

PyARC/DIF3D MC2-3 - Low-fidelity XS 
DIF3D - Diffusion 

1.05567 -2189 

PyARC/DIF3D MC2-3 - Low-fidelity XS 
DIF3D - Transport 

1.06459 -1395 

PyARC/DIF3D MC2-3 - High-fidelity XS 
DIF3D - Transport 

1.08003 -52 

PyARC/PyGriffin MC2-3 - Low-fidelity XS Griffin – 
DFEM-SN transport with CMFD 

1.07046 -880 

 

https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/tutorial/Sample_18_ABTR_MCSim_OpenMC
https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/Sample_1_ABTR_MCC3_DIF3D
https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/Sample_2_ABTR_VARIANT
https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/Sample_0_ABTR_Ref_Template
https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/tutorial/Sample_17_ABTR_PyGriffin
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Appendix B : Model Comparison between OpenMC and ARC 

This section summarizes a verification exercise done on the PyARC-generated OpenMC geometry 
based on the ABTR model within the tutorial. The PyMCSim prerun process generates the 
material.xml, geometry.xml, and settings.xml files for OpenMC. The OpenMC model defined in 
these files can be viewed using the OpenMC Plotter tool [47]. Figures B-1 to 3 show the OpenMC 
model in the Plotter compared to the SON model that was generated from the Workbench viewer 
for each the x-y, x-z, and y-z viewing planes.  

These comparisons indicate that the overall assembly configuration is consistent between the two 
model representations. To better assess the details in the assemblies, Figures B-4 to 6 show close 
ups of detailed regions in each plane. The black outlines on the OpenMC Plotter images indicate 
the presence of a cell boundary, while the outlines on the Workbench viewer represent surfaces. 
Despite the slight differences in which boundaries or surfaces are explicitly shown, the overall 
structure and material locations are identical between the two models. 

 

 

Figure B-1. Cross sections of the x-y plane at z=1.3 m. Left shows the OpenMC model from the 

XML files in the OpenMC Plotter; right is the SON model in the Workbench viewer. 

 

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/README.md#tutorial
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Figure B-2. Cross sections of the x-z plane at y=0 m. Left is the OpenMC model as viewed in the 
OpenMC Plotter; right is the SON model in the Workbench viewer. 

 

 

Figure B-3. Cross sections of the y-z plane at x=0 m. Left is the OpenMC model as viewed in the 
OpenMC Plotter; right is the SON model in the Workbench viewer. Differences in resolution 

during rendering account for the visual discrepancies. 
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Figure B-4. Close up of the lattice structure of pins in the fuel assemblies in both the OpenMC 
model as viewed by the OpenMC plotter (left) and the SON model in Workbench (right). The 

outlines indicate cell boundaries in OpenMC and surfaces in Workbench. Note that the OpenMC 
model has an additional surface in the cladding layer to account for how the wire wrap on a pin 
is homogenized and added as an additional cell around the cladding (which additional surface is 

not shown in the Workbench plot). 

 

 

Figure B-5. A close up view of the x-z plane where the fuel and control assemblies are present 
for both the OpenMC model as viewed by the OpenMC plotter (left) and the SON model in 

Workbench (right). The outlines indicate cell boundaries in OpenMC and surfaces in Workbench. 
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Figure B-6. A close up view of the y-z plane where the gas plenum and a fuel assembly are 
present for both the OpenMC model as viewed by the OpenMC plotter (left) and the SON model 

in Workbench (right). The outlines indicate cell boundaries in OpenMC and surfaces in 
Workbench. 
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