

FY-2022 progress report

ANL/NEAMS-20/2 Rev. 1

Status of the NEAMS and ARC fast reactor tools

integration to the NEAMS Workbench

Nuclear Science and Engineering Division

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,

at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a

growing number of pre-1991 documents are available free at OSTI.GOV

(http://www.osti.gov/), a service of the US Dept. of Energy’s Office of Scientific and

Technical Information.

Reports not in digital format may be purchased by the public from the

National Technical Information Service (NTIS):

U.S. Department of Commerce

National Technical Information Service

5301 Shawnee Rd

Alexandra, VA 22312

www.ntis.gov

Phone: (800) 553-NTIS (6847) or (703) 605-6000

Fax: (703) 605-6900

Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the

Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831-0062

www.osti.gov

Phone: (865) 576-8401

Fax: (865) 576-5728

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United Sta tes

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information , apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply

its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of

document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,

Argonne National Laboratory, or UChicago Argonne, LLC.

http://www.osti.gov/
http://www.ntis.gov/
mailto:orders@ntis.gov
http://www.osti.gov/

ANL/NEAMS-20/2 Rev. 1

Status of the NEAMS and ARC fast reactor tools integration to

the NEAMS Workbench

FY-2022 progress report

prepared by

N. Stauff, M. Atz, A. Abdelhameed, K. Kiesling, S. Kumar, Y. Jung

Nuclear Science and Engineering Division, Argonne National Laboratory

P. Shriwise

Computational Science Division Division, Argonne National Laboratory

September 30, 2022

ACKNOWLEDGMENT

This work was supported by the Department of Energy – Nuclear Energy Advanced Modeling and
Simulation Program (NEAMS) under the Multiphysics Applications Technical Area. Reviews from
E. Shemon and R. Lefebvre (ORNL) were very appreciated.

The authors would like to acknowledge contributions from various developers and beta-testers
in the past years:

• ANL: T. K. Kim, T. Fei, B. Feng

• ORNL: R. Lefebvre, B. Langley

• Summer interns: N. Gaughan, P. Lartaud, P. Seurin, K. Zeng, A. Rivas

Discussion with Griffin developers C. H. Lee and J. Ortensi (INL) was instrumental to initiate this
PyGriffin plan.

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 i ANL/NEAMS-20/2 Rev. 1

EXECUTIVE ABSTRACT

The Workbench initiative was launched in FY-2017 within the Nuclear Energy Advanced
Modeling and Simulation (NEAMS) program to facilitate the transition from conventional tools
to high-fidelity tools. The NEAMS Workbench provides a common user interface for model
creation, real-time validation, execution, output processing, and visualization for integrated
codes.

The integration of the Argonne Reactor Computation (ARC) suite of codes into the NEAMS
Workbench through the PyARC module was initiated in FY-2017. The ARC codes, which focus
on fast reactor multiphysics analysis, contain both legacy codes like DIF3D and REBUS-3 that
were developed with over 30 years of experience, and newer NEAMS additions like MC2-3,
PERSENT, and PROTEUS. Recent work expended this integration to other tools to support the
U.S. fast reactor community such as DASSH for sub-channel thermal-hydraulics, Griffin for
high-fidelity deterministic transport calculations, and OpenMC for Monte Carlo simulations
(with Shift integration planned for FY-2023).

The integration of the “extended ARC” suite of codes into the NEAMS Workbench interface
relies on the PyARC and PyGriffin modules to handles the pre- and post-processing of these
codes input, and the runtime environment. The PyARC module together with the NEAMS
Workbench interface are both released under Open Source Software licenses.

Integrating the extended ARC codes into the Workbench directly benefits the advanced
reactor modeling community by:

- Providing a set of controlled, maintained, documented and validated scripts to
generate inputs, which promotes best practices, reduces the learning curve, and
facilitates project collaboration.

- Improving the user experience: the Workbench interface provides assistance for
building an input through auto-completion, real-time validation, document navigation,
and geometry and results visualization.

- Automatize complex calculations and workflows for reactor analysis.

- Helping users transition to high-fidelity NEAMS codes, through Griffin integration
within the same input logic as the legacy ARC codes.

The report provides complete description of Workbench/PyARC and PyGriffin, while
highlighting recent developments. In FY-2021 and FY-2022, the effort focused on integrating
DASSH (Section 3.8), Monte Carlo (in Section 3.9 with OpenMC and planned Shift integration
in FY-2023) and Griffin (Section 4) simulation workflows into newly released PyARC version
2.0.0. Additional capabilities were also integrated in response to user requests, such as the
automation of the reactivity coefficient post-processing for safety analyses codes (in Section
3.10.2). Significant effort was continued to train and support users from ANL, University of
Michigan, Oklo, Moltex, IDOM, and Westinghouse to apply these tools for LFR, MSR, micro-
reactor, and SFR core design analyses.

https://code.ornl.gov/neams-workbench/PyARC/-/releases/pyarc-2.0.0

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 ii

Table of Contents

ACKNOWLEDGMENT .. I

EXECUTIVE ABSTRACT .. I

TABLE OF CONTENTS ... II

LIST OF FIGURES .. IV

LIST OF TABLES ...V

1 INTRODUCTION ... 1

2 FRAMEWORK FOR EXTENDED ARC TOOLS INTEGRATION ... 3

2.1 THE WORKBENCH INTERFACE ... 3
2.1.1 Common input .. 4
2.1.2 Templates ... 4
2.1.3 Visualization ... 4

2.2 PYARC MODULE ... 5
2.2.1 PyARC Module Introduction ... 5
2.2.2 PyARC Workflow ... 6

2.3 PYARC APPLICATIONS IN COMPLEX WORKFLOWS .. 7
2.3.1 PyARC Coupling with WATTS [23] .. 7
2.3.2 PyARC Coupling with Dakota within Workbench (could be applied straightforwardly also to
PyGriffin) ... 8

2.3.2.1 Workflow Implemented .. 8
2.3.2.2 Benefits of the Dakota/PyARC Coupling ... 9

• Optimization problems ... 9
• SA/UQ problems ... 9

2.4 TRAINING MATERIAL... 10

3 CAPABILITIES INTEGRATED IN PYARC .. 12

3.1 MC2-3 [8] ... 12
3.2 DIF3D [9] .. 13
3.3 REBUS-3 [10].. 15
3.4 PERSENT [11] ... 16
3.5 GAMSOR [12] ... 17
3.6 PROTEUS NODAL [13] .. 19
3.7 ORIGEN-S [14].. 22
3.8 DASSH [15]... 24
3.9 MONTE CARLO .. 25

3.9.1 Shift [35] ... 25
3.9.2 OpenMC [16] .. 25

3.10 ADDITIONAL UTILITY SCRIPTS.. 27
3.10.1 CovMat Utility .. 27
3.10.2 SafetyCodes Utility ... 28

4 PYGRIFFIN.. 29

4.1 INTRODUCTION TO PYGRIFFIN MODULE ... 29
4.2 PATH #1: STANDALONE PYGRIFFIN ANALYSES ... 30
4.3 PATH #2: PYARC/PYGRIFFIN CONNECTION.. 31
4.4 STATUS AND PLAN FOR FUTURE DEVELOPMENT .. 32

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 iii ANL/NEAMS-20/2 Rev. 1

5 CONCLUSIONS AND FUTURE WORK .. 34

REFERENCES ... 35

APPENDIX A : RESULTS COMPARISON FOR ABTR TUTORIAL MODEL ... 39

APPENDIX B : MODEL COMPARISON BETWEEN OPENMC AND ARC .. 41

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 iv

LIST OF FIGURES

Figure 1-1. Layout of PyARC and PyGriffin with development status of different capabilities.

 .. 1
Figure 2-1. Structure of the extended ARC codes integration in the Workbench. 3
Figure 2-2. Automatic generation of core layout. .. 5
Figure 2-3. Schematic of the Dakota/PyARC coupling. .. 8
Figure 3-1. Example of multi-group XS plot automatically generated with the Workbench

from ISOTXS edit file. ... 13
Figure 3-2. Example of visualizations available for DIF3D and REBUS-3: neutron flux

spectrum (left) and power map (right) calculated and plotted with the Workbench. 14
Figure 3-3. Example of 2D plot visualization of peak power density per assembly for

hexagonal and Cartesian geometry. ... 14
Figure 3-4. Multi-step depletion procedure implemented in PyARC. 15
Figure 3-5. Equilibrium cross-section iteration procedure implemented in PyARC. 15
Figure 3-6. Sodium void worth distribution [kg-1] calculated and plotted within the

Workbench. .. 17
Figure 3-7. GAMSOR workflow implemented in PyARC. ... 18
Figure 3-8. Example of enabled GAMSOR input and result visualization. 18
Figure 3-9. Structure of the PROTEUS integration in the PyARC and the Workbench. 19
Figure 3-10. PROTEUS-NODAL workflow implemented in PyARC. 21
Figure 3-11. Example of post-processing for PROTEUS-NODAL: visualization of flux map

(left) and assembly-wise summary table (right)... 21
Figure 3-12. Example of MSR calculation within the Workbench. ... 22
Figure 3-13. Workflow implemented of the REBUS-3 to ORIGEN-S coupling. 23
Figure 3-14. Example of coupled depletion PyARC input and summary output. 23
Figure 3-15. Examples of plots from DASSH for subchannel temperatures within 1 assembly
(left) core-wide subchannel temperatures (right). .. 24
Figure 3-16. Image of Workbench showing the mcsim input block of the SON input and

partial output from OpenMC in the messages window.. 27
Figure 4-1. Illustration of envisioned standalone PyGriffin pathway with 1) PyGriffin SON

input, 2) MOOSE meshgenerator input, 3) geometry visualization and 4) mesh/results

visualization. .. 31
Figure 4-2. Illustration of PyARC/PyGriffin pathway with 1) PyARC SON input specifying

Griffin solver options, 2) geometry visualization through Workbench, and 3) results (and

mesh) visualization through ParaView. ... 32

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 v ANL/NEAMS-20/2 Rev. 1

LIST OF TABLES

Table 4-1. capabilities planned for PyGriffin and implementation as of end of FY-2022. 33
Table A-1. Eigenvalue comparison between different PyARC methods and integrated codes.

 .. 40

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 1 ANL/NEAMS-20/2 Rev. 1

1 Introduction

One of the objectives of the Nuclear Energy Advanced Modeling and Simulation (NEAMS)
Workbench is to facilitate the deployment of the high-fidelity codes developed within the NEAMS
program. The Workbench [1] initiative was launched in FY-2017 to facilitate the transition from
conventional tools to high fidelity tools [2]. The Workbench provides a common user interface for
model creation, real-time validation, execution, output processing, and visualization for
integrated codes. The integration of the Argonne Reactor Computation (ARC) suite of codes into
the NEAMS Workbench was initiated in FY-2017 [3][4][5][6].

The ARC suite of codes [7] gathers neutronics, thermal hydraulics, safety, and fuel behavior
analysis codes. Until FY-2020, the Workbench integration of the ARC codes focused on the
deterministic neutronic codes. It includes MC2-3 [8] for multi-group cross-section processing,
DIF3D [9] for flux calculation, REBUS-3 [10] for depletion and equilibrium calculations, PERSENT
[11] for perturbation theory calculations (perturbation, sensitivity and uncertainty quantification),
GAMSOR [12] for gamma heating calculations, PROTEUS-Nodal transport solver [13], and ORIGEN-
S [14] for detailed depletion calculations. In FY-2021 and FY-2022, a wider range of fast reactor
modeling capabilities with the sub-channel code DASSH [15], the Monte Carlo code OpenMC [16],
and the high-fidelity deterministic code Griffin [17], were integrated in the NEAMS Workbench
through PyARC and PyGriffin, as shown in Figure 1-1. For simplicity, the “extended ARC suite of
codes” will be referenced and combines the legacy ARC codes together with all the reactor
modeling codes integrated in PyARC (PROTEUS, Griffin, OpenMC, DASSH, ORIGEN-S, etc).

Figure 1-1. Layout of PyARC and PyGriffin with development status of different capabilities.

PyGRIFFIN

PyARC

MC2-3/TWODANT
(cross-section processing)

DIF3D/GAMSOR/PROTEUS-Nodal
(neutron and gamma flux solver)

PERSENT
(perturbation theory)

DASSH
(sub-channel TH)

REBUS-3/ORIGEN-S
(fuel cycle analysis)

Connections to
SAS/SAM

(Transient analysis)

Multi-group

cross-sections

ISOTXS

Power

distributions

Depletion data

Decay heat

Reactivity

feedbacks and

kinetics data

Temperature

and flow

distribution

SON
input

NUBOW3D
(structural

analyses)

Griffin Execution
(neutron and gamma flux

solver)

Results

XS
generation

Shift
(input

generation and
execution)

Griffin input
processing

and mesh
generation

Griffin results
post-processing

scripts

codes

files

newly
developed

to develop

input

Monte Carlo
(Shift)

K-eff

Shielding

etc.

SON
input

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 2

These “extended ARC” codes are used at national laboratories, universities, and companies for
advanced reactor analyses. They gather more than 30 years of development, went through
extensive validation and verification, and can solve complex physics phenomena in a very efficient
way. However, these codes require knowledge on reactor physics and experience on fast reactor
design in order to be familiar with the extent of their capabilities, and users mostly rely on scripts,
developed based on their experiences, to generate inputs. Integrating them into the NEAMS
Workbench was initiated in FY-2017 through the development of the PyARC module to address
these challenges and to improve user experience with these codes by taking advantage of the
various benefits brought by the Workbench interface. Both the Workbench and PyARC are being
distributed under Open Source Software licenses (PyGriffin is not yet licensed for distribution).

The status of the ARC and NEAMS fast reactor modeling code integration in the NEAMS
Workbench is described in this report, focusing on FY-2022 developments (highlighted in this
report) and on description of the new released version 2.0.0 of PyARC. The code integration
framework in the PyARC bundle of the Workbench is reminded in Chapter 2. The status of the
capabilities integrated in PyARC are discussed in Chapter 3. The new PyGriffin tool is described in
Chapter 4. Finally, Chapter 5 draws the conclusions and discusses future developments.

https://code.ornl.gov/neams-workbench/downloads
https://code.ornl.gov/neams-workbench/PyARC
https://code.ornl.gov/neams-workbench/PyARC/-/releases/pyarc-2.0.0

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 3 ANL/NEAMS-20/2 Rev. 1

2 Framework for extended ARC Tools Integration

Figure 2-1 illustrates how the Workbench interface connects with the extended ARC codes. This
is a “black box” type of integration where the Workbench must rely on an opaque runtime module
(called PyARC) that conducts the native input formatting. One of the benefits of the “black box”
type of integration is that the user is shielded from the original input of the legacy codes. There
are several components to the integration that are described in this section:

• Workbench interface: It is developed at ORNL and several components of this interface
are required for a code’s integration:

o Common input

o Templates

o Visualization

• PyARC module: this is a python module required for “black box” integration that contains
the logic for processing the code’s inputs, generating the legacy ARC code input, running
them, and post-processing the outputs. This module is the glue between the Workbench
interface and the extended ARC codes.

• PyGriffin module: similar to PyARC, this python module provides a “black box” integration
of Griffin that contains the logic for generating the Griffin (and ultimately Shift) inputs,
mesh and cross-section files, running them, and post-processing the outputs.

Figure 2-1. Structure of the extended ARC codes integration in the Workbench.

2.1 The Workbench Interface

The Workbench [1] interface is developed at ORNL and designed to assist new users, while not
obstructing experienced ones. The Workbench provides a common user interface for model
creation, real-time validation, execution, output processing, and visualization for integrated

Workbench	ARC	input Geometry	Visualization

3D	results	visualization
Results	plotting

Post-processing	of	ARC	code’s	results	
in	summary	tables

PyARC Module
• Pre-processing

• Translation into codes input language

• Runtime environment

• Post-processing

Extended ARC
Code Package

MCC3

TWODANT

DIF3D

REBUS

ORIGEN-S

GAMSOR PERSENT

DASSH

NUBOW3D

PROTEUS

NODAL

OpenMC PyGriffin

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 4

codes. For instance, the user is guided by the auto-completion capability in the Workbench to
build its core model in the “common input” structure.

2.1.1 Common input

The Workbench input format adopted is described as the “common input” since it is used to
generate inputs for all the tools within the extended ARC for integrated problem-dependent
cross-section preparation, core analysis, depletion, and sensitivity/uncertainty quantification. The
main benefits of the “common input” strategy is to insure every native input uses consistent
information and to facilitate project collaboration (since one PyARC or PyGriffin input contains all
the problem definition, while each of the extended ARC inputs only contain part of the
information).

This “common input” for PyARC allows modeling a reactor geometry in an intuitive and flexible
way and was developed with continuous involvement of ARC users. It uses the open source
Workbench Analysis Sequence Processor’s (WASP) Standard Object Notation (SON) [20] format
that enables the auto-completion, real-time input validation, and access to templates, through
the Workbench interface. The structure of the PyARC input is shown in Figure 2-1 and a tutorial
was developed (detailed in Section 2.4) to explain in detail the input logic to new users. The
common input is defined in the “arc.sch” file that takes ~5000 lines of code. Detailed
documentation of all the input options is provided (in the “PyARC_README.html” file of the
PyARC package). The user has direct access to the input keyword definitions through the
Workbench user-interface upon auto-completion. The input is automatically validated for
correctness by the WASP Hierarchical Input Validation Engine (HIVE) upon edit by the user from
within the NEAMS Workbench and upon by PyARC.

The inputs used by PyGriffin are further discussed in section 4.

2.1.2 Templates

The Workbench, through its WASP subcomponent, contains the HierarchicAL Input Template
Engine (HALITE) developed to expand hierarchical input data into code-specific input. Templates
are used to assist users in generating the common input within the Workbench. The common
input templates were developed in parallel to the schema and the common input. Those are
blocks of input with default values accessible for convenience to the user. A total of 180 templates
were generated for PyARC and 5 templates were generated for PyGriffin. Templates are also relied
upon by the Dakota/PyARC coupling, as explained in Section 2.3.2.

2.1.3 Visualization

The Workbench provides different built-in types of visualization capabilities that PyARC benefits
from. In particular, it provides visualization of user input problems through built-in input
visualization capabilities (see Figure 2-1). This visualization capability supports 2D/3D hexagonal
and Cartesian geometries.

The ParaView tool [21] is integrated into the Workbench (versions 4.0 and after) and allows direct
visualization of the ARC post-processed outputs. The Workbench interface supports plotting
capabilities using line plots, histograms, bar charts, etc. Two types of line plots were implemented

https://code.ornl.gov/neams-workbench/wasp
https://code.ornl.gov/neams-workbench/wasp/tree/master/waspson/README.md
https://code.ornl.gov/neams-workbench/wasp/blob/master/wasphive/README.md
https://code.ornl.gov/neams-workbench/wasp/tree/master/wasphalite/README.md

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 5 ANL/NEAMS-20/2 Rev. 1

to display the multi-group cross sections processed by MC2-3 (as illustrated in Figure 2-1), and the
region-wise flux spectrum printed by DIF3D and REBUS-3 (also shown in Figure 2-1).

A utility script provides the user 2D plot generation of the core geometry, as shown in Figure 2-2,
and of the assembly peak or integrated results obtained with DIF3D in standalone-DIF3D
simulations (as illustrated in Figure 3-3) or together with GAMSOR, PERSENT, REBUS, or PROTEUS.
Similar plots can be generated for DASSH thermal-hydraulics results leveraging directly DASSH
native plotting capability as discussed in Section 3.8.

Figure 2-2. Automatic generation of core layout.

2.2 PyARC Module

2.2.1 PyARC Module Introduction

The PyARC module is the glue between the Workbench interface and the ARC codes. It is being
released by ANL under an open-source software license and is bundled with the Workbench install
for user convenience. For a “black box” integration, this wrapper is essential as it contains the
logic to:

• process information from the common input

• perform additional verifications on the core model that the validation engine of the
Workbench cannot perform

• pre-process the information, calculating for instance homogenized atom densities in
different regions

• generate the ARC codes’ native inputs

https://code.ornl.gov/neams-workbench/PyARC/-/tree/master

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 6

• handle the runtime environment, which can be very complex. For instance, running MC2-
3 elementary cell calculations in parallel to calculate fine-mesh cross-sections, followed by
TWODANT to calculate region-wise flux spectrum, then by MC2-3 for broad-mesh
condensation of the cross-sections, then by REBUS to calculate depleted compositions,
then by PERSENT to calculate neutronic feedback coefficients on depleted core
compositions, etc.

• post-process the outputs, gathering the main results of the different codes’ and creating
a single summary file.

The PyARC module is developed through a collaborative environment on GitLab so that new
additions are tracked and reviewed. The PyARC module relies on the following sub-modules:

• PyARCModel: loads the input, performs list of additional verification, performs pre-
processing on the input

• PyARCUtils: contains utilities procedures

• PyARCUserObject: defines variables and procedures that are used throughout the code

• PyMCC3, PyREBUS, PyPERSENT, PyGAMSOR, PyREBORS, PyPROTEUS, PyDASSH, PyMCSim:
contain the logic for input writing, execution, and post-processing for each code

• PyRzmflxCode: contain the logic for input writing, execution, and post-processing for
TWODANT

• PyGriffinConnect: connects PyARC to PyGriffin

• The PyARC module also relies on the PySCL module that is developed by ORNL to provide
the standard composition library (SCL)

• Several additional plotting or postprocessing utilities

Tests are developed for regression testing after each code modification and prior to committing
and pushing modifications to the protected master branch. Currently, more than 295 unit tests
are implemented to check the common input processing, interpretation of the standard
composition library, input generation (of MC2-3, DIF3D, REBUS-3, TWODANT, PERSENT, GAMSOR,
PROTEUS, ORIGEN-S, DASSH, Griffin, and OpenMC), execution of the codes, and post-processing
of the outputs. Consequently, the unit tests check the pre-processing, input writing, execution,
and post-processing logic of PyARC. In V2.0.0, many tests checking error messages returned to
the users were implemented.

The PyARC software also uses continuous integration (CI) testing and deployment (CD) bundle
infrastructure. This checks all tests at each ‘push’ to the code repository and ensures all features
are functional on Linux and Mac operating systems, and subsequently bundles the new PyARC
version into an easily deployable file.

2.2.2 PyARC Workflow

PyARC takes a “.son” input that is generated through the Workbench interface (or using any text
editor) following the formatting defined in Section 2.1.1. Examples of inputs are provided in the

https://code.ornl.gov/neams-workbench/PyARC

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 7 ANL/NEAMS-20/2 Rev. 1

training material described in Section 2.4. In addition to the main input, additional input files may
be requested to provide decay chain (with REBUS native structure), fission yields of lumped fission
products, covariance matrix for uncertainty calculations, etc. A repository of such pre-built files is
made available.

PyARC simulations are executed through the “run” button on the Workbench interface.
Alternatively, the following commend can be used to execute PyARC input:

/link/to/Workbench/rte/entry.sh /link/to/PyARC/PyARC.py -i my_pyarc_input.son

Every PyARC simulations will generate the following output files:

• “.summary”: summary of the output files from each extended ARC simulations, with
“.extended.summary” provided more detailed summary results when applicable.

• “.timeline.out”: timeline of calculation for real-time check of the status of the calculation,
and to save the computational time spent at every step of the workflow.

• “.inp”: all input files generated by PyARC concatenated into one single file

• “.out”: all output files generated from ARC runs concatenated in one single file

• “.vtk”: region-wise results in a ParaView-readable format

• “.zip”: gathers all input, output, isotxs, and summary files

• “.user_info.out”: important information about the model, including errors, warnings,
description of the automatically computed 1D and RZ geometries (see Section 3.1) and of
the volume fractions. In particular, the list of isotopes and region IDs are detailed to
facilitate advanced ARC users understanding the PyARC-generated native code inputs.

Additional output files may be generated when running different codes, as discussed in Section 3.

2.3 PyARC Applications in Complex Workflows

PyARC streamlines complex ARC workflows (exchange of files and data within MC2-3, DIF3D, etc.),
but it also can be used within complex workflows for reactor design, optimization, and uncertainty
analyses. This can be done through scripting (running PyARC instances within a python script) or
coupling with optimization or sensitivity analyses codes such as DAKOTA, as discussed in this
section.

2.3.1 PyARC Coupling with WATTS [23]

New in V2.0.0

The WATTS (Workflow and Template Toolkit for Simulation) is an open-source workflow
management tool developed at Argonne (under LDRD funding). This framework is meant at
streamlining interaction within the various integrated reactor design and economics modeling
tools. A plugin to PyARC was developed which provides its users knowledgeable with Python to
perform a wide range of analyses as demonstrated with several tutorial examples. WATTS can be
especially useful to define complex workflows (involving various PyARC steps for instance, or

https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/AdditionalFiles
https://github.com/watts-dev/watts
https://github.com/watts-dev/watts/tree/development/examples

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 8

involving tools outside of PyARC), and performing sensitivity/optimization analyses on such
workflow.

2.3.2 PyARC Coupling with Dakota within Workbench (could be applied straightforwardly also
to PyGriffin)

The Workbench provides a common user interface for model creation allowing for its integrated
codes to communicate and work together with limited coupling development. The feasibility and
benefits of using the Workbench as a coupling mechanism between the Dakota [24] code and
PyARC was demonstrated in [25],[26],[27], and [28]. The Dakota software maintained by Sandia
National Laboratory is a sensitivity analysis/uncertainty quantification (SA/UQ) and optimization
toolkit with over 20 years of supporting development. Dakota provides advanced mathematical
methods to vary one code’s input parameters and analyze the output results for optimization and
uncertainty quantification analyses.

2.3.2.1 Workflow Implemented

The workflow in Figure 2-3 was developed to allow Dakota to drive the PyARC calculations within
the Workbench interface. For SA/UQ or optimization analyses, the PyARC input is perturbed by a
sequence of random values from Dakota. After the ARC runs are performed with different
sampled input values, Dakota evaluates the user-specified responses of interest. For SA/UQ types
of analyses, Dakota performs statistical analysis on response functions. For optimization
problems, it selects best performing solutions and generate new samples.

Figure 2-3. Schematic of the Dakota/PyARC coupling.

Three files are required in this workflow:

- Dakota input: Input built by the analyst with the aid of the Workbench that describes the
sensitivity, uncertainty or optimization problem options.

- PyARC “common input”: This is the PyARC input built by the analyst with the aid of the
Workbench, but saved in a template format where some input values are replaced with
variables defined in the Dakota input.

WORKBENCH

DAKOTA
sampling

P
yA
R
C
_
d
ri
ve
r

DAKOTA
post-processing

P
yA
R
C
_
d
ri
ve
r

PyARC
• pre-processing
• execution
• post-processing

d
a

k
o

ta
.d

ri
v
e

r

d
a

k
o

ta
.d

ri
v
e

r

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 9 ANL/NEAMS-20/2 Rev. 1

- PyARC.driver: Input built by the analyst with the aid of the Workbench that connects the
Dakota input to the PyARC application. It contains the logic to extract (with customizable
grep commands or links to post-processing scripts) different results from the ARC output
summary file.

The main PyARC results of interest (core lifetime, inventory, fissile enrichment, peak power, peak
fast flux, etc.) are returned in the “.summary” output file so that the user does not need to develop
his own postprocessor logic to extract such results to return to Dakota. An example of
Dakota/PyARC coupling is detailed in Sample #11.

2.3.2.2 Benefits of the Dakota/PyARC Coupling

The Dakota/ARC coupling would be a significant effort to set up outside of the Workbench since
the individual ARC codes use different input logic. This would require developing a script that
propagates the input parameters sampled throughout the different codes, which is effectively
done with the PyARC module. This coupling enables new capabilities for ARC users since Dakota
can be used for driving sensitivity analysis and uncertainty quantification (SA/UQ) calculations
[25], [26], and core design optimization with the ARC codes [27], [28].

• Optimization problems

Mathematical optimization methods can be used to investigate a space of input options and find
the most promising solutions (usually a compromise between targeted performance). This is
especially well suited for advanced reactor design work, where many core options need to be
evaluated (size and number of fuel pins, different fuel forms, etc.) to assess their impact on core
performance (irradiation testing capabilities, inherent safety performance, etc.). Dakota provides
a wide range of advanced optimization methods that can be used to effectively investigate the
design space and find the best performing core concepts.

• SA/UQ problems

Dakota extends the SA/UQ capability currently available in the ARC codes (with PERSENT) to
propagate the uncertainty on any type of input parameter, and to observe its impact on any
output result. In fact, there are different benefits/challenges associated with solving SA/UQ
problems through adjoint-based perturbation theory (available with PERSENT [11]) and through
stochastic sampling (with Dakota [24]) making both approaches complimentary to each other. The
adjoint-based method is usually cheaper in terms of computational resources, is well suited to
treat a large number of uncertain parameters such as uncertainties on multi-group cross-sections,
and can provide detailed information such as the impact of cross-section values in any energy
group, in any core location, on different core parameters. It is usually applied to see the
uncertainty impact on the eigenvalue, on reactivity effects and on reaction rates. The stochastic
sampling method provides a more general approach that can be applicable to any uncertainty
problem considered (including those with changes in core geometry), to analyze the impact
uncertain parameters may have on any output of the problem. However, it may require many
simulations to reach targeted levels of confidence. An analysis using Dakota to drive PyARC
simulations for SA/UQ problems is proposed in Appendix C of [5].

https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/Sample_11_Dakota_Sens_Opt

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 10

2.4 Training Material

Training material is available to assist a user getting started. It is based on the Advanced Burner
Test Reactor (ABTR) design [29], which is a small SFR concept designed for irradiation testing.
Discussion of ABTR modeling results and accuracy of the different PyARC solvers are discussed in
Appendix A. The training material consists in a list of sample problems provided within the PyARC
released bundle, that are documented and that demonstrate and explain the most popular
capabilities:

• Sample #1 - MC2-3 cross-section processing with 1step approach, and modeling full-core
with DIF3D diffusion.

• Sample #2 - DIF3D calculation with VARIANT for full-core simulation.

• Sample #3 - MC2-3 cross-section processing with 1D heterogeneous model and 2steps
(TWODANT) calculation, modeling full-core with DIF3D finite diffusion.

• Sample #4 - MC2-3 cross-section processing with homogeneous - 1step calculation, and
core once-through fuel depletion calculation with REBUS with DIF3D finite difference
option with third core symmetry.

• Sample #5 - REBUS equilibrium calculation with DIF3D finite difference option with third

core symmetry (no reprocessing).

• Sample #6 - REBUS equilibrium calculation with DIF3D finite difference option with third
core symmetry (with reprocessing and one iteration between MC2-3 and REBUS
equilibrium).

• Sample #7 - GAMSOR calculation for gamma transport calculation.

• Sample #8 - REBUS once-through fuel depletion calculation with explicitly defined fuel
management strategy and third core symmetry.

• Sample #9 - PERSENT perturbation calculations to process needed reactivity coefficients.

• Sample #10 - PERSENT sensitivity calculations to perform SA/UQ analyses on k-eff and

reactivity coefficients.

• Sample #11 - Dakota coupling with PyARC to run SA/UQ and Optimization problems

• Sample #12 - PROTEUS-NODAL calculation

• Sample #13 - PROTEUS-NODAL calculation with molten salt fuel (MSR)

• Sample #14 - REBUS to ORIGEN-S calculation

• Sample #16 - DASSH for sub-channel thermal-hydraulics calculations

• Sample #17 - PyGriffin calculation for k-effective at BOL

• Sample #18 - PyMCSim (with OpenMC) calculation for k-effective at BOL

https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_1_MCC3_DIF3DFD/README.md#sample1
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_2_VARIANT/README.md#sample2
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_3_TWODANT_DIF3DFD/README.md#sample3
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_4_MCC3_REBUS1T/README.md#sample4
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_5_REBUSEQ1/README.md#sample5
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_6_REBUSEQ2/README.md#sample6
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_7_GAMSOR/README.md#sample7
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_8_REBUS1TShuffling/README.md#sample8
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_9_PERSENT_pert/README.md#sample9
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_10_PERSENT_sens/README.md#sample10
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_11_Dakota_Sens_Opt/README.md#sample11
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_12_PROTEUS_NODAL/README.md#sample12
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_13_PROTEUS_MSR/README.md#sample13
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_14_ORIGENS/README.md#sample14
https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/Sample_16_ABTR_DASSH
https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/tutorial/Sample_17_ABTR_PyGriffin
https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/tutorial/Sample_18_ABTR_MCSim_OpenMC

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 11 ANL/NEAMS-20/2 Rev. 1

Those Sample problems are available in the “PyARC/tutorial” folder that also contains the
AdditionalFiles folder where the user has access to different decay chains, lumped fission
products, and covariance matrices. It also contains the inputs to the SFR-UAM benchmark
problems [30][5].

https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/AdditionalFiles

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 12

3 Capabilities Integrated in PyARC

One of the benefits of the “black box” type of integration adopted with the PyARC module is that
the user is shielded from the original input of the legacy codes. The associated challenge is that
some of the options and code’s capabilities may not be made available to the user through the
“black box”. The ARC integration focuses on the popular and important capabilities of each code
to streamline most user’s workflows. This section summarizes the status of the extended ARC
codes integration within the NEAMS Workbench, while highlighting the work completed in FY-
2022.

3.1 MC2-3 [8]

The MC2-3 code is developed within the NEAMS program for multi-group cross-section processing
for both fast and thermal spectrum reactors. From the Workbench, one can generate cross-
sections for pre-generated or user-defined energy-group structure with different scattering
orders. The user can merge cross-sections to define lumped fission products used in REBUS-3.
Neutron slowing down equation can be solved over a homogenized cell or over a heterogeneous
geometry [31] based on 1D cylindrical or slab geometries.

For region-wise group condensation, two approaches were implemented within the Workbench.
The first approach consists in generating neutron leakage files from the fuel regions that can be
used as external sources in the non-fuel regions (for instance, reflector), as demonstrated in
Sample #1. The second approach consists of using TWODANT [32] which is a Sn neutron transport
equation solvers, for fine-group (1000 – 2000 groups) flux calculation using an equivalent 2D (RZ
or XY) core model. The option to use PARTISN was removed due to a lack of users and difficulty
to maintain it. This approach is demonstrated in Sample #3. In terms of output processing, the
multi-group cross-sections generated in the ISOTXS file can be plotted automatically in the
Workbench interface, as illustrated in Figure 3-1.

Upon completion, PyARC returns the TWODANT and MC2-3 inputs and outputs (in the “.inp” and
“.out” files) and the multi-group cross-section files:

- The “.isotxs” files are binary files that can be re-used by DIF3D/REBUS/PERSENT to avoid
re-running the initial MC2-3 calculation.

- The “.isotxs.edit” files are text files containing all the multi-group XS results that can be
opened directly with the Workbench to plot automatically the cross-section using the
“ISOTXS – ISOTOPE XS” processor (as shown in Figure 3-1).

Different “isotxs” files may be generated at different depletion steps, the following nomenclature
logic is used:

o “.isotxs_R_0”: Reference (un-perturbed), depletion time-step 0 (provided composition or
beginning of equilibrium cycle);

o “.isotxs_D_4”: “D” perturbation, depletion time-step 4.

Additional Notes:

• PyARC provides the option to give a lower threshold to the atom density in heterogeneous
regions using the option “min_dens_het_calc”. This option is especially useful for

https://code.ornl.gov/neams-https:/code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_1_MCC3_DIF3DFD/README.md#sample1C3_DIF3DFD/README.md
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_3_TWODANT_DIF3DFD/README.md#sample3

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 13 ANL/NEAMS-20/2 Rev. 1

simulating coolant void coefficient when using the heterogeneous treatment in MC2-3
since its 1D transport solver provides convergence issues with very low-density regions.

• MC2-3 is also applied for computing the DLAYXS, GAMISO and PMATRX required for
PERSENT (delayed neutron fraction), PROTEUS (MSR) and GAMSOR calculations, as further
discussed in Sections 3.4, 3.5, and 3.6.

• Automatic generation of RZ geometry for TWODANT and 1D geometries for MC2-3 are
available to facilitate the use of these options by reducing pre-processing time to the user
and risks of mistakes. These methods are only available for hexagonal-z core geometries.
Description of the methods developed and benchmark calculations is provided in
Appendix A of [5]. Sample #3 provides an example to get started with these options.

Figure 3-1. Example of multi-group XS plot automatically generated with the Workbench from
ISOTXS edit file.

3.2 DIF3D [9]

The DIF3D code is a legacy ARC tool used for neutron and gamma flux calculations on various
types of geometries, based on pre-generated multi-group cross-sections. The multi-group cross-
sections can be generated using MC2-3 calculations or a compatible set of previously calculated
multi-group cross-sections.

The 2D/3D-Hexagonal and 2D/3D-Cartesian types of geometries are supported through the
Workbench. The DIF3D code includes 3 neutron solvers (Nodal, Finite Difference, and VARIANT
[33]) that were all enabled. This is illustrated with Samples #1 (Finite Difference) and #2
(VARIANT). Both neutron flux and gamma flux (discussed in Section 3.5) calculations are
integrated into the Workbench.

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_3_TWODANT_DIF3DFD/README.md#sample3
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_1_MCC3_DIF3DFD/README.md#sample1
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_2_VARIANT/README.md#sample2

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 14

PyARC returns the full DIF3D input and output (in the “.inp” and “.out” files). Post-processing of
DIF3D output was implemented by printing the main information of interest to a user (e.g., the
neutron flux in different core areas, integrated flux and power per assemblies) in the summary
file (“.summary”). When opening this “.summary” file with the Workbench, the user can use the
“flux spectrum” processor to automatically plot the neutron flux spectrum. Direct visualization of
the power density, neutron flux, atom densities, etc., is enabled by opening the generated “.vtk”
file with ParaView through the Workbench, as also illustrated in Figure 3-2.

As discussed in Section 2.1.3, new 2D visualization is available, through an external script run on
the generated summary file, or directly through the PyARC workflow by using the input line:
“calculations/plot_2d = true”. An example of peak power density radial distribution is provided in
Figure 3-3.

Figure 3-2. Example of visualizations available for DIF3D and REBUS-3: neutron flux spectrum
(left) and power map (right) calculated and plotted with the Workbench.

Figure 3-3. Example of 2D plot visualization of peak power density per assembly for hexagonal
and Cartesian geometry.

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 15 ANL/NEAMS-20/2 Rev. 1

3.3 REBUS-3 [10]

REBUS-3 is a legacy ARC code used for fuel cycle analysis using DIF3D solvers. It allows a wide
range of fuel cycle modeling options such as assembly shuffling, enrichment or cycle length search
at equilibrium state. In terms of post-processing, the same capabilities developed for DIF3D are
made available with REBUS-3 at every time-step of the depletion calculation. In particular, the
“.rebus_X.vtk” file is generated by REBUS-3 at time X days. Some specific information are also
printed out in the “.summary” file such as the peak burnup and fast fluence, the optimized
enrichment (computed for equilibrium calculation), etc.

PyARC integration of REBUS-3 allows its user specifying its own decay chain by directly providing
an external text file containing the decay chain input from REBUS-3 (cards 09, 24, 25), which is
being parsed in PyARC. Some examples of decay chains (and associated fission yields) are provided
in AdditionalFiles.

The once-through depletion capability is illustrated in Sample #4. The original option to re-
calculate the multi-group cross-sections at different time-steps of the depletion was implemented
in the case of the once-through depletion, as illustrated in Figure 3-4. This capability can be
especially relevant when modeling very high burnup fuel or a reactor with thermalized neutron
flux.

Figure 3-4. Multi-step depletion procedure implemented in PyARC.

The enrichment or cycle length search options at equilibrium state were also integrated, where
the user can define reprocessing plants, external feeds, and fuel-cycle strategies, as illustrated in
Samples #5 and #6. The original option was implemented to iterate between the multi-group
cross-sections computed with MC2-3 at beginning of equilibrium cycle, and the equilibrium search
calculation performed with REBUS-3, as illustrated in Figure 3-5.

Figure 3-5. Equilibrium cross-section iteration procedure implemented in PyARC.

The explicit fuel management capability of REBUS is enabled using the “once_through_shuffling”
option. This option allows defining different cycles and the paths for each assembly, allowing to
discharge, move or reload assemblies. Sample #8 illustrates this capability and explains the input
logic.

REBUSMC2-3 REBUSMC2-3
XS
t=t0

t=t0 t=t1 t=t1 t=tf

atom
dens

atom
dens

XS

t=t1

t=tf

MC2-3
XS

BOEC

atom dens.

BOEC

REBUS
equilibrium

https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/AdditionalFiles
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_4_MCC3_REBUS1T/README.md#sample4
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_5_REBUSEQ1/README.md#sample5
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_6_REBUSEQ2/README.md#sample6
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_8_REBUS1TShuffling/README.md#sample8

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 16

The REBUS-3 code relies on simplified decay chain tracking “only” ~200 isotopes. For higher
fidelity depletion calculations that are typically needed for decay heat simulations, the ORIGEN-S
code can be used, as discussed in Section 3.7.

3.4 PERSENT [11]

PERSENT is a perturbation theory code developed within the NEAMS program and based on the
neutron transport equation in a 2D or 3D geometry. It allows calculating reactivity feedback
coefficients, sensitivity coefficients [34], and nuclear data uncertainties. Perturbation and
sensitivity calculations were implemented on eigenvalue, beta and lambda problems and can be
automatically run at different depletion steps (computed with REBUS-3). The user can define
which materials are perturbed with a change in density or in temperature or which surfaces are
perturbed (only for direct DIF3D perturbations, as explained below). The cross-sections of the
perturbed composition can be automatically re-calculated both for perturbation and for
sensitivity calculations. The nuclear data uncertainties can be estimated on the eigenvalue, beta,
lambda, and on the reactivity coefficients automatically by providing a covariance matrix (in a
PERSENT-compatible file format).

Direct DIF3D calculations are enabled as an alternative to PERSENT perturbation theory
calculations. This can be especially useful for double checking the perturbation theory result and
for modeling geometric perturbations such as the axial and radial feedback coefficients or the
control rod worth. Second, to optimize the workflow of PERSENT calculations, one added the
option to perform preliminary un-perturbed DIF3D calculations to use generated flux files (adjoint
and forward) in different PERSENT runs. Finally, every PERSENT or DIF3D calculations can be run
in parallel on different CPUs.

Visualization of the perturbation results is enabled within the Workbench using ParaView [21]: for
instance, “.persent_P_ref.vtk” is the vtk file generated by PERSENT for perturbation P. For
illustration purposes, Figure 3-6 shows the distribution of the sodium void worth calculated on an
SFR design and plotted by ParaView within the Workbench.

Perturbation calculations can be run based on already perturbed geometry or compositions using
the “ref_is_pert_config” option. This allows simulation of the voided Doppler coefficient, or of any
reactivity coefficients with control rods inserted at critical location through a geometry
perturbation. Samples #9 and #10 were developed to train users in correctly computing reactivity
coefficients feedback as required for safety analyses (using SAS4A/SASSYS).

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_9_PERSENT_pert/README.md#sample9
https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_10_PERSENT_sens/README.md#sample10

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 17 ANL/NEAMS-20/2 Rev. 1

Figure 3-6. Sodium void worth distribution [kg-1] calculated and plotted within the Workbench.

3.5 GAMSOR [12]

The GAMSOR code is a legacy code developed within the ARC suite to assist analysts in calculating
gamma heating. GAMSOR computes the gamma flux through a sequence of MC2-3 for neutron
and gamma cross-section preparation, and DIF3D calculations to solve the neutron flux, the
gamma flux, and then to combine the results for summary edition. This complex workflow is
summarized in Figure 3-7.

The GAMSOR Workflow is fully integrated within the PyARC interface and Sample #7 provides
training material. The GAMSOR user input proposed through PyARC only requires the energy-
group structure of GAMMA calculation and the list of depletion time-steps on which to perform
GAMMA calculations.

In terms of post-processing, similar capabilities as developed for DIF3D are made available, as
illustrated in Figure 3-8. The user has access to summary tables with assembly-integrated neutron
and gamma powers in the “.summary” file. Automatic 2D plotting of the power map is also
available. The ParaView visualization tool can be used for 3D visualization of the neutron and
gamma power. Finally, the region-wise neutron and gamma power levels are provided back to the
user in the “.zip/gamsor_table_*.out” files.

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_7_GAMSOR/README.md#sample7

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 18

Figure 3-7. GAMSOR workflow implemented in PyARC.

Figure 3-8. Example of enabled GAMSOR input and result visualization.

MC2-3
(neutron+gamma XS)

Neutron +
Gamma libraries

IS
O

T
X

S

P
M

A
T

R
X

G
A

M
IS

O

DIF3D
inputs

dif3d_gamsor
(neutron flux)

dif3d
(gamma flux)

dif3d
(summary)

MC2-3
inputs

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 19 ANL/NEAMS-20/2 Rev. 1

3.6 PROTEUS Nodal [13]

The PROTEUS code developed under NEAMS project is a high-fidelity deterministic neutron
transport code based on unstructured finite element meshes, which solves the steady-state and
transient neutron transport problem using the method of characteristics (MOC) or the discrete
ordinate (SN) method as high-fidelity neutron transport solvers. Additionally, the nodal transport
method (NODAL) option for structured geometries is available to provide a fast running solution
option within the same framework so that a user can choose a level of solution fidelity and
computational resource requirements depending on its need. The PROTEUS codes were
integrated into the NEAMS Workbench interface to improve the usability by taking advantage of
the PyARC framework. For the PROTEUS integrations, the extension of the PyARC module referred
to its PyPROTEUS sub-module was developed for connecting the Workbench interfaces using the
“black box” approach of code integration. Figure 3-9 illustrates how the Workbench interface
connects with the PROTEUS codes through the PyPROTEUS/PyARC wrappers. Currently, only
NODAL is fully integrated for steady-state calculations. The integration supports all the features
of the Workbench/PyARC framework (input generation, workflow management, post-
processing). The MOC solver was partially integrated for steady-state and transient calculations.
However, this MOC module was removed from deployed version of PyARC due to lack of
maintenance and of user-base. SN solver has not been integrated.

Workbench
• Input Editing
• Geometry Visualization
• Post-processing
• Plotting and Visualization

PyARC Module
• Pre-processing - Interpretation of Workbench ARC Input
• Runtime Environment

PyPROTEUS: Extension for PROTEUS
• Translation into PROTEUS codes input language
• Post-processing

P
R

O
TE

U
S

NODAL

MOC

Utilities

Figure 3-9. Structure of the PROTEUS integration in the PyARC and the Workbench.

The PROTEUS-NODAL code is a nodal transport solver based on homogenized assemblies that
provides a conventional fidelity level in a consistent PROTEUS code framework. Two solver
methodologies were implemented on that framework that constitute the nodal solver
capabilities: PN and Simplified PN (SPN). The PN approach is the identical methodology used in
VARIANT although the release version only handles diffusion theory on Cartesian and hexagonal
grids. For the SPN approach, a transverse integrated nodal methodology was built on the
hexagonal grid model utilizing up to a SP3 approximation. The PROTEUS-NODAL code has
capabilities to solve steady-state and transient problems. Additionally, the flowing fuel modeling
capability enables to model the impact on the neutron precursor distribution for a flowing fuel in
molten salt reactor (MSR) analyses. Currently, only the steady-state and MSR analysis capabilities
are fully integrated into the Workbench, while transient analysis capability should be
implemented in the future.

The workflow for PROTEUS-NODAL calculations was built upon the existing sub-modules for DIF3D
calculations and the implemented workflow is illustrated in Figure 3-10. The PyPROTEUS modules
return the following input files for PROTEUS-NODAL execution:

- Mesh: defines geometrical dimensions, region configurations, and boundary conditions.

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 20

- Assignment: defines compositions and assigns them to the geometrical regions.

- Driver: defines the simulation parameters such as power level, convergence criteria, and
iteration limits.

Along with these PROTEUS-specific input files, the PyARC module generates the cross sections and
the optional delayed neutron parameters in the ISOTXS and DLAYXS file formats respectively. The
PROTEUS-NODAL calculation is executed via the runtime environment of PyARC. Once the
calculation is completed, the PROTEUS-NODAL code produces three basic types of outputs as:

- Main Text-based Screen Output: contains confirmation that the input was imported
successfully, computing timing summaries, and eigenvalue iteration history results.

- Detailed Summary Output: contains full solution in the entire domain which is exported to
an organized ASCII file for detailed analysis.

- Visualization Output: contains the solutions of primary variables such as flux and power in
the VTK file format which is readable by ParaView (within the Workbench).

Similar to the DIF3D calculation capability, post-processing of PROTEUS-NODAL output was
implemented by printing the main information of interest to a user in the summary file
(“.summary”). When opening this “.summary” file with the Workbench, the user can use the “flux
spectrum” processing to automatically plot the neutron flux spectrum. The direct visualization of
the primary variables is enabled by opening the generated “.vtk” file with ParaView through the
Workbench. The implemented post-processing capabilities are illustrated in Figure 3-11. A sample
input #12 demonstrating the Nodal workflow was developed within the released tutorial.

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_12_PROTEUS_NODAL/README.md#sample12

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 21 ANL/NEAMS-20/2 Rev. 1

Figure 3-10. PROTEUS-NODAL workflow implemented in PyARC.

Figure 3-11. Example of post-processing for PROTEUS-NODAL: visualization of flux map (left) and
assembly-wise summary table (right).

For enabling the MSR analysis capability within the Workbench interfaces, as illustrated in Figure
3-12, the additional pre-process logic was implemented to translate the Workbench input format
of flowing fuel model description into the associated PROTEUS-NODAL input format. The DLAYXS
file generation process was streamlined within the execution logic of PROTEUS-NODAL to provide
delayed neutron precursor parameters. A sample input #13 demonstrating the MSR modeling was
developed within the released tutorial.

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_13_PROTEUS_MSR/README.md#sample13

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 22

Figure 3-12. Example of MSR calculation within the Workbench.

3.7 ORIGEN-S [14]

The ORIGEN-S code deployed within the SCALE package is used by ARC users for detailed depletion
and decay calculations. This is required to compute decay heat, detailed isotopic composition,
radio-activity, neutron sources, etc. ORIGEN-S traces more than 1,300 nuclides by solving
Bateman equations using pre-generated one-group neutron libraries. A coupling procedure was
developed by ARC users to generate problem-dependent one-group cross sections and to
reproduce the REBUS depletion simulation using ORIGEN-S. This procedure was integrated into
PyARC within the PyREBORS.py function. Figure 3-13 shows the coupling procedures for depletion
calculations using ORIGEN-S along with the REBUS-3 physics code.

In this PyREBORS procedure, problem-dependent effective one-group cross sections are obtained
from the depletion calculations using the REBUS-3 code. However, since the physics code handles
only about tens or hundreds of nuclides in the depletion calculation, the available one-group
cross-sections are limited to the nuclides that are modeled by the ARC codes (limited to the ~200
isotopes available in the MC2-3 library). The one-group cross sections are generated by using the
COUPLE code [14] in the coupling-procedure with the ORIGEN-S code. It is noted that the SCALE
code package has multi-group libraries with 238, 200, 49, or 40 group structures for thermal and
fast systems. Thus, the one-group cross sections is generated by condensing those libraries using
the problem-dependent neutron spectra obtained from the depletion calculations using REBUS-
3.

The user input of the new “rebus_to_origens” block in the PyARC is shown in Figure 3-14
(extracted from Sample #14 in the tutorial). The ORIGEN-S calculation re-produces the once-
through burnup simulation modeled with REBUS in the PyARC sub-assemblies selected by the
user. The rebus calculation can be skipped by providing a pre-generated REBUS output using the
“rebus_output_file” option. The one-group XS (capture, fission and (n,2n)) computed by REBUS-3
will be used by ORIGEN-S for the isotopes specified by “list_isotope_XS_transfer”. The other 1-gp
XS (for other actinides, reactions, fission products, etc.) are computed based on a detailed flux
structure that can be specified with an external file “detailed_flux.isotxs”, or by using the REBUS-
generated flux spectrum (option by default) - the flux is automatically being linearly interpolated
by PyARC to match the ORIGEN structure selected. The ORIGEN-S irradiation is then computed
based on the initial power or on the flux at each step in every sub-assembly selected (using the

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/Sample_14_ORIGENS/README.md#sample14

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 23 ANL/NEAMS-20/2 Rev. 1

“power_or_flux” option). Following irradiation, decay calculations is completed using the
cumulative steps specified in “decay_cumul_steps”.

Figure 3-13. Workflow implemented of the REBUS-3 to ORIGEN-S coupling.

Figure 3-14. Example of coupled depletion PyARC input and summary output.

The ORIGEN input and output are provided back in the “*.zip/origen_XXXX.*”, and the main
results are extracted in the “.summary” file as shown in Figure 3-14. The results extracted are the
nuclide concentration for all the actinides concentrations throughout irradiation and decay,
together with their contribution to the total radioactivity and decay heat computed after
discharge throughout decay simulation.

Important Notes:

- Only the ORIGEN-S version from the Scale 6.1.3 package was tested.

- The depletion implemented only represent the initial loading of heavy nuclei, while
activation products are not tracked yet.

- The default branching ratio of Am-241 are representative of a fast neutron spectrum.

REBUS-3

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 24

- The ORIGEN-S irradiation is only used to re-produce once-through depletion calculation in
a sub-assembly – it is currently not suitable to represent equilibrium search and assembly
shuffling problems.

This methodology coupling REBUS-3 to ORIGEN-S should be verified comparing the masses of the
main heavy nuclides of the discharged fuel compositions provided by REBUS-3 to the detailed
composition generated by ORIGEN-S. Future work should include addressing some of the
limitations of the current implementation above-discussed.

3.8 DASSH [15]

New in V2.0.0 (with initial releases starting from V1.5.0)

The Ducted Assembly Steady-State Heat Transfer software (DASSH) is a full-core sub-channel
thermal hydraulics code. It is integrated in PyARC to enable sub-channel thermal-hydraulic
calculations for hexagonally gridded fast reactor cores with ducted assemblies. The DASSH
integration in PyARC provides the users with the capabilities of DASSH in a much-facilitated
workflow. For instance, PyARC executes the DASSH code directly following GAMSOR, and it
transfers the proper binary files from one application to another. The PyARC-DASSH input only
requires DASSH-specific options with minimum overlap with geometry specifications provided in
the main PyARC geometry block.

With the multi-dimensional power distribution in the reactor from the DIF3D/GAMSOR
calculations in PyARC, DASSH performs direct sub-channel thermal hydraulic calculations at any
depletion step to calculate coolant, structure, and fuel temperatures within the reactor core by
solving energy balance equations. DASSH offers multiple models for inter-assembly heat transfer,
calculates the pin-by-pin temperature distributions in the core, and determines pressure drop as
well as other important thermal-hydraulic parameters. Almost all of the currently available DASSH
modeling capabilities have been integrated in PyARC, and upcoming DASSH features will be
integrated as they are released. The DASSH plotting capabilities are enabled within PyARC, with
some examples from the tutorial Sample #16 shown in in Figure 3-15.

Figure 3-15. Examples of plots from DASSH for subchannel temperatures within 1 assembly (left)
core-wide subchannel temperatures (right).

https://githubmemory.com/repo/dassh-dev/dassh
https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/tutorial/Sample_16_ABTR_DASSH
https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/tutorial/Sample_16_ABTR_DASSH

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 25 ANL/NEAMS-20/2 Rev. 1

To execute DASSH with PyARC using Workbench (version 5.0.0 or later), DASSH needs to be
accessible from the Workbench Python API. To accomplish this, a special installation and
execution process has been implemented for DASSH that leverages the Workbench Conda
distribution. A script called “dassh_install.sh” was added to PyARC to create a DASSH-specific
virtual environment for DASSH; DASSH and its dependencies are installed within this environment
as a Python package. Then, at runtime, the “dassh_run.sh” script is called to activate the virtual
environment and run DASSH. This development offers a streamlined installation and execution
process for DASSH.

3.9 Monte Carlo

New in V2.0.0

The PyMCSim module was developed for PyARC which adds the capability to run Monte Carlo
(MC) eigenvalue and volume calculation simulations using the PyARC SON geometry input. This
module is designed to be code-agnostic meaning it can be used for multiple MC codes without
additional input from the user. The current implementation runs full eigenvalue and volume
calculations with OpenMC [16], but the module is aimed at being compatible with the SCALE Shift
code [35] in the future.

To use this module, the user supplies a reactor geometry input in the standard PyARC SON
geometry input and then sets simulation parameters in the “mcsim” block of the calculations in
the SON input. Simulation parameters that can be set include number of histories, source
parameters, physics treatment, whether to run a volume calculation, parallelism parameters, and
output information.

The PyMCSim module reads the standard PyARC SON geometry input and converts it to the
appropriate material and geometric definitions using the MC code’s Python API. The simulation
parameters supplied in the mcsim code block are then used for defining runtime parameters, and
a simulation using the designated MC code is launched by PyARC. Once the simulation is complete,
the relevant output from the MC code is processed and added to the PyARC summary file.

3.9.1 Shift [35]

Due to delay in obtaining an RSICC license for SCALE/Shift in FY-2022, the focus for PyMCSim
development was on OpenMC integration. Although Shift has yet to be integrated into PyMCSim,
the framework has been developed such that it will be interchangeable with OpenMC when
available.

3.9.2 OpenMC [16]

OpenMC is an open-source Monte Carlo tool that can be used for eigenvalue (k-effective)
calculations, fixed source simulations, and stochastic volume calculations. OpenMC has been
integrated into the PyMCSim module for eigenvalue and volume calculations. The module will first
read the material information from the SON input. All types of material, blend, and lumped
element definitions supported in the SON input are also supported as OpenMC material
definitions. After the materials are defined in the OpenMC format, the module will generate the
OpenMC geometry by generating surfaces, cells, and universes with the defined materials and

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 26

lattice structures. Models for both 2D and 3D hexagonal or square reactor/pin lattices can be
generated. Verification of the generated OpenMC geometry is provided in Appendix B.

After the generation of the geometric model, additional desired physics options, source settings,
and run settings are read from the SON input and applied. Three files are then exported that are
required for running OpenMC: materials.xml (contains material definitions), geometry.xml
(contains geometry definition and material assignments), and settings.xml (contains source,
physics, and run settings). OpenMC is then invoked and the simulation is run. Upon successful
completion of the simulation(s), the binary HDF5 output files from OpenMC are processed by
PyARC and relevant simulation information is added to the summary output and available in the
results of the user_object Python object. Results that are processed include:

• Eigenvalue calculation:

o K-effective (combined)

o K-collision

o K-absorption

o K-tracklength

o Leakage

• Volume calculation:

o Volume of each cell

o Volume of each material

Because OpenMC is implemented into PyARC using its Python API, special setup and handling of
the runtime environment is required if using PyARC from Workbench. A script called
“setup_openmc.sh” has been added to PyARC which acts as a one-time installation of OpenMC
into Workbench’s base Conda environment (only available with Workbench-5.0.0 and later). This
allows OpenMC to be available as a Python package.

A demonstration of the OpenMC capabilities is shown using the ABTR reactor model within the
tutorial Sample #18. Figure 3-16 shows the relevant mcsim SON input block and a sample of the
OpenMC simulation output in the messages window of Workbench.

https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/tutorial/Sample_18_ABTR_MCSim_OpenMC

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 27 ANL/NEAMS-20/2 Rev. 1

Figure 3-16. Image of Workbench showing the mcsim input block of the SON input and partial
output from OpenMC in the messages window.

3.10 Additional Utility Scripts

Additional utility scripts are made available in the PyARC repository to support users with various
reactor physics simulations. Some of those scripts can be run within or outside PyARC (similar to
the 2D plotting script mentioned in Section 2.1.3).

3.10.1 CovMat Utility

This utility streamlines generation of covariance matrix of nuclear data uncertainties on reactivity
coefficients, which is used for uncertainty propagation through transient simulations [35]. The
workflow implemented in this utility is detailed in Appendix A of [6]. Online documentation is also
available. This workflow is run completely outside of PyARC.

https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/utilities_covmat/tutorial

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 28

3.10.2 SafetyCodes Utility

New in V2.0.0

This utility script was developed to help users postprocess PyARC results into a format that is more
directly useable by safety and transients analyses codes such as SAS4A [37] and SAM [38].
Documentation is available online for this script to describe the blocks of this utility script:

o Decay heat curve fitting

The objective of this script is to generate an exponential fit of a decay heat curve that is used for
instance in transients analyses by the SAS4A code. Such decay heat curve is typically generated
by ORIGEN-S (through the PyARC REBUS to ORIGEN-S procedure described in Section 3.7). Safety
analyses codes will require exponential fitting of such decay heat curve 𝐷𝐻𝑜𝑟𝑖𝑔𝑒𝑛(𝑡) in the format:

𝐷𝐻𝑓𝑖𝑡(t) = ∑ 𝐵𝑖 ∗ e−𝐿𝑖∗ t

𝑖

The script developed intends to provide the optimum (𝐵𝑖 , 𝐿𝑖) that minimizes:

∑ [1 −
𝐷𝐻𝑓𝑖𝑡(𝑡)

𝐷𝐻𝑜𝑟𝑖𝑔𝑒𝑛(𝑡)
]

2

𝑡

This script uses a brute force approach to solving this problem by using the scipy.minimize
function using the Sequential Least Squares Programming (SLSQP) method to search for the set
of (𝐵𝑖, 𝐿𝑖) that minimizes the difference between the fitted and original decay heat curves. An
iterative approach is used where 1 to 24 sets of (𝐵𝑖, 𝐿𝑖) are researched, and the one providing
best results is provided.

This decay heat fitting procedure is executed within PyARC directly following ORIGEN-S
calculation. It can also be executed outside of PyARC by providing a decay heat curve to fit.

o Reactivity coefficients summary

This script simply postprocess the power data (from GAMSOR) and reactivity coefficients (from
PERSENT) and sums them radially over all the assemblies within a channel. This is used to merge
the detailed power and reactivity coefficient distribution in each thermal-hydraulic channel,
which typically corresponds to a grouping of assemblies with similar power level and flow level.

This utility script is executed by PyARC following GAMSOR and PERSENT calculations if a user
specifies channel distribution. It can also be executed outside of PyARC by providing appropriate
output files.

https://code.ornl.gov/neams-workbench/PyARC/-/blob/development/utilities_SafetyCodes/README.md

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 29 ANL/NEAMS-20/2 Rev. 1

4 PyGriffin

New in V2.0.0

4.1 Introduction to PyGriffin Module

The NEAMS program initiated development of PyGriffin in FY-2022 with the objective to
streamline Griffin workflow to facilitate and improve user experience leveraging the Workbench
user interface. PyGriffin is still under active development and some key features need to be
developed for useful application (especially outside of PyARC). This section summarizes the
capabilities envisioned by PyGriffin, and its development plan. The following list of benefits are
planned for Griffin users:

- PyGriffin to streamline Griffin workflow:

o multigroup cross-section generation with MC2-3 or Shift (not yet available)

o mesh generation using MOOSE mesh generators [22]

o facilitate Griffin input generation with correct mapping between block ID of mesh
(from MOOSE mesh generator) and material ID of cross section library (from MC2-
3 or Shift)

o Griffin execution

o results post-processing

- Workbench to support user experience:

o Assist SON and MOOSE input development (autocompletion, validation, etc.)

o Visualize geometry through build-in Workbench visualization

o Visualize mesh and results using Workbench built-in ParaView

o Visualize Griffin postprocessed results and ISOXML cross-sections through built-in
Workbench chart plotting (not yet available)

o Manage remote launch execution

PyGriffin is a unique toolbox that handles the Griffin workflow logic. A user can interact with
PyGriffin through two different pathways described below:

- Standalone PyGriffin - as described in Section 4.2. This path enables more flexibility for
Griffin modeling on any type of geometry (modeled within MOOSE Mesh System). Future
effort is required to fill out key missing capabilities required to make this path fully
attractive to Griffin users.

- Through PyARC - as described in Section 4.3. This path is readily available within PyARC
V2.0.0 to run and post-process Griffin simulations from PyARC model, as demonstrated in
Tutorial #17.

https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/tutorial/Sample_17_ABTR_PyGriffin

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 30

4.2 Path #1: Standalone PyGriffin Analyses

This reference path enables the largest amount of modeling flexibility – any model that can be
built through the MOOSE MeshGenerator will be supported. It is currently planned to be
compatible only with cross-section generation from the Shift Monte Carlo code [35]. Figure 4-1
provides an example of PyGriffin input to show how a user would interact with PyGriffin. In this
path, the Griffin user interacts with 2 input files:

• (1) PyGriffin “SON” input: to specify Griffin options and link to MOOSE mesh generator file.
Additional options to provide pre-generated:

o ISOXML or ISOTXS file with appropriate material mapping

o Exodus mesh file

o Griffin input

• (2) MOOSE MeshGenerator input: can be edited in Workbench – the user will specify a
reactor geometry used by PyGriffin to automatically generate the Shift model (planned for
FY-2023). Real-time geometry visualization through Workbench built-in tool (3) is
proposed for future work.

Finally, the PyGriffin results can be visualized through Paraview, as illustrated in (4) of Figure 4-1.

To summarize, through Workbench/PyGriffin, the user will have the following steps facilitated or
automated:

• Support MOOSE MeshGenerator input generation (through autocompletion features
within Workbench)

• Automated generation and execution of Shift for cross-section tallying (this is the key
missing part as of end of FY-2022)

• Automated execution of ISOXML and mesh files generation

• Support selection of Griffin options (through autocompletion features within Workbench)
and input of correct mapping between mesh and cross-section regions

• Post-processing of Griffin results

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 31 ANL/NEAMS-20/2 Rev. 1

Figure 4-1. Illustration of envisioned standalone PyGriffin pathway with 1) PyGriffin SON input,
2) MOOSE meshgenerator input, 3) geometry visualization and 4) mesh/results visualization.

4.3 Path #2: PyARC/PyGriffin Connection

This is the Griffin implementation path through PyARC that currently enables straightforward use
of PyGriffin/Griffin. This path is most applicable for Fast Reactor core modeling relying on cross-
section generation through MC2-3. An example of input and visualized geometry is shown in
Figure 4-2. An Advanced Burner Test Reactor (ABTR)-based tutorial example that calls PyGriffin
through PyARC can be found in Sample #17 of the PyARC tutorial.

Through PyARC, the user only needs to specify Griffin solver options within the PyARC “SON” input
(1 of Figure 4-2), and the PyARC/PyGriffinConnect module handles the following:

- Run MC2-3 and TWODANT for ISOTXS generation (leveraging existing workflow discussed
in Section 3.1) – or skip this calculation if pre-generated ISOTXS is provided by the user.

- Generate MOOSE mesh generator input generation.

- Geometry visualization through Workbench and Mesh/results visualization through
Paraview (2 and 3 of Figure 4-2, respectively).

- Execute PyGriffin module described in Section 4 that will handle the following:

- ISOTXS to ISOXML conversion

4)2)

3)1)

https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/tutorial/Sample_17_ABTR_PyGriffin

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 32

- Griffin input generation

- Execute MOOSE to generate exodus mesh file

- Execute Griffin

- Post-process Griffin results

Figure 4-2. Illustration of PyARC/PyGriffin pathway with 1) PyARC SON input specifying Griffin
solver options, 2) geometry visualization through Workbench, and 3) results (and mesh)
visualization through ParaView.

4.4 Status and plan for future development

The status and plan for future development of PyGriffin is summarized in Table 4-1. At the end of
FY-2022, the software infrastructure was developed, and initial capabilities were demonstrated.
Path #2 was completely implemented, with ongoing testing and improvement planned moving
forward. Path #1 is currently missing the key XS generation step, which currently limits the
benefits envisioned in the longer term.

1)
2)

3)

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 33 ANL/NEAMS-20/2 Rev. 1

Table 4-1. capabilities planned for PyGriffin and implementation as of end of FY-2022.

Capabilities implemented Path #1 – Standalone
PyGriffin

Path #2 –PyGriffin through
PyARC

Workbench features
Workbench input generation X X

Workbench geometry
visualization

FY-2023+ X (through PyARC)

Mesh and results
visualization

X (through Paraview)

ISOXML visualization End of FY-2022

Remote launch
demonstration

Yes – on ANL clusters

PyGriffin workflow

Workflow for XS generation FY-2023+ (through Shift) X (through PyARC/MCC3)
Workflow for mesh
generation

X X (only for hexagonal geom)

Workflow for postprocessing Initiated - FY-2023+

Assuming continued support, the following tasks are planned for implementation in FY-2023 by
the NEAMS Workbench team:

• Monte-Carlo (Shift) integration into PyGriffin workflow for cross-section generation

• Workbench built-in visualization for MOOSE mesh generation

• Continue integrate Griffin post-processing capabilities

• Add Workbench visualization of ISOXML (leveraging the ISOXML Python processing
developed in PyARC utility)

• Setup PyARC/PyGriffin on NCRC and demonstrate remote launch

• Extend PyARC/Griffin to cartesian geometry (once Cartesian geometries supported by
MOOSE meshgenerator)

• Development of training material and documentation

In the longer term, PyGriffin will be updated to support new solvers and new workflows. The
PyGriffin approach may be generalized to facilitate use of other physics tools and MultiApp
coupling with Griffin.

https://code.ornl.gov/neams-workbench/PyARC/-/tree/isoxml/isoxml

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 34

5 Conclusions and Future Work

This report details the status of the extended ARC and NEAMS codes capabilities integrated into
the NEAMS Workbench. Integrating these codes into the Workbench benefits directly the
advanced reactor community (within the DOE national laboratories, universities and companies)
by:

- Providing a set of controlled, maintained, documented and validated scripts to generate
codes’ inputs, which promotes best practices, reduces the learning curve, and facilitates
project collaboration.

- Improving the user experience: the Workbench interface provides assistance for building
an input through auto-completion, real-time validation, document navigation, and
geometry and results visualization.

- The PyARC and PyGriffin modules facilitates and automatizes complex calculations and
workflows for reactor analysis. The Dakota/PyARC coupling in the Workbench was also
demonstrated to enable mathematical optimization and sensitivity analysis/uncertainty
quantification (SA/UQ) techniques with ARC neutronic simulations. It could be extended
to PyGriffin as well (but this hasn’t been attempted as of yet).

- Helping users transition to high-fidelity NEAMS codes such as Griffin.

In FY-2021 and FY-2022, effort focused on integrating the DASSH sub-channel thermal-hydraulic
code, the Griffin high-fidelity deterministic code, and the OpenMC Monte Carlo code. Those
capabilities were made available in version 2.0.0 of PyARC release (PyGriffin hasn’t been released
yet). Various minor improvements were completed to enable additional modeling options and to
respond to user requests.

The ARC and NEAMS codes are currently used at ANL, Westinghouse, INL, and NCSU through the
Workbench by nuclear engineers for LFR, MSR, micro-reactor, and SFR core design analyses [28],
[39], [40], [41], [42]. Additional verification work and code-to-code comparison was recently
completed under the ARDP-Natrium project [43] and under the DOE-NE ART Fast Reactor program
[44].

Future efforts will focus on continuously adding new and existing modeling capabilities available
with the ARC and NEAMS codes (especially Shift to both the PyARC and PyGriffin workflows),
training new users and supporting them to continue building user experience.

https://code.ornl.gov/neams-workbench/PyARC/-/releases/pyarc-2.0.0

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 35 ANL/NEAMS-20/2 Rev. 1

REFERENCES

[1] B. T. Rearden, R. A. Lefebvre, “Objectives of the NEAMS Workbench,” ANS Summer
meeting, Philadelphia, PA, USA, June 17-21, (2018).

[2] B. T. Rearden, R. A. Lefebvre, A. B. Thompson, B. R. Langley, N.E. Stauff, “Introduction to
the Nuclear Energy Advanced Modeling and Simulation Workbench,” M&C 2017, Jiju Island,
South Korea, April (2017).

[3] N. Stauff, N. Gaughan, and T. Kim, “ARC integration into the NEAMS Workbench,” ANL/NE-
17/31, September 30, 2017.

[4] N. Stauff, “Updated status of the ART neutronic fast reactor tools integration to the
NEAMS Workbench,” ANL/NEAMS-18/1, September 30, (2018).

[5] N. Stauff, P. Lartaud, Y. S. Jung, K. Zeng, J. Hou, “Status of the NEAMS and ARC neutronic
fast reactor tools integration to the NEAMS Workbench,” ANL/NEAMS-19/1, Sept. 30, (2019).

[6] N. Stauff “Status of the NEAMS and ARC neutronic fast reactor tools integration to the
NEAMS Workbench,” ANL/NEAMS-20/2, September 30, 2020.

[7] ARC 11.0: Code System for Analysis of Nuclear Reactors, Argonne National Laboratory
(2014). Available from Available from Radiation Safety Information Computational Center as CCC-
824.

[8] Changho Lee, Yeon Sang Jung, and Won Sik Yang, “MC2-3: Multigroup Cross Section
Generation Code for Fast Reactor Analysis,” ANL/NE-11-41 Rev.3, August 31 (2018).

[9] K. L. Derstine, “DIF3D: A Code to Solve One-, Two-, and Three-Dimensional Finite
Difference Diffusion Theory Problems,” ANL-82-64, Argonne National Laboratory (1984).

[10] B. J. Toppel, “A User’s Guide to the REBUS-3 Fuel Cycle Analysis Capability,” ANL-83-2,
Argonne National Laboratory (1983).

[11] M. A. Smith, C. Adams, W. S. Yang, E. E. Lewis, “VARI3D & PERSENT: Perturbation and
Sensitivity Analysis,” Argonne National Laboratory, ANL/NE-13/8 Rev. 3, Apr 30 (2020).

[12] M. A. Smith, C. H. Lee, and R. N. Hill, “GAMSOR: Gamma Source Preparation and DIF3D
Flux Solution,” ANL/NE-16/50 Rev. 1.0, June 28, 2017.

[13] Y. S. Jung, C. H. Lee, M. A. Smith, “PROTEUS-NODAL User Manual (Rev.0),” ANL/NE-18/4,
Argonne National Laboratory, September 30 (2018).

[14] “Scale: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and
Design” ORNL/TM-2005/39 Version 6.1 (June 2011).

[15] Milos Atz, Micheal A. Smith, Florent Heidet. “DASSH software for ducted assembly
thermal hydraulics calculations – overview and benchmark,” Transactions of the American
Nuclear Society 123 pp. 1673-1676 (2020).

[16] Paul K. Romano, Nicholas E. Horelik, Bryan R. Herman, Adam G. Nelson, Benoit Forget,
and Kord Smith, "OpenMC: A State-of-the-Art Monte Carlo Code for Research and Development,"
Ann. Nucl. Energy, 82, 90--97 (2015).

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 36

[17] C. H. Lee et al., “Griffin Software Development Plan,” ANL/NSE-21/23, INL/EXT-21-63185,
Argonne National Laboratory and Idaho National Laboratory (2021).

[18] R. A. Lefebvre, A. B. Thompson, B. R. Langley, B. T. Rearden, “NEAMS Workbench 1.0 Beta
Status,” ANS Summer meeting, Philadelphia, PA, USA, June 17-21, (2018).

[19] Nicolas E. Stauff, Taek K. Kim, Robert A. Lefebvre, Brandon R. Langley, Bradley T. Rearden,
“Integration of the Argonne Reactor Computation codes into the NEAMS Workbench,” ANS
Summer meeting, Philadelphia, PA, USA, June 17-21, (2018).

[20] Robert A. Lefebvre, Brandon R. LANGLEY, and Jordan P. LEFEBVRE, “Workbench Analysis
Sequence Processor", ORNL/TM-2017/619, UT-Battelle, LLC, Oak Ridge National Laboratory
(2017).

[21] Kitware: ParaView Visualization Tool. https://www.paraview.org

[22] E Shemon et al. “MOOSE Framework Enhancements for Meshing Reactor Geometries,”
proceedings of PHYSOR (2022).

[23] Nicolas E. Stauff, Paul K. Romano, Zhiee Jhia Ooi, Amanda L. Lund, Ling Zou, W. Neal Mann,
Yinbin Miao, “WATTS Framework for Multidisciplinary Reactor Physics Analyses,” Proceedings of
the ANS Winter (2022).

[24] Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization,
Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.7 User’s
Manual.

[25] Nicolas E. Stauff, Robert A. Lefebvre, Laura Swiler, Bradley T. Rearden, “Coupling of
DAKOTA with the ARC suite of codes in the NEAMS Workbench for Uncertainty Quantification,”
ANS Summer meeting, Philadelphia, PA, USA, June 17-21, (2018).

[26] Kaiyue Zeng, Nicolas E. Stauff, Jason Hou, T. K. Kim “Development of multi-objective core
optimization framework and application to sodium-cooled fast test reactors,” Progress in Nuclear
Energy, Vol 120, February (2020) 103184.

[27] K. Zeng, Nicolas Stauff, “Multi-criteria optimization of the Advanced Burner Test Reactor,”
– Submitted to Progress in Nuclear Energy, (2019).

[28] T. K. Kim, N. Stauff, C. Stansbury, A. Levinsky, F. Franceschini, “Long Core Life Options for
the Westinghouse LFR,” proceedings of Global 2019, Seattle, WA, Sept (2019).

[29] "Advanced Burner Test Reactor Preconceptual Design Report", ANL-ABR-1, September 5,
2006. https://publications.anl.gov/anlpubs/2008/12/63007.pdf

[30] Gerald Rimpault et al, “Objectives and Status of the OECD/NEA sub-group on Uncertainty
Analysis in Best-Estimate Modelling (UAM) for Design, Operation and Safety Analysis of SFRs
(SFR-UAM),” FR’17, Yekaterinburg, Russia.

[31] C. H. Lee, N. E. Stauff, “Improved Reactivity Worth Estimation of MC2-3/DIF3D in Fast
Reactor Analysis,” Proceedings of ANS Sumer Meeting, paper 14201, San Antonio, Texas (2015).

https://www.paraview.org/

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 37 ANL/NEAMS-20/2 Rev. 1

[32] R. E. Alcouffe, F. W. Brinkley, D. R. Marr, and R. D. O’Dell, “User’s Guide for TWODANT: A
Code Package for Two-Dimensional, Diffusion-Accelerated, Neutral-Particle Transport,” LA-
10049-M, Los Alamos National Laboratory (1990).

[33] G. Palmiotti et al, “Variational nodal transport methods with anisotropic scattering,”
Nuclear Science and Engineering, Vol. 115, pp. 233-243 (1993).

[34] G. Aliberti and M. Smith, “PERSENT: need of a deterministic code for sensitivity analysis in
3D geometry and transport theory,” Proceedings of PHYSOR2014, Kyoto, Japan (2014).

[35] W. A. Wieselquist, R. A. Lefebvre, and M. A. Jessee, Eds., SCALE Code System, ORNL/TM-
2005/39, Version 6.2.4, Oak Ridge National Laboratory, Oak Ridge, TN (2020).

[36] Nicolas E. Stauff, K. Zeng, G. Zhang, G. Aliberti, J. Hu, T. Fanning, and T. K. Kim, “Uncertainty
quantification of ABR transient safety analysis – nuclear data uncertainties,” BEPU 2018, May 13-
19, Lucca, Italy (2018).

[37] T.H. Fanning, A. J. Brunett, and T. Sumner, eds., The SAS4A/SASSYS-1 Safety Analysis Code
System, Version 5, ANL/NE-16/19, Nuclear Engineering Division, Argonne National Laboratory,
March 31, 2017.

[38] R. Hu, “An advanced one-dimensional finite element model for incompressible thermally
expandable flow,” Nuclear Technology, 190 (2015).

[39] Bo Feng and Nicolas Stauff, “High Power Density Annular Fuel in a Fast Test Reactor,” ANS
Summer meeting, Philadelphia, PA, USA, June 17-21, (2018).

[40] Nicolas E. Stauff, F. Heidet, “Assessment of Low Enriched Uranium Fueled Core
Configurations for the Versatile Test Reactor,” proceedings of ANS Annual 2019, Minneapolis,
MN, June 9-13 (2019).

[41] Yinbin Miao, Nicolas Stauff, Aaron Oaks, Abdellatif M. Yacout, Taek K. Kim, “Fuel
Performance Evaluation of Annular Metallic Fuels for an Advanced Fast Reactor Concept,”
Nuclear Engineering and Design, Vol. 352, (2019).
https://doi.org/10.1016/j.nucengdes.2019.110157

[42] I. T. Usman, P. Lartaud, and N. E. Stauff, “Sensitivity Analysis and Uncertainty
Quantification of FFTF Cycle 8C using the NEAMS Workbench,” Submitted to ANS Winter Meeting
(2019).

[43] Nicolas Stauff, Ting Fei, Mike Smith, “ARDP Natrium Neutronic Methodology: Argonne
Neutronic Assessment of ABR-1000,” ANL/NSE-22/31, May 31, (2022).

[44] S. Kumar, B. Feng, and T. Fei, “Fast Reactor Physics Model Verification Studies using ARC
and PyARC Workflows,” ANL/NSE-22/46, September (2022).

[45] N. E. Stauff, A. Abdelhameed, M. Atz, P. Shriwise, Y. S. Jung, R. Lefebvre, “PyARC – A User-
Friendly Open-Source Reactor Physics Framework for Fast Reactor Design and Analysis,”
proceedings of PHYSOR (2022).

[46] M. B. Chadwick et al., “ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for
Nuclear Science and Technology,” Nuclear Data Sheets 107, 2931 (2006).

https://doi.org/10.1016/j.nucengdes.2019.110157

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 38

[47] https://github.com/openmc-dev/plotter

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 39 ANL/NEAMS-20/2 Rev. 1

Appendix A : Results Comparison for ABTR Tutorial Model

This section discusses the PyARC results obtained on the Advanced Burner Test Reactor (ABTR)
[29] model available in the tutorial. The detail reference core configuration and geometrical
dimensions for the core fueled with U-TRU-10%Zr is obtained from the ABTR pre-conceptual
report. The ABTR is a pool-type sodium-cooled fast reactor and its radial core layout is displayed
in Figure A-1. It displays 199 assemblies – 54 driver fuel assemblies, 78 reflector assemblies, 48
shield assemblies, 9 test assemblies for material test and fuel test purposes, and 10 primary and
secondary control rods. The reactor core is radially divided into two enrichment zones: inner core
region and outer core region composed of 24 and 30 driver fuel assemblies, respectively.

Figure A-1. Layout of ABTR model obtained through (left) PyARC 2D plotting utility script (right)
Workbench visualization.

Code to code comparison was completed as part of the PyARC tutorial using the OpenMC Monte
Carlo code [16] to provide a reference solution for the eigenvalue calculation on the fresh ABTR
core described above. Initial comparison was published in [45], but was updated with OpenMC
and Griffin solutions obtained directly within PyARC 2.0.0.

All the results are obtained using the ENDF/B-VII.0 nuclear data libraries [46]. OpenMC uses
explicitly defined fuel and control rod regions, while the other regions were homogenized (similar
to the geometry displayed in the left of Figure A-1). The results of this comparison are summarized
in Table A-1 and links to the different input and output files stored in the PyARC tutorial are
provided. Various deterministic approaches are available with PyARC to provide different levels
of accuracy, which is especially important for small fast neutron reactors such as ABTR.

The MC2-3 code is used to calculate the homogenized 33-group cross-sections for DIF3D with 2
different processes. In the “Low-fidelity XS”, the MC2-3 code directly condenses cross sections
into 33 energy groups, with a buckling search applied to the fuel regions, while the flux estimated
in the fuel regions is used for cross-section condensation in non-fuel regions. This simplified XS
generation process leads to ~1,300 pcm of added discrepancy (under-estimation) for the ABTR
model when compared to the “high-fidelity XS” generation process. In the high-fidelity approach,
the first step in MC2-3 uses a fine 2082-energy-group structure and cross sections are condensed

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/README.md#tutorial

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 40

into 1041 energy groups. It is followed by a flux calculation step using the 2-D Sn transport solver
TWODANT for an approximated equivalent 2-D cylindrical core with a P3 scattering approximation
and 1041 energy groups. During the third step, the cross sections are condensed into 33 groups
using the flux spectrum obtained from TWODANT for each region. Heterogeneous cross-section
treatment is applied in this second step to the driver fuel and control rod regions using MC2-3
based on an equivalent 1-D model to account for geometrical self-shielding [31].

The whole-core flux calculation is performed with the DIF3D code using the Diffusion (finite
difference solver) and the Transport (variational nodal transport solver VARIANT with the 3rd order
angular flux and 1st order scattering approximations) options, and using the 33-energy group
discretization. The Diffusion approximation leads again to ~800pcm of added discrepancy (under-
estimation) on the ABTR model when compared with the Transport option.

The highest fidelity option considered with PyARC (High-fidelity XS and Transport solution with
VARIANT) results in only 50 pcm of discrepancy when compared with the OpenMC solution
obtained through PyARC. Such high level of agreement may conceal some error cancellation.

Preliminary Griffin results are obtained through PyARC/PyGriffinConnect using a low fidelity XS
treatment (with homogeneous treatment), the MOOSE mesh generator system for mesh
generation, and Griffin’s DFEM-SN transport solver with CMFD acceleration. The mesh
discretization used in the input mesh divided each homogenized hexagonal assembly meshes into
2 quadrilateral elements, and uniformly refines the resulting mesh by a factor of 2. Moreover, a
Level-Symmetric quadrature with a quadrature order of 8, an anisotropic order of 2 is used with
3 polar angles and 4 azimuthal angles. About 900pcm of discrepancy with OpenMC solution is
observed. Further discrepancies in the eigenvalue results are likely to be reduced by using a finer
mesh discretization and higher order approximations to the transport solver, together with
application of higher-fidelity cross-section treatment.

Table A-1. Eigenvalue comparison between different PyARC methods and integrated codes.

Code Method K-eff Diff to Ref. [pcm]

PyARC/OpenMC Monte Carlo 1.08064 +/-
0.00011

Ref.

PyARC/DIF3D MC2-3 - Low-fidelity XS
DIF3D - Diffusion

1.05567 -2189

PyARC/DIF3D MC2-3 - Low-fidelity XS
DIF3D - Transport

1.06459 -1395

PyARC/DIF3D MC2-3 - High-fidelity XS
DIF3D - Transport

1.08003 -52

PyARC/PyGriffin MC2-3 - Low-fidelity XS Griffin –
DFEM-SN transport with CMFD

1.07046 -880

https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/tutorial/Sample_18_ABTR_MCSim_OpenMC
https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/Sample_1_ABTR_MCC3_DIF3D
https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/Sample_2_ABTR_VARIANT
https://code.ornl.gov/neams-workbench/PyARC/-/tree/master/tutorial/Sample_0_ABTR_Ref_Template
https://code.ornl.gov/neams-workbench/PyARC/-/tree/development/tutorial/Sample_17_ABTR_PyGriffin

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 41 ANL/NEAMS-20/2 Rev. 1

Appendix B : Model Comparison between OpenMC and ARC

This section summarizes a verification exercise done on the PyARC-generated OpenMC geometry
based on the ABTR model within the tutorial. The PyMCSim prerun process generates the
material.xml, geometry.xml, and settings.xml files for OpenMC. The OpenMC model defined in
these files can be viewed using the OpenMC Plotter tool [47]. Figures B-1 to 3 show the OpenMC
model in the Plotter compared to the SON model that was generated from the Workbench viewer
for each the x-y, x-z, and y-z viewing planes.

These comparisons indicate that the overall assembly configuration is consistent between the two
model representations. To better assess the details in the assemblies, Figures B-4 to 6 show close
ups of detailed regions in each plane. The black outlines on the OpenMC Plotter images indicate
the presence of a cell boundary, while the outlines on the Workbench viewer represent surfaces.
Despite the slight differences in which boundaries or surfaces are explicitly shown, the overall
structure and material locations are identical between the two models.

Figure B-1. Cross sections of the x-y plane at z=1.3 m. Left shows the OpenMC model from the

XML files in the OpenMC Plotter; right is the SON model in the Workbench viewer.

https://code.ornl.gov/neams-workbench/PyARC/-/blob/master/tutorial/README.md#tutorial

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 42

Figure B-2. Cross sections of the x-z plane at y=0 m. Left is the OpenMC model as viewed in the
OpenMC Plotter; right is the SON model in the Workbench viewer.

Figure B-3. Cross sections of the y-z plane at x=0 m. Left is the OpenMC model as viewed in the
OpenMC Plotter; right is the SON model in the Workbench viewer. Differences in resolution

during rendering account for the visual discrepancies.

Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

 43 ANL/NEAMS-20/2 Rev. 1

Figure B-4. Close up of the lattice structure of pins in the fuel assemblies in both the OpenMC
model as viewed by the OpenMC plotter (left) and the SON model in Workbench (right). The

outlines indicate cell boundaries in OpenMC and surfaces in Workbench. Note that the OpenMC
model has an additional surface in the cladding layer to account for how the wire wrap on a pin
is homogenized and added as an additional cell around the cladding (which additional surface is

not shown in the Workbench plot).

Figure B-5. A close up view of the x-z plane where the fuel and control assemblies are present
for both the OpenMC model as viewed by the OpenMC plotter (left) and the SON model in

Workbench (right). The outlines indicate cell boundaries in OpenMC and surfaces in Workbench.

 Status of the NEAMS and ARC fast reactor tools integration to the NEAMS Workbench
September 30, 2022

ANL/NEAMS-20/2 Rev. 1 44

Figure B-6. A close up view of the y-z plane where the gas plenum and a fuel assembly are
present for both the OpenMC model as viewed by the OpenMC plotter (left) and the SON model

in Workbench (right). The outlines indicate cell boundaries in OpenMC and surfaces in
Workbench.

Nuclear Science and Engineering Division
Argonne National Laboratory

9700 South Cass Avenue, Bldg. 208

Argonne, IL 60439

www.anl.gov

Argonne National Laboratory is a U.S. Department of Energy

laboratory managed by UChicago Argonne, LLC

http://www.anl.gov/

	Acknowledgment
	Executive Abstract
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Framework for extended ARC Tools Integration
	2.1 The Workbench Interface
	2.1.1 Common input
	2.1.2 Templates
	2.1.3 Visualization

	2.2 PyARC Module
	2.2.1 PyARC Module Introduction
	2.2.2 PyARC Workflow

	2.3 PyARC Applications in Complex Workflows
	2.3.1 PyARC Coupling with WATTS ‎[23]
	2.3.2 PyARC Coupling with Dakota within Workbench (could be applied straightforwardly also to PyGriffin)
	2.3.2.1 Workflow Implemented
	2.3.2.2 Benefits of the Dakota/PyARC Coupling
	 Optimization problems
	 SA/UQ problems

	2.4 Training Material

	3 Capabilities Integrated in PyARC
	3.1 MC2-3 ‎[8]
	3.2 DIF3D ‎[9]
	3.3 REBUS-3 ‎[10]
	3.4 PERSENT ‎[11]
	3.5 GAMSOR ‎[12]
	3.6 PROTEUS Nodal ‎[13]
	3.7 ORIGEN-S ‎[14]
	3.8 DASSH ‎[15]
	3.9 Monte Carlo
	3.9.1 Shift ‎[35]
	3.9.2 OpenMC ‎[16]

	3.10 Additional Utility Scripts
	3.10.1 CovMat Utility
	3.10.2 SafetyCodes Utility

	4 PyGriffin
	4.1 Introduction to PyGriffin Module
	4.2 Path #1: Standalone PyGriffin Analyses
	4.3 Path #2: PyARC/PyGriffin Connection
	4.4 Status and plan for future development

	5 Conclusions and Future Work
	REFERENCES
	Appendix A : Results Comparison for ABTR Tutorial Model
	Appendix B : Model Comparison between OpenMC and ARC

