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2 I Motivation

« Large scale structural failure frequently originates from small scale
phenomena (e.g, defects, microcracks, inhomogeneities), which
grow quickly in unstable manner

» Concurrent multiscale methods are essential to capture
correctly the multiscale behavior!

» Stable, accurate and robust methods for simulating mechanical Above: roof failure of Boeing 737 aircraft |
contact (touching surfaces, sliding, tightened bolts, impact) are  dueto fatigue cracks. From imechanica.org
equally important!

Two-step process to the computational simulation of contact:

1. Proximity search: computer science problem, has received much
attention due to importance in video game development ©

2. Contact enforcement step: existing methods (penalty, Lagrange
multiplier, augmented Lagrangian) suffer from poor performance ®

» Long simulation times ®
> LaCk Of accuracy @ Above: gears in contact within MEMS
> Lack of robustness ® This talk. device. From sandia.gov/media
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; | Schwarz Alternating Method for Domain Decomposition £

= Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use
those as pieces to iteratively build a solution for the more complex domain.

Basic Schwarz Algorithm

Initialize:
= Solve PDE by any method on Q, w/ initial guess for transmission BCs on I}.
Iterate until convergence:

= Solve PDE by any method on Q, w/ transmission BCs on I, based on values
just obtained for (,.

= Solve PDE by any method on Q, w/ transmission BCs on I'; based on values
just obtained for (Q,.
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+ | Schwarz Alternating Method for Domain Decomposition £

= Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.
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Basic Schwarz Algorithm

Initialize:
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Iterate until convergence:
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= Solve PDE by any method on Q, w/ transmission BCs on I'; based on values
just obtained for (Q,.
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Overlapping Schwarz: convergent with all-Dirichlet transmission BCs' if Q,N Q, # 0.

'Schwarz, 1870; Lions, 1988.



s | Schwarz Alternating Method for Domain Decomposition £

= Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains.

Crux of Method: if the solution is known in regularly shaped domains, use
those as pieces to iteratively build a solution for the more complex domain. H. Schwarz (1843-1921)

Basic Schwarz Algorithm

Initialize:
= Solve PDE by any method on Q, w/ initial guess for transmission BCs on I}.
Iterate until convergence:

= Solve PDE by any method on Q, w/ transmission BCs on I, based on values .
just obtained for (,. non-overlapping

= Solve PDE by any method on Q, w/ transmission BCs on I'; based on values a
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just obtained for (Q,.

\

o0

Overlapping Schwarz: convergent with all-Dirichlet transmission BCs' if O, N Q, # @.

Non-overlapping Schwarz: convergent with Robin-Robin? or alternating Neumann-Dirichlet?
transmission BCs.

'Schwarz, 1870; Lions, 1988. Z2Lions, 1990. 3Zanolli et al., 1987.



« | How We Use the Schwarz Alternating Method

AS A PRECONDITIONER
FOR THE LINEARIZED
SYSTEM

AS A SOLVER FOR THE
COUPLED

FULLY NONLINEAR
PROBLEM
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Overlapping Schwarz for Multiscale Coupling in Solid

The Schwarz alternating method has been developed/implemented for concurrent multiscale
quasistatic & dynamic modeling in Sandia’s Albany/LCM and Sierra/SM codes.
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Coupling is concurrent (two-way)

No nonphysical artifacts and theoretical
convergence properties’

“Plug-and-play” framework: couples different
meshes, element types, solvers, integrators

"Mota et al., 2017; Mota et al., 2021. ' 0,




s | Overlapping Schwarz for Multiscale Coupling in Solid

The Schwarz alternating method has been developed/implemented for concurrent multiscale
quasistatic & dynamic modeling in Sandia’s Albany/LCM and Sierra/SM codes.
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« Coupling is concurrent (two-way)

* No nonphysical artifacts and theoretical
convergence properties’

« “Plug-and-play” framework: couples different
meshes, element types, solvers, integrators

« Easy to implement in existing HPC codes, and
scalable, fast, robust

"Mota et al., 2017; Mota et al., 2021. ? 0,




s I Non-Overlapping Schwarz Formulation for Contact

BefoM %&nénlgﬁulation proceeds as usual

There are no contact constraints!

Contact constraints replaced w/ BCs
2y — @ — 2, applied iteratively at contact boundaries.

Detection of contact: proximity search and application of contact conditions to determine contact

* QOverlap condition: triggered when two or more objects/domains have begun to
overlap/penetrate each other

» Push condition: triggered when both of the following properties hold
» Compression: the tractions at the interface are compressive
» Sustainability: there was contact in the previous controller time step

2 2,

Enforcement of contact: alternating Schwarz iteration with Dirichlet-Neumann transmission BCs

n41 int; 1 axtin—+1 . 1 int; 1 oxt:n+1
Mlurl;-i— +fin ‘n-+ _ ix n—+ M2U5+ + féu n—+ _ féx n
So"l’"“ =X, on JpSH\T, t,pé”“ = X, on Jp\T', 'Ql 'QZ

Pt =y, on T, T, =T onT



0 I Non-Overlapping Schwarz Formulation for Contact
Mechanics

Controller time
stepper: defines
global ATs at which
subdomains are
synchronized

Controller time stepper

| Time integrator for 2,

Time integrator for (2,

Step 0: Initialize i = 0 (controller time index).



11 I Non-Overlapping Schwarz Formulation for Contact
Mechanics

Ty LT,

Controller time
stepper: defines
global ATs at which
subdomains are
synchronized

Controller time stepper

I Integrate using At |

Interpolate|from Time integrator for (2,

I A '\lnzmrl !

o | | Time integrator for (2,

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (1, solution from time T; to time T;,, using time-stepper in ; with time-step 4t,, using
solution in (), interpolated to I'; at times T; + nat;.
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Non-Overlapping Schwarz Formulation for Contact
Mechanics

Q, Ty Ty
Controller time stepper
| I
= I Time integrator for £2,
e
0, N Time integrator for (2,

' Integrate using At,

Step 0: Initialize i = 0 (controller time index).

Controller time
stepper: defines
global ATs at which
subdomains are
synchronized

Step 1: Advance (1, solution from time T; to time T;,; using time-stepper in (; with time-step 4t;, using

solution in (), interpolated to I'; at times T; + n4t;.

Step 2: Advance (), solution from time T; to time T;, 4 using time-stepper in (0, with time-step A4t,, using

solution in (), interpolated to I, at times T; + n4t,.
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Non-Overlapping Schwarz Formulation for Contact
Mechanics

Q, Ty LTy
Controller time stepper Controller time
r, ! | stepper: defines
I Time integrator for £, global ATs at which
Iy | subdomains are
o I I Time integrator for (2, i synchronized
|

Step 0: Initialize i = 0 (controller time index).

Step 1: Advance (), solution from time T; to time T;,; using time-stepper in (; with time-step 4t;, using
solution in (), interpolated to I'; at times T; + nAt;.

Step 2: Advance (), solution from time T; to time T;, 4 using time-stepper in (0, with time-step A4t,, using
solution in (), interpolated to I, at times T; + nAt,.

Step 3: Check for convergence at time T} ;.
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Non-Overlapping Schwarz Formulation for Contact
Mechanics

Q, Ty Ty
Controller time stepper

T I Integrate using At |
= Interpolate from Time integrator for £2,

| AN 0ty |
o I I Time integrator for (2,

2
|

Step 0: Initialize i = 0 (controller time index).

Controller time
stepper: defines
global ATs at which
subdomains are
synchronized

Step 1: Advance (), solution from time T; to time T;,, using time-stepper in (; with time-step 4t;, using

solution in ), interpolated to I'; at times T; + nAt;.

Step 2: Advance ), solution from time T; to time T;, 4 using time-stepper in Q, with time-step A4t,, using

solution in (), interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T, .
» If unconverged, return to Step 1.
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Non-Overlapping Schwarz Formulation for Contact

Mechanics
Q, Tl
I Integrate using At;
T, Interpolate from
.ﬂ.z to r]_ / \ |
0, | I

Step 0: Initialize i = 0 (controller time index).

T,
Controller time stepper

Time integrator for £2,

Time integrator for (2,

Controller time
stepper: defines
global ATs at which
subdomains are
synchronized

Step 1: Advance ), solution from time T; to time T;,; using time-stepper in (; with time-step 4t;, using

solution in (), interpolated to I'; at times T; + nAt;.

Step 2: Advance (), solution from time T; to time T;, 4 using time-stepper in (0, with time-step A4t,, using

solution in (), interpolated to I, at times T; + n4t,.

Step 3: Check for convergence at time T ;.
» |If unconverged, return to Step 1.
» |If converged, set i = i + 1 and return to Step 1.

Can use different integrators with
different time steps within each domain!



16 I Numerical Results: 1D Impact Problem’

L ]

Impact of two 1D identical linear elastic prismatic rods discretized using N,, = 200 linear
elements with exact analytic solution [Carpenter et al., 1991]
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« Schwarz alternating method compared to two conventional contact algorithms with a zero gap
contact constraint
» Implicit and explicit penalty method with penalty parameter 7 = 7.5 x 10*
» Forward increment (explicit) Lagrange multiplier (LM) method [Carpenter et al., 1991]

* Time stepper: Newmark-beta

» Schwarz couplings included Explicit-Explicit, Implicit-Explicit and Implicit-Implicit
» At = 1.0 x 1077 used for all methods except Implicit-Explicit Schwarz, which uses At = 1.0 x

1078 in explicit domain. .
'Hoy et al., 2021; Mota et al. (in prep), 2021.



17 I Numerical Results: 1D Impact Problem’

Contact point position: of the right-most node of left bar (©2,) as a function of time
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"Hoy et al., 2021; Mota et al. (in prep), 2021.



18 I Numerical Results: 1D Impact Problem’

Mass-averaged velocity: of the left bar (©2,) as a function of time

Mass-Averaged Velocity (91)
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'Hoy et al., 2021; Mota et al. (in prep), 2021.
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» Similar conclusions can be drawn from mass-averaged
velocity

» Schwarz variants calculate mass-averaged velocity to
a sufficiently greater accuracy than any of the
conventional methods, especially near the time of
release



19 I Numerical Results: 1D Impact Problem’

Total energy relative error: for the left bar (Q,) as a function of time

« Total energy error is v Total energy should
negative for all 6 | be conserved for
methods = all os) this problem
methods are stable. A

e All three 2f ‘ . Total Enelrgy Relative IError («,)

conventional methods

exhibit total energy
loss of up to 9% N -
following contact. S S R

-0.02 |

» Unlike conventional contact methods, Schwarz achieves an 0.04

error of at most 0.25% in the total energy!

» Explicit-Explicit Schwarz gives most accurate total
energy, followed by Implicit-Implicit Schwarz and et o
Implicit-Explicit Schwarz 0.08¢ —— Implicit-Implicit Schwarz [

— Implicit-Explicit Schwarz
Explicit-Explicit Schwarz
1

-0.06 |

total energy relative error

Explicit LM

-0.1

'Hoy et al., 2021; Mota et al. (in prep), 2021. ' time «10™



20 I Numerical Results: 1D Impact Problem?

Contact point force: for the left bar (Q,) as a function of time
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'Hoy et al., 2021;
Mota et al. (in prep), 2021.

« Three conventional methods exhibit some undesirable artifacts in contact point force but deliver in
general a smooth solution

« Schwarz solutions exhibit oscillations following instantiation of contact — “chatter” problem
» Schwarz method with largest total energy loss (Implicit-Explicit) exhibits least amount of chatter
» Energy dissipation is necessary for establishment of persistent contact [Solberg et al., 1998]

» Chatter problem can likely be mitigated through addition of numerical dissipation



21 ‘ Numerical Results: 1D Impact Problem’

Convergence of Schwarz methods

Schwarz Convergence - Kinetic Energy, €2,

kinetic energy relative error
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« Convergence rates are comparable to published results [Tezaur et al., 2021]

« At most 5 Schwarz iterations are needed for convergence
» Explicit-Explicit Schwarz variant requires fewest # iterations for convergence

"Hoy et al., 2021; Mota
et al. (in prep), 2021.



2 I Summary & Future Work

Summary:

» The Schwarz alternating method was shown to be an effective multi-scale coupling method in solid mechanics

« The Schwarz alternating method has shown promise as a novel technique for simulating multi-scale
mechanical contact

» Contact constraints are replaced with transmission BCs applied iteratively on contact boundaries

» Schwarz method delivers substantially more accurate solution than conventional contact approaches in
contact point displacement, mass-averaged velocity, impact time, release time, and kinetic, potential
total energies

» An unfortunate consequence of the method’s ability to conserve energy so well appears to be the
introduction of chatter in contact point velocity and force.

Ongoing/future work:

» Introduction of dissipation and/or numerical relaxation to mitigate chatter problem
» Introduction of additional or alternate contact constraints into Schwarz formulation
« Comparison to conventional contact formulations with zero gap rate constraint

» Implementation/evaluation of the Schwarz alternating method in multi-D

» Requires the development of operators for consistent transfer of contact traction BCs using concept of
prolongation/restriction
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» | Schwarz Alternating Method for Domain Decomposition £ _3

P

= Proposed in 1870 by H. Schwarz for solving Laplace PDE on irregular domains. sy
&
Crux of Method: if the solution is known in regularly shaped domains, use ‘
those as pieces to iteratively build a solution for the more complex domain. H. Schwarz (1843 - 1921)

Basic Schwarz Algorithm

Initialize:
= Solve PDE by any method on Q; w/ initial guess for Dirichlet BCs on I};.
Iterate until convergence:

= Solve PDE by any method (can be different than for Q) on Q, w/ transmission BCs on
I, that are the values just obtained for ;.

= Solve PDE by any method (can be different than for Q,) on Q; w/ transmission BCs on
Q, I that are the values just obtained for ,.

= Schwarz alternating method most commonly used as a preconditioner for Krylov iterative
methods to solve linear algebraic equations.

Novel idea: using the Schwarz alternating as a discretization method for
solving multiscale partial differential equations (PDEs).



26 ‘ Numerical Results: 1D Impact Problem’

Potential energy: for the left bar (Q,) as a function of time

Potential Energy (£2,)

25

« Similar conclusions can be drawn
from potential energy plots.

« All three conventional methods
underpredict peak potential
energy by =10%.

* Schwarz solutions capture peak
potential energy with relative error
<0.1%
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'Hoy et al., 2021; Mota et al. (in prep), 2021.
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Potential energy: for the left bar (Q,) as a function of time
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« Similar conclusions can be drawn
from potential energy plots.

« All three conventional methods
underpredict peak potential
energy by =10%.

* Schwarz solutions capture peak
potential energy with relative error
<0.1%
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8 ‘ Numerical Results: 1D Impact Problem’
Contact point velocity: for the left bar (©2,) as a function of time
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| ’ « Similar results are seen in the contact point velocity

* It may be possible to reduce amount of chatter in
Schwarz solutions by introducing numerical
dissipation into the method.

" 'Hoy et al., 2021; Mota et al. (in prep), 2021.




