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Abstract

Resonant plate and other resonant fixture shock techniques were developed in the 1980s
at Sandia National Laboratories as flexible methods to simulate mid-field pyroshock for
component qualification. Since that time, many high severity shocks have been specified that
take considerable time and expertise to setup and validate. To aid in test setup and to verify
the shock test is providing the intended shock loading, it is useful to visualize the resonant
motion of the test hardware. Experimental modal analysis is a valuable tool for structural
dynamics visualization and model validation. This work describes a method to perform
experimental modal testing at pyroshock excitation levels, utilizing input forces calculated
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via the SWAT-TEEM (Sum of Weighted Accelerations Technique-Time Eliminated Elastic
Motion) method and the measured acceleration responses. The calculated input force and
measured acceleration data are processed to estimate natural frequencies, damping, and
scaled mode shapes of a resonant plate test system. The modal properties estimated from
the pyroshock-level test environment are compared to a traditional low-level modal test. The
differences between the two modal tests are examined to determine the nonlinearity of the
resonant plate test system.
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1 Introduction

Testing components or subassemblies in the laboratory is a cheaper and faster alternative to
testing an entire system in its field environments. In some instances, performing a field test
of the environment is untenable. This is often true of high-level shock environments which
a system may experience. One method the test laboratory imparts shock environments onto
a system is via a resonant plate apparatus.

Sandia National Laboratories sometimes uses a resonant plate to create a two sided shock
response that is a more representative shock environment than a one sided pulse. Photographs
of a resonant plate test configuration are in Figure 1. This test setup requires that the
plate be flexible so its resonance can amplify the motion of the unit under test which is
bolted to the plate at a frequency range present in the field environment. This flexibility
at resonance allows for uncontrollable, off-axis motion during the test. This is an issue
as current environment specifications dictate that three orthogonal shock inputs are input
separately to simulate one environment. Uncontrollable off-axis motion can cause damage
in an off-axis direction that would inadvertently accumulate over the three hits.

One solution to produce a more realistic environment is to develop a test that meets shock
environments in all directions simultaneously. Executing a single shot test instead of three
separate tests eliminates the desire to suppress off-axis motion and is more representative
of the actual environment. Executing one test instead of three also reduces the time in the
laboratory, which increases the lab capacity. However, executing a single shot multi-axis test
is difficult because there is little control over the test. The test fires a high speed projectile
to impact the resonant plate. There is little control over the projectile besides the projectile
speed, the programmer that the projectile hits to shape the input force, and the size of the
projectile.

Due to the limited control the test facility has in modifying the shock input, the success
of the multi-axis test is contingent on the pre-test design using a finite element model.
Characterization and designs of multi-axis shock have been previously explored [6] [7] [9].
These efforts place high focus on the response of the base of the unit under test and the
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Figure 1: Photographs of the resonant plate test configuration without a test unit attached
or damping bars.

unit under test itself. These efforts also explore moving both the unit under test and the
impact location as possible means for designing a multi-axis test. Through these past efforts,
it is clear that the use of a finite element model is critical in designing a test for a given
multi-axis environment. Guessing on the test setup parameters in the lab is untenable due
to the amount of time it takes to gather data on one test setup, assess the results, and
formulate feedback to modify the resonant plate test setup.

Even with the use of a finite element model, information about the input force to the
resonant plate must be known in order to produce a meaningful model response. Direct
measurements are infeasible at such high force levels and short durations due to hardware
limitations of load sensors. In the absence of a direct measurement of the input force, inverse
methods are used to calculate the force that causes the measured accelerations. This is also
a challenge as traditional inverse methods are susceptible to slight non-linearities in the
structure. Nonlinearities are expected in the structure due to the bolting of the aluminum
damping bars to the outer edge of the resonant plate. To further increase damping, a thin
sheet of rubber is sandwiched between the damping bars and the resonant plate, all of which
increases the nonlinearity of the system. These damping bars are added to make the test
system damping closer to the fielded system. Another method to calculate the force is to use
explicit models to determine these forces, however, modeling of the contact and programmer

is difficult [4].

In order to determine the forces from the resonant plate tests, this body of work uses a spatial
inverse method known as the Sum of Weighted Accelerations Technique - Time Eliminated
Elastic Motions (SWAT-TEEM) [8]. This inverse method inverts spatial quantities (i.e.
mode shapes) to calculate the causal force. Using mode shapes provides a buffer against
most non-linearities as mode shapes are not as sensitive to system nonlinearities as natural
frequency and damping. Furthermore, the SWAT-TEEM technique uses shapes acquired
from the test which reduces errors in the basis shapes.



This paper details the force reconstruction process during the resonant plate environment.
The paper then uses the forcing function in conjunction with the acceleration measurements
to calculate modal parameters of the test hardware at shock levels. These modal parameters
calculated at shock input levels are compared to the experimental modal results obtained at
low input levels to determine the linearity of the system and to show if modal superposition
theory is acceptable for resonant plate shock tests.

2 Theory and Background

This paper uses modal analysis theory and the force reconstruction algorithm known as the
Sum of Weighted Acceleration Technique - Time Eliminated Elastic Motion (SWAT-TEEM)
in order to compute the modal parameters of the resonant plate system. This section explains
these topics in some detail to aid in digesting the analysis performed in this report, but the
overview is not meant to be an exhaustive overview of the topics.

2.1 Modal Analysis

Modal analysis has been studied extensively and entire books have been written to aid in its
understanding and application [1] [3] [5]. This section covers modal analysis at a high level
so that the reader can understand its importance and how the system’s modal parameters
are extracted from the data acquired.

Modal analysis theory is first examined by producing the equations of motion of a generic
structure. A structure’s motion can be estimated by the 2" order linear equations of motion

MZi+Cz+Kz=F, (1)

where M is the mass matrix, C is the damping matrix and K is the stiffness matrix of the
system. The displacement of the structure can be described in the frequency domain and
reorganized as
Jj(j,w) = —w’[-wM + jwC + K] ! (2)
F(jw)
where 7 is the imaginary number. This form of the equations of motion is informative
because it explicitly provides an input/output relationship between the displacement and
the forcing function that caused the motion through a transfer function. This transfer
function is specifically called a Frequency Response Function (FRF). Although the mass,
damping, stiffness matrices of the finite element model can be calculated, these properties
cannot be directly measured on a structure.

In order to be able to calculate and compare FRFs between the finite element model and
the physical structure, an eigen analysis is performed on the structure. The eigen analysis
in the finite element model calculates the eigenvalues and eigenvectors. The eigenvectors are
calculated from the mass and stiffness matrices and are referred to in structural dynamics



as the mode shapes. These shapes are related to the displacement of the structure through
a linear combination shown as

m=1

where ¢;,, is the m™ mode shape of the structure at degree of freedom i and g, is the modal
coordinate corresponding to the participation of that mode shape in the displacement of
the structure. The substitution shown in Eqn 3 is linear, however, it has been shown to be
valid for systems with slight nonlinearities stemming from frictional contacts [2]. The modal
substitution decouples the equations of motion shown in Eqn 1 and 2. As a result, FRFs
can be calculated for both the finite element model and experimental data. These FRF's in
the modal domain are written as

Z’l<j0.}) ~ ni)fc _w2¢im¢km (4)
Fr(jw) —w? + 2jwwnC,, + w2’

where w,, is the m'™ natural frequency of the structure and (,, is the modal damping
corresponding to the m'™ mode. This expression of the FRF matrix is computed element
by element of the i*® response degree of freedom with respect to an input at the k' degree
of freedom. With the physical structure, a directly measured force and directly measured
accelerations are obtained in order to calculate parts of the FRF matrix over the frequency
range for which there is adequate excitation. The modal parameters of the structure are fit
to the experimental FRF's using any number of methods.

m=1

In summary, modal analysis or eigen analysis is a method of transforming the data into

a domain that allows for the comparison of finite element models and physical structures.

Although the modal parameters are calculated from the finite element model, the experimental
modal parameters need to be fit to the experimental FRFs.

2.2 Formulation of SWAT (Sum of Weighted Acceleration Technique)

The derivation of the SWAT-TEEM (Time Eliminated Elastic Motion) algorithm that is
used to calculate the sum of the external forces begins with the 2°¢ order linear equations of
motion shown in Eq 1. The modal approximation shown in Eq 3 is substituted into Eq 1 to
get

Mo+ Copg+ Kopg=F. (5)
At this point, Eq 5 is premultiplied by the transpose of the rigid body modes, gbf, to get

¢, M@ + b, Chi + ¢, Ko = ¢, F. (6)

Because there is no internal damping or internal stiffness forces for the rigid body degrees
of freedom, Eq 6 simplifies to

¢, M¢j = ¢, F (7)



due to

dIC=0& ¢'K =0. (8)

The physical degrees of freedom are substituted for the modal degrees of freedom using the
relationship in Eq 77 into Eq 7 to get

¢, M = ¢, F. 9)

At this point a weighting matrix, w, is defined as

w’ = ¢ M. (10)
and substituted into Eq 9 to obtain

w'i=¢!'F. (11)
To solve for the weighting vector, an assumption of the input force is made. In the case
where the structure is impacted by an external force and then in a free state, there are no

external forces after impact and the accelerations of the system, Z 4, are assumed to decay
exponential and Eq 11 after the impact simplifies to

w'ig = 0. (12)

To obtain a non-trivial solution, information about the rigid body modes needs to be included
because they were not present in the free decayed response. The rigid body constraint is
formed by post-multiplying Eq 10 by the rigid body shapes to get

w'p, = ¢; M, (13)

which can be simplified to

wT¢r — Mr- (14)
Where M, is the modal mass of the rigid body modes. Equation 14 is added to Eq 12 to get

wT [¢r Z.Z.'fd} = [MT 0} . (15)

Equation 15 is solved for w? and substituted back into Eq 11 to solve for the sum of external
forces acting on the center of gravity written as

(M, 0] [, &a] " & = ¢ F. (16)

Equation 15 is solved for the six weighting vectors, w in a constrained least squares problem
with the rigid body shapes being the constraint. Because the pseudo-inverse includes the
time domain response of the system which is a linear combination of the mode shapes, the
mode shapes of the system do not need to be separately calculated as it does with the SWAT
algorithm.



3 Modal Analysis of the Resonant Plate Test

A series of resonant plate tests were executed on the resonant plate with damping bars.
The tests consist of different configurations of the test environment varying the projectile
size, pressure of the pneumatic gun used to fire the projectile, and the thickness of the felt
programmer. Each test configuration was repeated at least 4 times with nominally the same
parameters. Each configuration is referred to as a set of runs. Each set of runs tested can
be seen in Table 1.

The forces for each test run are estimated using the SWAT-TEEM method. The reconstructed
force from run 56 is in Figure 2. From the environment, it is expected that the forcing
function will look like a single sided pulse that starts and ends at zero. The force from run
56 is exactly that, however, there are some transient ‘forces’ after the main pulse. Knowing
that the projectile disengages, it is known that the ‘force’ after 0.3 ms is erroneous and an
artifact of not filtering the acceleration through the SWAT-TEEM process.

Knowledge of the shape of the input force is a means in determining the fidelity of the force
reconstruction. Another means to test the integrity of the force reconstruction uses the
conservation of momentum shown as

to
mug + / F(t)dt = mvy (17)

t1

where m is the mass of the resonant plate system, v is the velocity of the resonant plate at the

Table 1: Table of the run sets and associated test parameters

EZ;S% Test Runs | Pressure (psi) | Felt Thk (in) ng(gte}ft(lilfl) Avesrsfee dP(rf(t)J/zc)ztlle
Set 14 | [14:17] 10 1/8" Grey 6 215
Set 21 [21:27] 14 1/8" Grey 6” 28.1
Set 28 | [28:31] 10 1/8" Grey 6" 21.3
Set32 | [32:35) 10 1/27 Grey 6 21.4
Set 36 [36:39] 20 1/2” Grey 6’ 35.7
Set 41 [41:47] 20 17 Grey 6” 36.0
Set 48 | [48:51] 10 1" Grey & 53.5
Set 54 | [54:57] 50 1" Grey 6’ 59.8
Set 58 | [58:61] 20 1" Grey 127 23.9
Set 62 | [62:65] 10 1" Grey 127 37.1
Set 66 | [66:68] 60 1" Grey 127 16.1
Set 69 69:72] 15 1/2" Grey 12 195
Set 73 | [73:76] 25 1/2" Grey 12 278
Set 78 | [78:81] 35 1/2° Grey 12 341
Set 82 | [82:89) 15 1/8" Grey 127 19.1
Set 86 | [86:91] 25 1/8" Grey 127 275
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Figure 2: The reconstructed force from run 56 using the SWAT-TEEM algorithm and a
3kHz low pass filter.

initial, o, and final, f, moments, and F(¢) is the imparted force calculated by SWAT-TEEM.
Because the initial velocity of the plate is zero for each of the runs, the final velocity of the
plate could be calculated by dividing the impulse of the force by the mass of the plate.

The conservation of momentum is calculated for run 32 with the force passed through a 6
kHz low-pass filter. The data had the velocity of the plate calculated by integrating the
accelerations. Although there is a spread of velocities of the integrated accelerometers due
to rigid rotations and drift, the velocity calculated through the conservation of momentum
is compared to the integrated measured accelerations. This integration of the measured
accelerations is shown in Figure 3. The velocity of the plate calculated through the conservation
of momentum is approximately the average of the integrated accelerations.

All of the forces calculated for the runs in Table 1 are transformed into the frequency domain
for examination. Examination in the frequency domain allows for direct comparison between
the different test parameters and to determine at which frequency bandwidths contain the
majority of the energy. This concatenation of forces in the frequency domain can be seen in
Figure 4.

Conclusions from examining the forces calculated are that the forces are relatively consistent
when using the same test parameters: gun pressure, projectile size, felt thickness. Increasing
the felt thickness does not significantly change the energy imparted by the projectile. When
the felt thickness increases, the length of the pulse increases which reduces the high frequency
force and increases the force at low frequencies.

Increasing the gun pressure and consequentially the projectile speed increases the energy of
the impact and also reduces the pulse width of the impact. This provides an increase in force
over all frequencies. However, that increase in force is not uniform over the frequency domain.
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Figure 3: Integrated velocities from acceleration responses in run 32 with the velocity at the
center of the plate bolded.

The last test parameter is the projectile size or weight. An increase in projectile weight
provides a proportional increase in energy to the resonant plate. Another effect of increasing
the weight of the projectile is a change in the pulse width of the force. This increases the
forces for lower frequencies and reduces the force at higher frequencies.

With the force calculated at a known location, the acceleration data can be combined with
the forcing function to calculate Frequency Response Functions (FRFs). From the FRFs,
coherence of the averaged runs and modal parameters are calculated. Coherence and the
FRF with respect to one degree of freedom is shown in Figure 5. The left plot in Figure
5 shows the FRF and coherence from averaging four resonant plate test runs of the same
test parameters. The figure shows high coherence, greater than 0.9, for frequencies less than
4000 Hz except at frequencies of anti-resonances.

The right plot of Figure 5 averages four test runs of a low level hit with four test runs of a
high level hit. The coherence is worse when compared to the coherence of data all at the
same level, but it stays above 0.9 when less than 2500 Hz. This shows that although the
system is not linear over different forcing levels, the nonlinearities are not significant enough
to void modal superposition.

Modal parameters are fit to two discrete sets of data. One set is of low level impact data
and the other is of high impact data. Six modes from the shock test are compared to the
same modes acquired from traditional low-level experimental modal analysis testing. The
forces from the low level modal test are about two orders of magnitude lower in peak force
from the shock test. The mode shapes of the test display are difficult to interpret visually.
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Figure 4: Forces in the frequency domain of all the test runs on the bare resonant plate with

damping bars.
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Table 2: Comparison of modal damping levels from experimental modal tests and resonant
plate shock tests. NF' = Mode Not Found

Low Level Shock

Mode Number

Exp Modal Test
Nat Freq (Damping)

Nat Freq (Damping)

High Level Shock
Nat Freq (Damping)

Mode 1 Frequency

391 Hz (0.35%)

379 Hz (0.41%)

383 Hz (0.40%)

Mode 2 Frequency

582 Hz (1.4%)

697 Hz (9.6%)

656 Hz (6.9%)

Mode 3 Frequency

1001 Hz (2.6%)

953 Hz (5.1%)

052 Hz (3.9%)

Mode 4 Frequency

1288 Hz (2.5%)

1167 Hz (4.5%)

NF

Mode 5 Frequency

2087 Hz (1.0%)

1822 Hz (4.0%)

NF

Mode 6 Frequency

2397 Hz (0.93%)

2359 Hz (1.2%)

NF

Finite element mode shapes with high Modal Assurance Criteria (MAC) values to the test
shapes are in Figures 6 and 7. The frequency and damping comparisons of these modes are
in Table 2. The table shows that there are some shifts in frequencies and damping of the
different modes and that all modes are not affected the same with respect to the input load
levels. This conclusion is expected, but predicting the shifts in frequency and damping is
very difficult or impossible without data.

There are some difficulties in fitting the modal parameters from shock data. With the short
time histories of the test, the frequency spacing in the FRFs is very high, about 24 Hz.
This leads to the modal parameters being sensitive to small changes in the FRFs. The
resynthesized complex mode indicator function (CMIF) of the low force input and high force
input are in Figures 8 and 9 respectively. The resynthesis of the CMIF shows that the modes
that are excited well are fit well to the test data. The resynthesized CMIFs also show that
there are some modes indicated that are not fit well. Only modes fit with high confidence
are included in the comparison shown in Table 2.
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Figure 8: CMIF and resynthesized CMIF of the low level shock data



10° E

107 \ - e
] N \ \ E

CMIF Magnitude

Experimental Data (1) | [
I Analytical Fit (1)
/ * datal

I T I T
500 1000 1500 2000 2500
Frequency (Hz)

Figure 9: CMIF and resynthesized CMIF of the high level shock data

4 Conclusion

This paper demonstrates the process of executing the SWAT-TEEM algorithm on a resonant
plate test and that the force calculated from a test can be used to generate FRFs of sufficient
quality to fit modal parameters. Having quality FRFs provides insight in the linearity, the
natural frequencies, the damping and the shapes of the test setup. The paper compares the
modal parameters acquired at experimental modal levels, low level shocks, and high level
shocks to demonstrate that the resonant plate has varying degrees of nonlinearities per mode.
The results show that there are physics present in the system that prevent the system from
behaving linearly with respect to input force. The nonlinearities present, however, do not
prevent the use of a linearized model that is calibrated to the dynamics present at shock
type input loads.
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