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/" PHOTOVOLTAIC MODULE DURABILITY

Biden administration memo September 2021:
‘4 Solar power can be 45% of nation’s energy by 2035

PV Module Economics:

 Industry driven by $/W where ~1/2 cost is in packaging
* Goal: 3¢/ kWh by 2030

* Typlcal Warranty: 80% power after 25 years Electroluminescence image of a PV module shows cell damage

Guada, 2020 Energy Science and Engineerin
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/ POLYMERS PROTECT PV MODULES

/ i
| O
— Frame and Edge Seal W
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~30% vinyl acetate
Crosslinked - peroxides
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R= -CH3 ,-(CHE)HCH:;, others
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Layers of a typical silicon PV module Encapsulants Laminated under heat, vacuum

New design concepts: glass-glass, frameless, thin-film, bifacial, glassless
Reduce $/W through advances in packaging

Ecoprogetti.com
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/~ FAILURES OCCUR IN PACKAGING

Polymers provide adhesion between layers,
protection from water, and electrical isolation

min. time
max. 100°C/h 1) min

s

Transparency critical for function

Temperature T ["C)

min. time

10 min

Stressors: Water, Wind loads, Temperature,
Electric Fields, Animals, UV aging...

. . Time  [h]
IR measurements of modules installed in

Arizona show internal T's can reach >90C
Kempe et al. 2015

Fig. 29.2 One cycle of the temperature cycling
test according to IEC 61215 Eitner. 20711

e i ——

Jokin ‘Wohlgemuth

DOE DuraMAT consortiuﬁ?s&ablished between NREL, SNL, LBNL, SLAC, others

DuPont



MODELING e

e ]

L T——— : ' £ /| x=v950 mm
ANOW QUANTUM - I ; .
18318007 300w SERIES Smany g F [
1.374e+007 I = YA T_]
9.157e+006 ey ¥ =5 (8 <171 1
4,579 C0cal 1L *Cﬁ%x;omm
Swass
C‘—w

A

VanMises (Pa)

P// ACCELERATE DESIGN CYCLES THROUGH COMPUTATIONAL

——.

Va1 L

pr——

7 :
7 | [ &[5
i ® x=-550 —
— p—
-i:_"_'" ot ] -

Validate _:I.. = | ‘:"*, SOLARTECH
e g UNIVERSAL

Computationa

Materials
Model

Characterization.

000

100 .,.t"'
10 :‘lf" B

1

1.0E-07 1.0E-02 1.0E+03 1.0E+8
Shifted Freguency [Hz]

Storage Modult




ACCELERATE DESIGN CYCLES THROUGH COMPUTATIONAL
MODELINGA

300w

QuUAMTLM

SERIES

L
B .—..... '3:- “:'"_I_-;::.‘ b
s (= SOLARTECH
UNIVERSAL
-

Computationa

Model

Shifted Freguency [Hz]




// ACCELERATE DESIGN CYCLES THROUGH COMPUTATIONAL |
~ MODELING gog s R

VAV AM .
——

NRE!

Materials
Characterization.

SNL

- | Shifted Frequency [Hz]




Heat Flow (mW)
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Laminated EVA's
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DSC data show key polymeric transitions in PV day/night cycles
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THERMAL TRANSITIONS IN ENCAPSULANTS
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/" MODULUS OF ENCAPSULANTS
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/" MODULUS OF ENCAPSULANTS
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CREEP AND STRESS RELAXATION IN ENCAPSULANTS
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Creep is observed in modules,

depending on operating temperature
Kempe et al. 2015

TIME [s] l

Utilize stress relaxation to validate linear viscoelastic
Maxwell constitutive model utilized by FEM

EVA is a Maxwell solid at 25 °C with a modulus
(and relaxation time?) that depends on water content.
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P FINITE ELEMENT MODEL CONSTRUCTION

Collaborations with module manufacturers have identified Aluminum frame
key construction details
Glass-glass and conventional silicon modules

Lorner key

Quarter symmetry or mini-module approaches Symmetry

planes

Cells
Physics: Thermal stresses, mechanical loads,

thermal-electrical interactions
material and design tradeoffs

~Irradiance,
A 2
,;‘// 17000 W/m
Convection, h = 10 5. Glass #1 thickness
W/mz/K 17. Encapsulant thickness
15. Backsheet thickness
Temperature (deg C) 21. Edge tape thickness ;
85
¢ 80
Absorption 2 Ei
y,
S

10. Friction coefficient, Steel-Aluminum
18. Mount screw clamp force

- Hartley et al. /EEE.). Photovoltaicsv10 no. 3 202‘




FINITE ELEMENT MODEL RESULTS ~ front s oo

Edge Tape Modulus
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Interconnects can be stress Front Glass Thickness
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/,

Aluminum Modulus

Next generation glass-glass
modules will have greater
reliance on polymers
compared to ¢-Si modyles
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Hartley et al. /EEE /. Photovoltaicsv10 no. 3 2020



// ACCELERATE DESIGN CYCLES THROUGH COMPUTATIONAL |
MODELING R

L. UE=L S L.UE=LUlL 4. JE+HUS 4. UJE+D
— SNL | - Shifted Frequency [Hz




Deflection {-y) (mm)

30

25

20

/" MODEL VALIDATION
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Initial validation of FEM model
Compare predicted deflections against full-
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IEC61215 pressure loads
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VALIDATION: INSTRUMENTED MODULE

Module 2 A
=== 4 instrumented modules constructed with
i - l - » . . .
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VALIDATION RESULTS

c  2.0e-04 A —
'S 1.0e-04 i
5 0.0e+00 1+
v -1.0e-04 | "
= -2.0e-04 1 ‘“
T -3.0e-04 -
> -4.0e-04 1
— 0.0e+00 4
'E -1.0e-04 -
4= -2 0e-04 4
.: -3.0e-04 - e T __ IC
T -4.0e-04 - ™ -
N 5 0e-04 A . . \...rw:ntl.-.a ."-E.'_‘.—_"": , | -—=
L © . % 5 1“6 Tn"j, 1..’6 .-'}\' .hﬁ
[ i ' 7> 43 3 ! " . ol
EL imaging shows modules are functional, but &Y @™ @Y @ @ @ @b
not optimized for electrical performance S T L ]
X X-direction y  direction
e ‘ Log strain
' ’ 2.000e-04
‘ 1.000e-04
0.000e+00
-1.000e-04
-2.000e-04
Gauges in:
0 Module 2

Predicted strains (color) qualitatively match experimentally observed deformation for all strain gauge Iocations.‘



£
o
5
2
X

/" EFFECT OF JUNCTION BOX
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/o Viscoelastic polymers provide photovoltaic module durability
o Aging, stress relaxation, temperature all concerning to 30 year warranties

o Aspirations for “50-year modules”

o Computational model developed through DuraMAT consortium can provide
accelerated design cycles

Max Principal (Pa)

9.5e+007
. 4. 2e+007
o Plenty more to consider: » 1e+{m?E

-6.4e+007
-1.2e+008

Modules creep over time, and manufacturing stresses relax
Next-generation module designs will rely more on polymer performance
Crystallization, crosslinking, polymer composition all could be important
Ruthless $/W standards mean every design feature must perform
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