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ABSTRACT

This report is the final documentation for the one-year LDRD project 226360: Simulated X-ray
Diffraction and Machine Learning for Optimizing Dynamic Experiment Analysis.

As Sandia has successfully developed in-house X-ray diffraction tools for study of atomic
structure in experiments, it has become increasingly important to develop computational analysis
methods to support these experiments. When dynamically compressed lattices and orientations
are not known a priori, the identification requires a cumbersome and sometimes intractable search
of possible final states. These final states can include phase transition, deformation and
mixed/evolving states.

Our work consists of three parts: (1) development of an XRD simulation tool and use of
traditional data science methods to match XRD patterns to experiments; (2) development of
ML-based models capable of decomposing and identifying the lattice and orientation components
of multicomponent experimental diffraction patterns; and (3) conducting experiments which
showcase these new analysis tools in the study of phase transition mechanisms. Our target
material has been cadmium sulfide, which exhibits complex orientation-dependent phase
transformation mechanisms. In our current one-year LDRD, we have begun the analysis of
high-quality c-axis CdS diffraction data from DCS and Thor experiments, which had until
recently eluded orientation identification.

This work was performed, in part, with Lab Directed Research & Development (LDRD)
support.

This manuscript was authored, in part, by Mission Support and Test Services, LLC, under
Contract No. DE-NA0003624 with the U.S. Department of Energy and supported by the
Site-Directed Research and Development Program, National Nuclear Security Administration,
NA-10 USDOE NA Office of Defense Programs (NA-10). The United States Government retains
a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United States Government purposes.
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1. BACKGROUND

1.1. Motivation

X-ray diffraction (XRD) is a powerful diagnostic of atomic structure and is becoming a key tool
in studies of the transient states of materials during dynamic compression experiments. Recently,
Sandia has successfully demonstrated dynamic XRD capabilities on both the large Z Machine and
the small Thor pulser. However, the analysis of XRD patterns of materials undergoing dynamic
compression, which are often marred by noise and background, can be highly non-trivial. Thus, a
robust simulation and analysis toolkit is needed to optimize interpretation of experimental XRD
data.

1.2. Introduction

Dynamic compression experiments have primarily relied upon velocimetry diagnostics, such as
Velocity Interferometer System for Any Reflector (VISAR) [2] and Photonic Doppler
Velocimetry (PDV) [3], to provide insight into the behavior of materials under extreme conditions
at the continuum, macroscopic scale. However, one of the most fundamental properties of a solid
is its crystal structure, which requires atomic, microscopic scale understanding. X-ray diffraction
is a key atomic scale probe since it provides quantitative observation of the compression and
strain of the crystal lattice, and is used to detect, identify, and quantify phase transitions. While
XRD measurements under static pressures are routinely performed on single and polycrystalline
samples, similar measurements on dynamic compression experiments are more challenging.
X-ray diffraction data from dynamically compressed samples are extremely valuable as direct
measurement of the elastic compression of the crystal lattice, onset of plastic flow, strength-strain
rate dependence, phase transitions, and density of crystal defects such as dislocations.

In-situ dynamic XRD has been performed at gas gun [4] and laser-driven [5, 6] dynamic
compression facilities in various forms, including monochromatic Bragg reflection [7] and
transmission [8, 9], multi-line Laue pattern [10], and time-resolved measurements [11, 12, 13].
However, implementing XRD on pulsed-power platforms has been challenging due to their
unique experimental issues, such as load hardware constraints, high X-ray background,
electromagnetic pulse interference, and debris mitigation. After overcoming all of those
challenges, XRD has recently been successfully implemented on Sandia’s Z Machine [14, 15] and
Thor pulser [16, 17].

Experimental diffraction patterns from simple structures can often be readily identified through
comparison with databases or idealized structure calculations. However, when dynamically
compressed lattices and orientations are not known, a priori, identification can become an
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Figure 1-1. Monocrystalline vs. polycrystalline XRD. (a) In a monocrystalline material,
the individual reciprocal lattice points are projected onto the detector as discrete peaks. (b)
In polycrystalline material with randomly oriented crystals the reciprocal lattice points for
each of the crystallites combine to form Debye-Scherrer cones.

exhausting search of possible final states. For highly deformed lattices, or when multiple lattices
or orientations are convolved, this method quickly becomes untenable. We propose incorporating
machine learning (ML) convolutional neural network approaches that will enable pattern
recognition from the near-limitless permutations – selecting high-probability matches to
experimental data from large datasets of simulated patterns.

A new 2D XRD pattern simulation capability has been added to the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) code [18] to calculate diffraction
images from arbitrary atomic systems, including from all lattice symmetries, mixed states,
powders, and microstructural defects. This work will enable enhanced pattern recognition of both
single crystal and powder diffraction patterns. Machine learning algorithms will leverage the
simulated diffraction data to empower analysis of experimental patterns obtained from Z and
Thor. Success will dramatically improve atomic- scale understanding and predictive capability of
phase transition behavior.

1.3. XRD Theory

Crystalline solid materials consist of atoms arranged in a definite, repeating pattern in three
dimensions, called a Bravais (crystal) lattice [19]. In 3D space, there are 14 Bravais lattices that
are grouped into 7 lattice systems: triclinic, monoclinic, orthorhombic, tetragonal, cubic, trigonal,
and hexagonal. For example, there are 3 lattices in the cubic system: the simple cubic (sc) lattice,
the body-centered cubic (bcc) lattice, and face-centered cubic (fcc) lattice. The structure of a
crystalline material may be represented geometrically by Hermann–Mauguin notation, which
defines its symmetries in terms of point, plane, and space groups. A point group is a group of
geometric symmetries that keep at least one point fixed. The symmetry elements that constitute
the point groups are proper rotation axes (n), mirror planes (m), inversion center (1), and rotary
inversion axes (n). A plane group is a mathematical classification of a 2-dimensional repetitive
pattern, whose first letter is either lowercase p or c to represent primitive or centered unit cells.
The next number is the rotational symmetry, and the presence of mirror planes are denoted by m
and glide reflections are denoted by g.
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A space group is the symmetry group of a configuration in 3-dimensional space. The symbol of a
space group is defined by combining the uppercase letter describing the lattice type with symbols
specifying the symmetry elements. The Bravais lattice types are P = primitive, I = body centered
(German “Innenzentriert”), F = face centered (German “Flächenzentriert”), A = base centered on
A faces only, B = base centered on B faces only, C = base centered on C faces only, and R =
rhombohedral. For example, the mineral form of sodium chloride (NaCl) is commonly known as
rock salt, which has the space group notation of Fm3m in Hermann-Mauguin notation. The
reciprocal lattice represents the Fourier transform of the Bravais lattice that exists in real
(physical) space and exists in reciprocal or momentum space (k-space). Crystallographic planes
are described using Miller indices (hkl), which are the integer coefficients of the reciprocal lattice
vectors. In the process of XRD, the momentum difference between incident and diffracted X-rays
of a crystal is a reciprocal lattice vector. The XRD pattern of a crystal can be used to determine
the reciprocal vectors of the lattice, thus reconstructing the atomic arrangement of the crystal.
Figure 1-1 presents the XRD patterns measured by a 2D X-ray detector of ideal monocrystalline
and polycrystalline materials.

A monocrystalline material or single-crystal has an atomic structure that repeats periodically
across its whole volume, where each atom is related to every other equivalent atom in the
structure by translational symmetry. The entire monocrystalline sample is continuous and
unbroken to the edges of the sample, with no grain boundaries. For an ideal monocrystalline
material, the individual reciprocal lattice points are projected onto the detector as discrete peaks
called Laue spots at associated diffraction angles. The locations of the measured peaks are used to
determine the values of the (hkl) planes that from which the X-rays were diffracted from (see
Figure 1-1(a)).

A polycrystalline material, or polycrystal, is made up of an aggregate of many small crystallites,
or grains, each having a high degree of order. These grains vary in size and orientation with
respect to one another. In metals, grain interfaces or boundaries are very important in determining
their properties. When a polycrystalline sample is illuminated by a monochromatic X-ray beam,
each orientation reflects X-rays to a different location on a Debye-Scherrer cone [20, 21]. The
Debye-Scherrer cone is the superset of the reflections formed by the crystal that satisfy Bragg’s
Law. For a powder where nearly all orientations are represented, the reflections combine to form
uniform cones of diffracted X-rays onto an X-ray detector called Debye-Scherrer rings (see
Figure 1-1(b)) Unlike powders, polycrystals do not consist of randomly oriented crystallites.
Rather, metal polycrystalline samples have grains of varying sizes and preferential orientations
(texture), which tend to produce incomplete or spotty diffraction rings on the X-ray detector.
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2. EXPERIMENTS

2.1. Methodology

Dynamic compression techniques have been used extensively to collect information on the
high-pressure equation of state (EOS) of materials. Most high-pressure EOS data have been
obtained from shock compression which represents to determine the response of a material along
its principal Hugoniot; i.e., the states produced by the passage of a steady, single shock wave
produced from ambient conditions or by shock compression of porous samples of the material,
which produce higher temperature states at a given compression [22, 23, 24]. The thermodynamic
states produced by ramp loading of all materials, and solids in particular, are closer to the
isentrope because entropy and heat producing shock fronts are avoided [25, 26, 27, 28, 29].

To perform dynamic XRD experiments, various dynamic compression drivers have been coupled
to X-ray sources. Specifically, small gas gun and laser drivers have been built at large X-ray
source facilities, such as the Dynamic Compression Sector (DCS) at the Advanced Photon Source
(APS) [4] and the Matter in Extreme Conditions (MEC) hutch at the Linac Coherent Light Source
(LCLS) [6]. However, pulsed-power platforms are much harder to construct at these X-ray source
facilities because of their large size and unique mode of operation.

To generate X-rays for XRD on Z, the multi-kJ Z-Beamlet laser (ZBL) is focused onto a metal
foil target, forming a high temperature plasma that emits K-shell line radiation. These He-like
emissions, specifically Heα lines, of various metals with a range of X-ray photon energies (4–10
keV) are used to probe the dynamically-compressed material states generated on Z-Dynamic
Material Properties (DMP) loads. Alternatively, a compact, pulsed-power X-ray source has been
implemented on Thor to enable XRD measurements. This compact flash X-ray diode can
generate a single, bright (∼30 ns) pulse of narrow line emission (e.g., Mo–Kα , 17.4 keV, 0.71 Å)
[30, 31] for use on Thor-XRD experiments, along with the broadband bremsstrahlung emission of
up to 300 keV.

2.2. Ambient Results and Discussion

To produce ambient XRD data for the LAMMPS-ML testing, the Thor-XRD setup was replicated
on a benchtop, as shown in see Figure 2-1. The X-ray diode head was mounted so the X-rays are
horizontal to the lab bench. The XRD sample and the image plate (IP) X-ray detector were
mounted onto a multi-axis stage with a total of 5◦ of motion: x-, y-, and z-translations, and pitch-
and yaw-rotations (see Figure 2-1(a)). In addition, the XRD sample was placed on an independent
yaw-rotation stage, and the IP was mounted to an independent x-y-stage. A direct beam block
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Figure 2-1. Photos of setup for benchtop ambient XRD testing with (a) side and (b) top
views.

made of W-Cu was placed on the IP to attenuate the strong 0◦ X-ray direct beams, as shown in
Figure 2-1(b).

Cadmium sulfide (CdS) is a yellow solid that at ambient conditions (density of 4.83 g/cm3) occurs
in two crystal forms: (1) the more stable wurtzite-hexagonal structure (P63mc), and (2) the less
common zincblende-cubic structure (F43m). Single-crystal CdS samples (wurtzite structure) with
two different orientations, c-axis and a-axis, were obtained from the vendor SurfaceNet GmbH.
The c-axis CdS sample has the (0001) axis perpendicular its flat surfaces, while the a-axis CdS
sample has the (11-20) axis perpendicular to its flat surfaces.

Using the Thor-XRD benchtop setup, a series (0-180◦ rotation at 10◦ increments) of ambient
XRD patterns were obtained from an a-axis CdS (8 mm diameter, 1mm thick) sample, as shown
in Figure 2-2. With the XRD sample rotation stage was at 0◦, the edge of the CdS sample was
marked to provide an angular reference point, denoted as the “DICE mark” (see Figure 2-2(a)). A
thick Mo anode (3mm diameter) was installed in the X-ray diode head so all of the shots could be
completed without needing to change the anode. The incident X-rays were at 11◦ relative to the
CdS sample’s surface. The IP detector was located at 65 mm from the center of the CdS sample.
The direct X-ray beam was attenuated with a W-Cu block.

A total of 19 Thor-XRD shots (0-180◦ rotation at 10◦ increments) were performed to obtain the
XRD data set. The measured IP data of the XRD patterns are shown in Figure 2-3 to Figure 2-9.
The direct beam along with the shadow of the W-Cu beam block were observed at the center top
of each XRD pattern. Various XRD Laue spots from the CdS sample were observed within the
lower 2/3 of the IP data. As the CdS sample was rotated, some Laue spots disappeared while new
ones appeared. After examining the complete a-axis CdS sample XRD data set, the c-axis, which
is parallel to the crystal face, was predicted to occur with the DICE mark at 55◦. To validate the
prediction, two more Thor-XRD shots were performed with (1) the DICE mark at 55◦ so the
X-rays would be parallel to the c-axis (see Figure 2-2(b)), and (2) DICE mark at 145◦ so the
X-rays would be perpendicular to the c-axis see Figure 2-2(c)). The prediction was indeed
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Figure 2-2. Photos of CdS (a-axis) 180 ◦ rotation setup (a) top view, (b) X-rays parallel to
c-axis, and (c) X-rays perpendicular to c-axis.

confirmed based on the symmetry of the observed Laue spots shown in Figure 2-5(a)) and Figure
2-8(b).

(a) (b) (c)

Figure 2-3. IP data of CdS (a-axis) with DICE mark at (a) 0◦, (b) 10◦, and (c) 20◦.
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(a) (b) (c)

Figure 2-4. IP data of CdS (a-axis) with DICE mark at (a) 30◦, (b) 40◦, and (c) 50◦.

(a) (b) (c)

Figure 2-5. IP data of CdS (a-axis) with DICE mark at (a) 55◦, (b) 60◦, and (c) 70◦.

(a) (b) (c)

Figure 2-6. IP data of CdS (a-axis) with DICE mark at (a) 80◦, (b) 90◦, and (c) 100◦.

(a) (b) (c)

Figure 2-7. IP data of CdS (a-axis) with DICE mark at (a) 110◦, (b) 120◦, and (c) 130◦.
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(a) (b) (c)

Figure 2-8. IP data of CdS (a-axis) with DICE mark at (a) 140◦, (b) 145◦, and (c) 150◦.

(a) (b) (c)

Figure 2-9. IP data of CdS (a-axis) with DICE mark at (a) 160◦, (b) 170◦, and (c) 180◦.

2.3. Dynamic Results and Discussion

In solid-solid phase transitions the lattice mismatch at the interface between the two phases will
add to the energy barrier for the transition [32]. The magnitude of this additional energy barrier
likely depends upon the deformation state of the parent phase. This raises some very fundamental
questions: Is a shock-induced transformation influenced by the deformation state (i.e., elastic
versus inelastic) of the parent phase? Can the transformation mechanism in a single crystal
depend upon the direction of shock propagation? What is the role of inelastic deformation in the
transformation kinetics? Here we examine the role of inelastic deformation in shock-induced
phase transformations with in-situ, time-resolved X-ray diffraction measurements in single-event,
shock wave experiments on cadmium sulfide (CdS) single crystals.

Despite the considerable body of work on shock-induced phase transformations, very little is
known regarding the role of inelastic deformation in both the transformation mechanism and
kinetics. CdS, which exhibits a stress-induced phase transition from the ambient wurtzite (hcp)
structure to the high-pressure rock salt (fcc) structure at ∼3 GPa [33, 34, 35, 36, 37], is an ideal
system to address the role of deformation and crystal orientation. CdS exhibits dramatic
differences in its elastic-inelastic behavior for shock compression along the crystal a- and c-axes:
shock propagation along the c-axis does not exhibit inelastic deformation prior to the phase
transition [33], while shock propagation along the a-axis exhibits inelastic deformation at ∼2.5
GPa [34], well below the phase transition threshold. These differences enable evaluation of the
phase transition mechanism and kinetics for the same system under significantly different
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Figure 2-10. Experimental configuration for in-situ, time-resolved X-ray diffraction mea-
surements in single-event, shock wave experiments on CdS single crystals.

deformation states.

Furthermore, previous optical spectroscopy [35, 36, 37] studies on CdS show a dramatic reduction
in transformation timescale for compression above ∼5 GPa along the c-axis. We propose this is
due to the onset of inelastic deformation at ∼5 GPa, well above the phase transition threshold.
This hypothesis, based solely on the previous studies, is speculative; X-ray diffraction
measurements can definitively address this issue. Finally, the transformation in CdS appears to
progress through an intermediate or metastable crystal structure [33, 34, 35, 36, 37, 1]. However,
direct observation of a metastable structure in a shock-induced phase transformation has not been
reported; X-ray diffraction (XRD) measurements could provide such an observation.

XRD experiments on shocked single crystal CdS were performed using the powder gun in the
35-ID-E station at the Dynamic Compression Sector (DCS) at the Advanced Photon Source
(APS) at Argonne National Laboratory. The experimental configuration used, referred to as a
front surface impact configuration, is illustrated in Fig. 2-10. A 750 µm thick, 10 mm diameter
CdS single crystal sample (SurfaceNet, GmbH) was mounted on a lexan projectile and impacted a
1.4 mm thick polymethylpentene, commonly referred to by its trade name TPX (Mitsui
Chemicals, Inc.), window; thick enough to provide a high-stress state in the CdS for ∼500 ns, the
time duration of interest in these experiments.

XRD data was obtained in the reflection geometry using the first harmonic of the U17.2 undulator
(which produced a ∼23.5 keV pink X-ray beam) with a 5◦ incident angle between the X-rays and
the shock propagation axis. Given the absorption depth of CdS at 23.5 keV (∼200 µm) and the
shallow incident angle, this configuration preferentially probed the sample near the impact surface
(∼20 µm depth). During the impact event, two or three XRD patterns were obtained from ∼100
ps synchrotron X-ray pulses with separation of ∼153 ns between pulses (24 bunch mode at the
APS). At each stress level of interest, multiple experiments were performed to randomly sample
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the crystal within the first ∼300 ns after impact (dictated by the 153 ns X-ray time structure).
Because the configuration preferentially probes the sample near the impact surface, these
snapshots provided XRD data at various times after the shock entered the sample, thereby
providing time resolved data.

XRD signals were recorded using a framing X-ray area detector, comprised of a 150 mm
phosphor screen optically coupled to image intensified CCD cameras. The phosphor screen,
which was located ∼120 mm from the TPX window and oriented perpendicular to the X-ray
beam, converted the X-ray photons to optical photons. Optical photons were coupled via lenses
and beam splitters to 4 separate image intensified CCD cameras triggered at 153 ns intervals to
capture images from subsequent X-ray bunches produced by the synchrotron. Experimental
timing was structured such that the first frame was obtained just prior to impact of the CdS
sample with the TPX window; subsequent frames were obtained after impact. In addition to XRD
measurements, velocity interferometry data (Photonic Doppler Velocimetry, PDV) were obtained
from the impact surface (CdS/TPX interface) during each experiment. These data provided a
measure of the stress at the impact surface as a function of time, enabling correlation of the XRD
measurement(s) with the stress state at the impact surface; the region being preferentially probed
in reflection geometry.

Based on the results of previous front surface impact experiments [1], initial experiments at DCS
were performed on c-axis CdS at three different elastic impact stresses (the stress achieved at the
impact surface assuming purely elastic response of the ambient wurtzite phase); approximately
3.9, 4.8, and 5.4 GPa. These stress levels also correspond to those achieved in front surface impact
velocimetry experiments performed by Jones and Gupta [1], which provide a time resolved
measure of the stress at the impact surface, as seen in Fig. 2-11. At the two lower stresses, the
initial response appears to be elastic compression (first ∼100 and ∼20 ns at 3.9 and 4.8 GPa,
respectively) followed by transformation to an intermediate structure (subsequent ∼100 ns)
followed by transformation to the final rock salt structure. At the highest stress, the elastic impact
stress is not resolved; it is speculated that transformation to an intermediate structure occurs on a
sub-ns timescale, followed by transformation to the final rock salt structure over ∼200 ns. These
transitions occur on timescales that are compatible with the X-ray time structure of the APS.

Initial experiments at DCS have demonstrated that high-quality XRD data can be obtained from
shocked CdS single crystals. Representative data from experiment 19-4-060, in this case an
elastic impact stress of 3.7 GPa, is shown in Fig. 2-12. The first image (Fig. 2-12a) was obtained
∼78 ns prior to impact and represents diffraction from the ambient wurtzite structure. These data
enable the orientation of the crystal with respect to the X-ray beam and shock propagation axis to
be determined. In this case the crystal a-axis was established to be ∼-3.6 ◦ off the vertical axis
(the axis perpendicular to both the X-ray beam and the shock propagation axis). The second
frame (Fig. 2-12b) was obtained ∼75 ns after impact. The locations of the diffraction spots are
similar to those observed in the first frame and are consistent with what would be expected from
elastically compressed wurtzite, exhibiting slight elongation in the radial direction. The third
frame (Fig. 2-12c) was obtained ∼228 ns after impact and looks markedly different, indicative of
a significant change in the crystal structure suggesting that a phase transformation has occurred.
The highly localized diffraction spots also suggest that the high-pressure phase retains a very high
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Figure 2-11. Velocimetry data from front surface impact experiments described in Ref.
[1]. The dashed vertical lines correspond to times at which XRD images were obtained in
experiment 19-4-060, shown in Fig. 2-2. This figure adapted from Ref. [1].
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Figure 2-12. Representative XRD patterns from experiment 19-4-060, in this case an elas-
tic impact stress of 3.7 GPa. Leftmost frame was obtained prior to impact and corresponds
to diffraction from the ambient wurtzite phase. The middle frame was obtained 75 ns after
impact and corresponds to elastically compressed wurtzite. The rightmost frame was ob-
tained 228 ns after impact and clearly exhibits new diffraction spots indicating a significant
change in the crystal structure suggesting that a phase transformation has occurred.

degree of texture, indicating that there is a strong orientation relation between the daughter and
parent phases.

The relatively broad spectrum of the pink beam at DCS, shown in Fig. 2-13, complicates the
analysis of the XRD patterns for single crystal samples. For a given observed diffraction spot it is
not known a priori what X-ray energy satisfied the Bragg condition to produce that spot; it is only
known that the energy lies within the spectrum shown in Fig. 2-13. Thus, the following procedure
was followed to index the ambient CdS crystal orientation from the pre-impact XRD pattern.
First, multiple (at minimum three, but preferably more) reasonably strong diffraction spots were
selected from the XRD image. Geometrical considerations were then used to determine the
scattering angles and all hkl indices possible for each diffraction spot based on the minimum and
maximum X-ray energy and the nominal initial crystal orientation (i.e., c-axis aligned along the
direction of shock propagation). All possible hkl combinations are then evaluated to determine
how well the set of angles between candidate hkl vectors match the inferred angles from the
measured diffraction spots. This routine typically identifies a set of reciprocal lattice vectors that
best match the measured XRD pattern. These reciprocal lattice vectors are then randomly varied
by small angular rotations until the root mean square difference between the calculated and
measured diffraction spots satisfy a minimum difference criterion. This method is reasonably
robust, provided that the selected diffraction spots originate from unique crystal lattice planes.

Similarly, the broad spectrum of the pink beam complicates analysis of the XRD patterns
obtained from the phase transformed material. While a direction normal to the corresponding
lattice plane of the phase transformed structure can be calculated from each localized diffraction
spot, this is not sufficient to specify the orientation relation between the ambient and phase
transformed structures. In particular, because of the degeneracy of the phase transformed
structure, it is not possible to deduce that two observed diffraction spots from different lattice
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Figure 2-13. Measured spectral flux of the pink beam at DCS; in this case the first harmonic
of the U17.2 undulator.

planes correspond to a single orientation. In practice, forward simulations – including all possible
degeneracies – are required to determine whether the measured XRD patterns are consistent with
a proposed phase transition mechanism. Such a process requires a cumbersome and sometimes
intractable search of possible final states. This problem is exacerbated and becomes untenable
when lattices are highly deformed, and especially when multiple lattices or orientations are
convolved. For this reason, we have proposed incorporating machine learning (ML) using
convolutional neural network approaches to enable pattern recognition from the near-limitless
permutations – selecting high-probability matches to experimental data from large sets of
simulated data, as discussed in Chapter 3.
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3. LAMMPS SIMULATIONS

3.1. Producing LAMMPS X-ray Diffraction Simulations

In this one-year LDRD we established Sandia’s in-house capability to produce simulated 2D
diffraction pattern data from arbitrary atomistic structures. We did this by extending the
USER-DIFFRACTION package in the LAMMPS molecular dynamics code [18] to allow the
calculation of 2D X-ray diffraction patterns. Working with the original package developer, Shawn
Coleman (currently at Army DEVCOM), we have demonstrated and validated our capability.
Significant further work will be needed to improve its generalizability, efficiency and useability.
However, the tool is already able to handle the polychromatic, uncollimated X-ray sources used in
Thor experiments, and has been used to identify unexpected mechanisms in experiments
conducted by Knudson, et al. at the Dynamic Compression Sector.

3.1.1. Method of Reciprocal Lattice Calculation

Diffracted X-rays are produced when a collimated X-ray beam interacts and coherently scatters
via the electrons present in the atomic lattice planes within crystalline structures. The diffraction
pattern is given by the condition for positive interference and by the crystal’s interplanar
separation. The Bragg diffraction condition is

sin(θ)
λ

=
|~k |

2
(3.1)

where θ is the diffraction angle, λ is the X-ray wavelength, and~k is the vector difference between
the wave vectors of the incident X-ray and the lattice planes,~k =~kD−~kI . The X-ray diffraction
intensity, Ix(~k), from [14], for a collection of atoms can be written as a function of the structure
factor of the collection of atoms,

Ix(~k) = Lp(θ)
F(~k)F∗(~k)

N
(3.2)

where the structure factor, F(~k), is calculated from a sum over all atoms as follows,

F(~k) =
N

∑
j=1

f j(θ)exp(2πi~k ·~r j) (3.3)
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Figure 3-1. Representation of a reciprocal lattice density (black) and Ewald sphere con-
struction (white) in k-space. The points intersecting the Ewald sphere of radius 1/λ repre-
sents the monochromatic diffraction pattern for that energy X-ray. The orientation of the
sphere is determined by the incident k vector. The 2D diffraction pattern in mapped on the
spherical surface with angular coordinates θ and φ .

where the f j are the atomic scattering factors and~r j represent the atomic positions. The
Lorentz-polarization factor, Lp(θ), is given by,

Lp(θ) =
1+ cos2(2θ)

cos(θ)sin2(θ)
(3.4)

The 2D diffraction pattern can be determined by a geometrical construction (see Fig. 3-1) in
which the diffraction pattern is given by the intersection of the Ewald sphere of radius 1/λ with
the reciprocal space diffraction intensity, Ix(~k).
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3.1.2. LAMMPS Scripting and Output

A sample script is given below for producing a reciprocal representation of the structure
CdS_190527_003_180.data which is a relatively small (65000 atom) system. Typical systems
should contain at least 500,000 atoms. This script produces a vtk file with a high resolution
(0.005 Å−1).

#SCRIPT: CdS_xrd.in to create CdS_001.xrd.0.vtk
4 units metal
5
6 atom_style charge
7 boundary p p p
8
9 read_data CdS_190527_003_180.data
10 replicate 2 2 2
11
12 # Define atom properties
13 mass 1 112.41
14 mass 2 32.065
15
16 group Cd type 1
17 group S type 2
18
19 set group Cd charge 1.18
20 set group S charge -1.18
21
22 # Define force field
23
24 timestep 0.001
25
26 pair_style lj/cut/coul/cut 10.0
27 pair_modify shift yes mix arithmetic tail no
28
29 pair_coeff 1 1 1.447711e-3 1.98 10.0
30 pair_coeff 2 2 1.421859e-3 4.90 10.0
31
32 dump d1 all custom 1000 CdS.dump id type x y z ix iy iz vx vy vz
33
34 thermo_style custom step temp pe etotal pxx pyy pzz lx ly lz vol
35 thermo 100
36
37 atom_modify sort 0 0
38
39 compute XRD all xrd 0.7107 Cd S 2Theta 1 179 c 0.005 0.005 0.005 manual LP 1 echo
40 fix 2 all xrd/vtk 1 1 1 c_XRD file $A_001.xrd
41
42 dump 1 all custom 1000 $A.dump id x y z
43 run 0
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3.2. From Monochromatic Calculations to Realistic Experimental
Comparisons

The procedure described in Section 3.1 is sufficient to produce a very idealized 2D diffraction
pattern for an arbitrary collection of atoms. However, initial comparisons with experiments were
quite poor. We quickly determined that the experimental image plates we produced were far from
ideal in ways that had significant impact on our comparisons. Ultimately, we determined that four
realistic aspects of the experiments would need to be modeled explicitly in order to reproduce the
experimental patterns.

To compare well with experimental diffraction patterns, we needed to extend the LAMMPS
simulations to account for:

• Broad energy spectrum (i.e. polychromatic) source X-rays.

• Uncollimated X-ray sources.

• Projection distortion on the image plate (flat/spherical, and keystoning due to tilt).

• Precise geometry/orientation beyond typical measurement uncertainty.

The first three of these aspects will be described in this section, the last will be discussed in the
section on applications.

3.2.1. Source-appropriate Polychromatic X-ray Spectrum

Figure 3-2. The monochromatic Ewald sphere construction can be generalized for multiple
X-ray energies. A continuous energy spectrum can be approximated with a superposition
of discrete spheres. Left: the energy spectrum of the molybdenum X-ray diode emission.
This source when filtered is often approximated as monochromatic, but in fact the bright
Kα and Kβ lines have a broad effective spectrum of bremsstrahlung radiation. Right: a
depiction in two dimensions of the areal intersection of the Ewald circle with a reciprocal
lattice. Each discrete circle (sphere in 3D) is scaled by the appropriate X-ray intensity.
Every source has a unique spectrum.
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a) b) c)

Figure 3-3. Calculated and experimental diffraction patterns. (a) Simulated diffraction
pattern produced with a monochromatic X-ray source (i.e. single Ewald sphere radius) at
the Kα wavelength. (b) Simulated polychromatic diffraction pattern produced by numerical
integration of the discrete points of the Mo X-ray diode spectrum shown in Fig. 3-2. (c)
The corresponding experimental diffraction pattern (180◦ from DICE mark) as seen in Fig.
2-9

At the start of the year, we had believed that we might be able to model the experimental
diffraction patterns from Molybdenum X-ray diodes with monochromatic X-rays matched to the
dominant Kα line of the emission. This seemed reasonable because this line is at least 10x
brighter than the bremsstrahlung background, as seen in Figure 3-2 (Left). As it turned out, we
not only required the secondary Kβ peak but quickly discovered that the full polychromatic
spectrum calculation would be required. To our advantage, the Ewald sphere method for
monochromatic diffraction determination was easily generalized by repetition with spheres of
various radii - each radius given by a different X-ray wavelength. In this way, the known X-ray
spectrum of a source could be discretized and the the monochromatic 2D diffraction pattern
determined. The polychromatic pattern was then constructed by superposition of these
components, each scaled appropriately by the respective source intensity depicted (for
molybdenum) in Fig. 3-2. Each polychromatic pattern requires the contribution of many
monochromatic calculations. We found 20 to 40 contributions in this numerical integration to be
sufficient to approximate the experiments.

We see from Figure 3-3 that our simulations do much better at capturing the shape and size of the
experimental image plate scans when we properly account for the broadening due to the pin hole
geometry.

3.2.2. Uncollimated Source Broadening

The calculation from LAMMPS assumes that the incident beam is a plane wave without any
angular spread. This approximation can be quite good for nearly collimated X-ray sources, such
as a the Advanced Photo Source (APS) at Argonne National Lab. However, our X-ray diode
source on Thor is currently quite simple by comparison – an effective point source with a pin-hole
filter. In this arrangement, generally, small pin holes which are relatively far from the source
produce nearly collimated X-rays, but have very low fluence. So, angular spread must be accepted
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Figure 3-4. The effect of uncollimated source X-rays (i.e. angular spread through the pin-
hole) can be rigorously accounted for by superimposing the diffraction patterns produced
by multiple incident angles. The broadening here is a result of multiple slightly shifted
diffraction patterns with angles associated with the particular hole/slit geometry of a par-
ticular source. This contribution produces spot shape corresponding to experiments, rather
than pin points.

to improve X-ray source intensity. The angular spread of the incident X-rays is determined by the
hole’s size, shape and distance from the diode source.

As before, we were able to take advantage of linear superposition to construct an uncollimated
diffraction pattern by adding up the contributions from a range of collimated incident angles. The
approach is summarized in Figure 3-4. It should be noted that this effective broadening is
rigorously calculated by numerical integration of patterns with 0.5 degree resolution. In our
experiments, we determined that the slit block allowed ±1 degree in the spread in the horizontal
and ±0.5 degree in the vertical. This slit geometry was responsible for the elongated diffraction
spots in the experiment. Therefore, the angular spread was accounted for by superposition of five
collimated beams in the horizontal and three in the vertical. Thus each uncollimated diffraction
pattern was constructed from 15 diffraction calculations.

We see from Figure 3-5 that our simulations do much better at capturing the shape and size of the
experimental image plate scans when we properly account for the broadening due to the pin hole
geometry.
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a) b) c)

Figure 3-5. Calculated and experimental diffraction patterns. (a) Simulated polychromatic
diffraction pattern produced with collimated X-rays (i.e. single incident angle). (b) Simu-
lated polychromatic diffraction pattern numerically integrated to include multiple incident
angles corresponding to the angular spread allowed by the pin hole slit. In this case,±1 de-
gree in the horizontal and ±0.5 degree in the vertical. (c) The corresponding experimental
diffraction pattern (180◦ from DICE mark) as seen in Fig. 2-9

3.2.3. Deformation to Image Plate Geometry

To this point the simulated diffraction patterns have been plotted in angular coordinates (θ , φ ),
and are therefore shown as projected onto a spherical image plate. But, most experimental image
plates are planar. These plates may also be angled with respect to the incident plane.

In order to compare to experimental image plates, we must deform/distort the angular
coordinates. The deformations can be thought as a combination of two deformations, as shown in
Figure 3-6. The first deformation takes the projection from the sphere to the flat image plane.
This is a common deformation, called the mapmaker’s deformation for obvious reasons. The
second deformation is to account for the tilt of the image plane. This distortion is often referred to
as keystoning, and is frequently seen in conference rooms with misaligned portable projectors.

We can combine these two deformations into a single transformation. Here φ is the tilt angle. deff
refers to the effective distance between the sample and image plane. In our case, this distance can
be scaled to produce the properly sized image in the proper pixel resolution.

The transformation is given by,

deff =
xcenter

tan(φmax)
− (x− xcenter) tan(φ) (3.5)

x′ = x′center +B tan−1

 (x− xcenter)√
((y− ycenter)2 +d2

eff)

 (3.6)

(3.7)

y′ = y′center +B tan−1
(
(y− ycenter)

deff

)
(3.8)
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a) b)

c) d)

Figure 3-6. Test grid images depicting the deformations produced by projections of a pat-
tern. (a) Depiction of the keystone deformation caused by tilt of an image plate. In this case
the tilt is in the vertical. (b) Depiction of the mapmakers projection deformation which re-
sults from projecting a grid on a sphere onto a flat surface. (c) Depiction of an undeformed
grid as it would appear on a spherical shell image plate. (d) Depiction of the combined
keystone tilt and mapmakers projection deformations with a tilt angle of 11 degrees corre-
sponding to the ambient experiments.

where B = 1146 is a scaling constant set to give 20 pixels per degree in the horizontal. x′ and y′

are the final coordinates, and x and y are the initial angular coordinates on a spherical shell.

We see from Figure 3-7 that our simulations do much better at capturing the relative locations of
spots in the experimental image plate scans when we properly account for the image plate tilt and
shape. This third correction allows for simulations to be overlayed directly on experimental image
plate scans.
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a) b) c)

Figure 3-7. Calculated and experimental diffraction patterns. (a) Simulated polychromatic
diffraction pattern produced with uncollimated X-rays (i.e. slit hole angular spread) as
projected onto a spherical shell image plate. (b) The same simulated polychromatic uncol-
limated diffraction pattern as it would appear distorted onto a flat image plate tilted relative
to the incident angle. In this case, the tilt is 11 degrees, corresponding to the ambient ex-
periments. (c) The corresponding experimental diffraction pattern (180◦ from DICE mark)
as seen in Fig. 2-9

3.3. Application to Experiments

With these significant extensions to the LAMMPS diffraction package, our simulated XRD
patterns compare extremely well to experimental image plate scans. Figure 3-7 shows a
comparison for the case 180◦ from DICE mark. In this section we’ll show further examples of
successful comparison between experiment and simulated XRD patterns. In both ambient
pressures and under dynamic compression our simulation tool has proven very useful.

3.3.1. Ambient Pressure Cadmium Sulfide Experimental Comparisons

The first application of our new simulated XRD capability was a validation study based on the
ambient pressure experiments described in Chapter 2. In those experiments a sample was placed
on a rotating stage with the CdS a-axis pointing upward. A series of 21 diffraction patterns were
created in which the sample was rotated through 180 degrees at 10 degree increments. The goal
of this validation comparison was to produce good diffraction patterns which agree with each
experimental image plane.

One initial difficulty quickly become apparent, as the series of experimental patterns were
compared. The bremsstrahlung energy continuum should have lit up a diffraction spot at 2× the
11 degree incident angle. The simulations always showed this spot properly at 22 degrees (2× the
incident angle). But in the experiments, the corresponding spot shifted sinusoidally from 19 to 24
degrees through the crystal’s rotation. This shift could only be accounted for by a precession of
the a-axis (i.e. the crystal’s a-axis was not exactly vertical in the rotation stage). Such a
misalignment could be caused by error in the crystal growth axis or by imperfect mounting to the
stage. Regardless, this observation made clear that the accuracy necessary to match simulated and
experimental diffraction patterns was higher than the experimental measurement error.
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For the experimental dataset shown in Section 2.2 Figures 2-3 through 2-9, we were able to
determine the precession angle which was required to account for the variation - approximately
1.5◦. Moreover, with this accounted for, we saw extremely good agreement between simulation
and experiments across the dataset. Figure 3-8 shows several examples of the excellent agreement
in both spot locations and intensities.
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a)

b)

c)

d)

Figure 3-8. Comparison of simulated diffraction patterns with experimental image plates
described in Chapter 2. (a) 10◦. (b) 50◦. (c) 130◦. (d) 180◦. Agreement is strong both in
pattern positions and intensities. Simulations matched the X-ray source energy spectrum,
experimental beam/IP geometry and beam angular spread due to slit block.
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3.3.2. Dynamic Compression Sector (DCS) Cadmium Sulfide Comparisons

In the ambient pressure experiments we had the luxury of being able to collect data from multiple
orientations for a simple sample. In the Thor dynamic experiments we will only be able to shoot
one XRD shot per compression. At the Dynamic Compression Sector (DCS) we are able to get up
to four shots over a few hundred nanoseconds, but the sample compression continues to evolve
between shots. These small experimental datasets will require new analysis methods, using
simulated XRD patterns to characterize experiments.

This final section of the chapter described early attempts to use simulation to interpret
experiments described earlier in 2.3.

3.3.2.1. High-Pressure c-axis Transition

One of the complications of identification of dynamically compressed final states is the possibility
of mixed states. Initial conditions can be carefully chosen to simple single orientations, or
homogeneous structures. Final dynamic states, however, can be complex and evolving. The
high-pressure mechanism in cadmium sulfide (CdS) is an example. In this case it is known that
the mechanism of phase transition from wurtzite to rock salt can produce any of three final
orientations. When identifying this final state, one typically identifies the diffraction pattern
contributions from each of the three possible single-crystal orientations by comparison with
calculated/simulated patterns from these single crystals.

LAMMPS simulations allow an alternative method in which the dynamic compression is
simulated and a true mixed state is produced. Since the LAMMPS XRD tools are not limited to
single crystals, the combined diffraction pattern can be produced directly from this mixed state.
Figure 3-9 shows an example of diffraction patterns produced from dynamically simulated phase
transition in CdS. In these simulations, three orientations, oriented 120◦ with respect to each other
are produced. One possible advantage to this approach is that the diffraction pattern from this
mixed state may include signatures of the residual deformation and the boundary layers between
the various orientations. One disadvantage of this approach is that interatomic potentials must
exist which accurately capture the high-pressure behavior at the atomic scale.

These dynamic simulations are not necessary to produce the high-pressure diffraction patterns
(i.e. they can instead be manually constructed), however, this capability may be especially useful
in evaluating the evolution and heterogeneous states which can be found in dynamic
experiments.
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Figure 3-9. Top: Real-space atomistic representations of CdS phase transition under high-
pressure (> 5.5 GPa) shock compression colored by lattice type and orientation. Wurtzite is
black. Rock salt is green, red or blue, based on orientation. Middle: Simulated diffraction
patterns from the atomistic simulations, produced with energy spectrum and angular ge-
ometry corresponding to experiments. Because DCS X-rays are highly collimated, a single
incident angle was used. Bottom: Experimental patterns showing evolution from wurtzite
to rock salt structures. Time progresses from left to right. Experiments correspond with
experimental times -43, 110, and 263 ns.

3.3.2.2. Low-Pressure c-axis Transition

The low pressure c-axis transformation in CdS is a good example of an unresolved phase
transition mechanism in which simulated x-ray diffraction could prove very useful. At pressures
below 5.5 GPa, the c-axis phase transition from wurtzite to rock salt progresses only after an
extended incubation time. Moreover, an initial structure appears to develop before the rock salt.

Figure 3-10 shows four experimental XRD images at four times from shot 19-4-074. We see by
an overlay of the simulation image that we can clearly identify the initial state of the the -195 ns
patterns. At 111 ns, we see the development of a new set of spots highlighted in red. Then at 264
ns, we see the further development of spots highlighted in blue.

While it is computationally intensive to create full diffraction patterns at all possible orientations.
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Figure 3-10. DCS experimental results for CdS c-axis compression to low pressures (< 5.5
GPa). After an incubation time, new spots are evident, which evolve further with time.
These spots are identified as intermediate and ultimately rock salt. The intermediate phase
is not consistent with rock salt, which may imply a twinning transition or initial zinc blende
phase.

It is possible to observe small areas of the diffraction pattern (i.e. down to even a pixel). Since full
diffraction patterns are produced at 1600×1400 resolution, the search of individual pixel intensity
can be 106 times faster than full diffraction pattern searches. Using this per-pixel search method
we were able to distinguish the red-highlighted spots in the intermediate times from the
blue-highlighted spots at late time. The blue spots are consistent with possible rock salt
configurations. However, the red spots are not. This strongly indicates that the intermediate
structure may be a twinning transition or a intermediate structure such as zinc blende, etc.

We term this per-pixel search as a sort of manual “brute-force” approach. We plan to expand on
this effort for orientation searches over simulated results in future work. These early successes are
exciting, but there are significant further improvements to be made.

While traditional data science approaches to analysis are promising, we are most excited about
the application of machine learning methods to our simulated X-ray diffraction data. This will be
further explored in Chapter 4.
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4. DETERMINING THE ORIENTATION OF THE CRYSTAL
LATTICE USING MACHINE LEARNING

4.1. Introduction

Sandia’s unique pulsed power capabilities, such as the Z-machine and Thor, dynamically
compress matter to extreme states, which enables fundamental analysis of material properties in
high-energy density conditions [14]. Specifically, these capabilities transform stored electrical
energy into magnetically driven compression force in the orders of 10’s and 100’s of GPa within
nano seconds[14]. X-ray diffraction (XRD) allows for the direct observation of the crystal lattice
and as such enables the analysis and characterization of the mechanisms and kinetics that
drive/control the compression phenomena with atomistic resolution. Nevertheless, it is important
to recognize that analyzing XRD patterns from dynamic compression experiments is not a trivial
task for many reasons. First, the X-ray source has broad spectra and can have imperfect
collimation. Furthermore, the XRD data generated by dynamic compression experiments is
sparse given the fact that it requires for one to perform a Z-machine or Thor shot, which in turn
require significant capital expenditure. Consequently, establishing a vast experimental database is
intractable. Lastly, noise is present in the obtained patterns from various sources (e.g., window,
tamper, machine produced, etc.). Therefore, there is a critical need for enhancing current analysis
capabilities of XRD patterns of dynamically compressed materials.

Machine learning is a viable option to enhance current analysis capabilities as these recent works
show [38, 39], especially if adequately integrated with computational material science in order to
enable the generation of a robust and diverse training set [40]. Furthermore, one can see that Deep
Learning (DL) models are a common tool in these recent works [38, 39]. This is unsurprising
given the unique and unparalleled ability of these type of models to learn complex non-linear
relationships between a set of inputs and a desired set out outputs [41]. However, it can also be
seen that recent works focus solely on static compression and on predicting the composition of
the materials being analyzed. Nevertheless, these previous successes showcase the tremendous
potential for utilizing machine learning to analyze dynamic compression XRD data.

In this report we assess the validity for using machine learning, specifically DL models, for
enhancing our current analysis capabilities of XRD data for dynamically compressed data. In this
chapter, we provide the details for establishing an accurate model for predicting the orientation of
the crystal lattice given XRD pattern image using Convolutional Neural Networks (CNNs). In
Chapter 5, we provide the details for removing the noise present in these types of XRD data.
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4.2. Theoretical Background on Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specific type of deep learning technique capable of
learning complex functional mappings between inputs and desired outputs[41]. The underlying
architecture of CNNs makes them extremely well suited to establish linkages for inputs that have
spatially distributed features such as images (or videos), given their inherent ability to identify in
a data-driven manner patterns within the inputs and subsequently link them to the desired outputs.
For that reason, CNNs have enjoyed great successes in the computer vision fields for many diverse
tasks such as image classification, object localization, and image segmentation [42, 43, 44, 45].

CNNs transform inputs (e.g., images, micrographs, etc.) using a series of different layers to
generate a vector or scalar output. A core component of CNNs is the convolutional layer that
transform the input by convolving it with a set of filters and subsequently applying a non-linear
activation function such as sigmoid or rectified linear unit (ReLU) [46] on the output. A critical
characteristic of this layer is that the filters convolved with the image are specifically
trained/tailored (by fitting their parameters to a set of training results) to identify salient patterns
within the input data that are relevant to the task at hand. As a result, CNNs are an extremely
versatile type of deep learning model capable of establishing accurate models across a broad
spectrum of disciplines [47, 48, 49, 50].

In this work we will leverage CNNs to establish an accurate model for predicting the orientation
of the crystal lattice given an XRD image. Figure 4-1 schematically depicts how a CNN-based
model will transform an input XRD image into the desired output. Figure 4-1 shows that the CNN
architecture is comprised of a set of convolutional layers and a set of fully-connected layers. The
convolutional layers of the CNN architecture identify in a data-driven manner unique patterns
within the images. In other words, the set of filters present in the convolutional layers will
identify unique fingerprint descriptors within each image to link each image with the desired
output. Subsequently, the fully-connected layers transform the identified patterns into the desired
outputs. Fully-connected layers are comprised of nodes that transform an input vector x with the
following operation:

z = f (xT
β +b) (4.1)

where, β denotes the weights that multiply the input, b represents a bias added to the resultant
operation and f () denotes a non-linear activation function. The non-linear activation function
allows for non-linear outputs to be generated from the node and a set of nodes applied to the same
input forms a fully-connected layer.

The parameters of the model (i.e., the filters and the weights and biases of the fully-connected
layers) are fitted to a set of training data that comprised of input-output pairs by minimizing a
suitably defined loss (error) function that quantifies the discrepancy between the output predicted
by the model and the "true" value from the training data. Typically this minimization protocol is
performed using an iterative, non-convex optimization algorithm such as stochastic gradient
descent (SGD) [51]. The training of the CNN ends once the loss saturates or it reaches below a
pre-established threshold.
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Figure 4-1. Schematic of the implementation of CNNs for the analysis of dynamic XRD
patterns.

Span (◦) Data resolution (◦)
Angle #1 0-360 0.5
Angle #2 0-36 4
Angle #3 0-16 4
Angle #4 0-360 180

Table 4-1. Details of the angles sampled with the first training set.

It is important to mention that the learning capacity of CNNs can be further refined by
incorporating other types of layers designed for dimensionality eduction (e.g., pooling layer)
[41, 42] and normalization [42]. Naturally, the number and type of layer used to define the
architecture of the CNN determine the learning capacity of the model. In this work we will
explore different architectures in order to establish an accurate linkage between the XRD images
and the orientation of the crystal lattice.

4.3. Predicting the orientation angle using Convolutional Neural Networks

In order to establish a linkage between the orientation of the crystal lattice and its corresponding
XRD pattern one first needs a diverse and robust set of training data on which the parameters of
the CNN-based model are calibrated. For that reason, in this work we first generated a set of
synthetic XRD patterns (using the methodology described in Chapter 3 ) in which the 4 different
angles that characterize the orientation of the crystal lattice were varied. Table 4-1 shows the
details of the sampled angles with this first training set.

The sampling scheme denoted in Table 4-1 yielded a total of 7195 XRD patterns on which to train
a CNN-based model. In order to validate the accuracy of a CNN-based model for predicting the 4
different angles a set of 700 XRD was generated in which the 4 dimensional space defined by
Table 4-1 was randomly sampled. Notice that the space defined in Table 4-1 is not the complete
set (i.e., 0-360 on each one of the 4 different angles) because trying to determine the validity of a
CNN-based model for establishing a linkage in such a large input space will require a
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significantly large number of training simulations. For that reason, we decided to first evaluate the
validity of these models in a reduced space (i.e., the one defined in Table 4-1).

Our first attempts to link the 4 orientations angles to their corresponding XRD patterns leveraged
two state-of-the-art and top-of-the-line image segmentation and classification models that have
enjoyed tremendous successes in the image recognition field [52, 53]. The first model used was
the VGG model [52], which is a deep CNN with an architecture that leverages very small (3×3)
convolution filters to obtain accurate and robust patterns from images. For the specific details of
the VGG architecture please reffer to the work of Simonyan et al. [52]. It is important to
recognize that the base architecture of VGG was used in this work. Naturally, this means that we
modified the input layer to VGG to fit the size of our XRD input images (which are 1601×1401
pixels) as well as the output layer, which we modified to have an output of 4 (i.e., the 4 different
angles). The second model used was the Resnet model [53], which stands for residual network.
This type of model combines convolutional layers with a residual learning framework in order to
learn residual functions (for full details about the method and architecture please refer to [53]).
Similarly to the VGG architecture, we modified the input and output layer in order to tailor this
powerful architecture for our specific application.

The loss function optimized during training was the mean squared error. In addition, we used a
batch size of 5 and a learning rate of 1×10−3. In addition, we leveraged the ADAM optimizer
[54] and incorporated a learning rate scheduler that reduced the learning rate by half if the testing
loss did not change by 1×10−4 over 9 epochs with an initial learning rate of 1×10−3.

Figure 4-2 (a) shows the loss vs. epoch curve for these two different models. It is clear from
Figure 4-2 (a) that these two powerful networks are not able to establish a successful model. As a
matter of fact, we see that they are severely overfitting to the training data. Consequently, these
models are not able to generalize to new/unseen XRD patterns. This is observed from the fact that
the training loss decreases rapidly but the testing loss (i.e., XRD patterns that the model has not
been trained on) yield a high value of the loss. Consequently, a robust and accurate linkage was
not able to be established even with these powerful architectures.

Therefore, in order to determine if it is viable/possible to leverage CNN-based models to predict
the orientation of the crystal lattice we trained the VGG architecture and the Resnet architecture
on a simplified dataset in which solely the first angle was varied from 0◦ to 360◦ with a resolution
of 0.5◦ while keeping the remaining three angles constant. As a result, this new simplified dataset
now consists of 720 XRD training patterns. The ability of the model to generalize to new/unseen
patterns will be assessed with a test set that was generated by randomly sampling 296 angles
between 0◦ and 360◦.

We trained Resnet and VGG on the simplified dataset using the same procedure, optimizers, batch
size, learning rate and learning rate schedule as before. Figure 4-2 (b) shows the loss vs. epoch
curve for the VGG and the Resnet architectures on the simplified dataset. Unfortunately, 4-2 (b)
also shows that these two powerful models are not able to establish an accurate model given the
fact that it is still observed that the Resnet architecture overfits to the training set (observe the
rapid decrease and low value of the training loss compared to the testing loss). However, now it is
observed that the VGG architecture is not able to learn at all since the training loss and the testing
loss still have a large value but they are similar.
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(a) Loss evolution curve for predicting the 4 orientation angles
without considering symmetry.

(b) Loss evolution curve for predicting the first orientation angle
without considering symmetry.

Figure 4-2. Loss evolution plots for a direct implementation of CNN-based models for
predicting the orientation of the crystal lattice.
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Figure 4-3. Schematic Showing the Symmetry present in the simplified dataset in which
solely the first angle was varied.

Consequently, Figure 4-2 (a) and (b) demonstrate that a direct implementation of CNN-based
models is not capable to establish a linkage between the orientation and its corresponding XRD
pattern. Therefore, this means that appropriate consideration of the physical properties needs to
be accounted if one is going to establish an accurate model. Lattice orientations have symmetries
present and Figure 4-3 schematically depicts the symmetries present in the simplified dataset in
which solely the first angle was varied and it is clearly observed that symmetry exists with respect
to 180◦. Therefore, this explains why previous attempts, shown in Figure 4-2 (a) and (b), were
unsuccessful. The main reason is that the symmetries present in the data cause for two different
sets of angles to have similar XRD patterns. Consequently, the networks on their own were not
able to learn a robust linkage. Notice that in the case in which the 4 angles were varied identifying
the symmetries is not as trivial as the simplified dataset, which only required for one to plot the
different patterns to identify the symmetry. As a matter of fact, identifying the symmetries in the
space defined by the 4 angles requires using data-driven techniques that will be addressed in
future work. For that reason, in this work we will solely focus in determining the validity of
CNN-based models for establishing a linkage for the simplified dataset.

Therefore, we accounted for the symmetry present in the XRD patterns by replacing the value of
any angle greater than 180◦ with the value of 360◦ minus the angle being replaced. Therefore,
using this transformation we can see that the angles shown in Figure 4-3 now have the same
values. Furthermore, we normalized the value of each angle by the maximum value (i.e., 180◦

when accounting for symmetry) in order to transform the value of the output to the domain 0-1,
which aids in convergence and performance of deep learning models. Also, following typical
implementations of deep learning models we transformed the inputs (i.e., the XRD patterns) by
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Figure 4-4. Loss evolution curve for predicting the first orientation angle considering sym-
metry.

removing the median value and scaling it according to the interquartile range.

Now that the output values on which the model will be trained account for symmetry and the
inputs that the model will transform into the desired outputs have properties that enable better
performance, we decided to use a simpler architecture rather than the complex (yet powerful)
VGG and Resnet architectures. The simpler architecture consists of 4 convolutional layers and
two fully-connected layers. The first convolutional layer has 4 output channels and implements
convolutional filters of size 10×10. Also, the first convolutional layer applies a pooling layer
with kernel size 10 and stride 10 and a batch normalization layer. A rectified linear unit (ReLU)
activation function is applied after the first layer. The second convolutional layer also applies
convolutional filters of size 10×10 but has 8 output channels (instead of 4) and also applies a
pooling layer (with the same kernel size and stride as the first layer) and a batch normalization
layer. In a similar manner, a ReLU activation function is applied after the second layer. The third
convolutional layer has 16 output channels and applies convolutional filters of size 5×5 and does
not apply a pooling layer but it does apply a batch normalization layer followed by a ReLU
activation function. The fourth and final convolutional layer is exactly the same as the third layer,
meaning that it applies convolutional filters of size 5×5, followed by a batch normalization layer
and a ReLU activation function. As stated previously, following the convolutional layers we
applied two fully connected layers. The first fully connected layer has 32 nodes followed by a
ReLU activation function and the final fully connected layer regresses the 32 features into the
value of the angle. Finally, in order to ensure that the value is between 0 and 1 (recall that we
transformed the values of the output to this range) we apply a sigmoid activation function after the
final fully connected layer. We trained this architecture using the same procedure, optimizers,
batch size and learning rate as the Resnet and VGG architectures.

Figure 4-4 shows the loss vs. epoch curve for the simplified CNN architecture and it can be
clearly seen that the network is indeed training and not overfitting to the training set since the
training and testing loss have similar values. In order to further analyze the validity and accuracy
of the simplified CNN architecture we compared the predicted values of the angles to the ground
truth values. Figure 4-5 (a) shows the scatter plot of the true values vs the predicted values and
demonstrates that the simplified CNN architecture is quite accurate since all the points in the plot
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lie close to the diagonal (i.e., a perfect prediction). Figures 4-5 (b) and (c) further demonstrate
this point since they show that the probability density of the predicted values for both the training
and testing set is quite similar to that one of the true values.

(a) Scatter plot true vs. predicted of
the first angle using CNN-based
model that considers symmetry .

(b) Probability densities of the true
and predicted values of the train-
ing set the first angle using CNN-
based model that considers sym-
metry.

(c) Probability densities of the true
and predicted values of the test set
the first angle using CNN-based
model that considers symmetry.

Figure 4-5. Performance of CNN-based model that considers symmetry for predicting the
value of the first orientation angle .

As a result, Figures 4-4 and 4-5 demonstrate that by adequately accounting for the symmetry
present in the XRD patterns (caused by the crystallographic nature of the lattice) and performing
appropriate transformations on the inputs and outputs of the model a simple CNN-based model
was capable of accurately predicting the orientation of the crystal lattice.

Now we can determine the level of resolution (i.e., the number of samples) with which a
CNN-based model can establish an accurate model by training and evaluating the performance of
the simple CNN-architecture on different training sets. Figures 4-4 and 4-5 demonstrated that a
training set with a resolution of 0.5◦ is capable of establishing an accurate model. Therefore, we
will now systematically sample the input domain of the first angle (0◦ to 360◦) with fewer number
of samples. Specifically, we evaluated 5 different resolutions, each one sampling the input domain
with half of the points as the previous one. In other words, the first training set had a 1◦

resolution, the second training set has a resolution of 2◦, the third one has a resolution of 4◦,the
fourth one has a resolution of 8◦ and the fifth training has a resolution of 16◦. Subsequently, we
trained the simple CNN architecture using the same optimizer, learning rate, learning rate
scheduler and batch size as before for 200 epochs. Figures 4-6 shows the scatter plot of the true
vs. predicted values for the 5 different training sets used and it clearly shows that a resolution of
0.5◦ yields the best model. However, it is interesting to point out the progressive decrease in
accuracy as the sampling of the first degree is decreased. Figures 4-6 (a) and (b) show that a
model is able to be established, meaning that the CNN-based model was able to learn a linkage
though quite inaccurate. Figures 4-6 (c) shows that the model was not able to learn at all since it
simply predicts the same value of the first angle for all the XRD patterns. Lastly, Figures 4-6 (d)
and (e) show that the model essentially memorizes the training set and is unable to generalize to
any new/unseen XRD patterns.
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As discussed previously, a CNN-based model identifies in a purely data-driven and automatic
manner patterns within an image (in the case of this work an XRD image) that are most correlated
to the desired outputs by applying successive convolutional filters (whose weights are determined
during the training of the model). In our initial success we used an XRD image pattern of
1601×1401 pixels. However, one might be able to establish an accurate model with a smaller
resolution. Therefore, we trained the same simple CNN-based architecture to three different
datasets in which we systematically reduced the resolution of the XRD image patterns. The first
dataset had a resolution of 533×467, the second dataset had a resolution of 320×280 and the
third and final dataset had a resolution of 160×140.

Figures 4-7 shows the scatter plot of the true vs. predicted values for the three different training
sets used and it clearly shows that a full resolution XRD image of 1601×1401 was not necessary
for a CNN-based model to identify robust patterns within the XRD images and establish an
accurate and successful model. As a matter of fact Figures 4-7 (b) shows that an accurate model
can be established with XRD images with a resolution of 320×280 pixels. Lastly,Figures 4-7 (c)
shows that reducing the resolution thus indeed affect the model performance.
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(a) Degree 1. (b) Degree 2.

(c) Degree 4.

(d) Degree 8. (e) Degree 16.

Figure 4-6. Scatter plots of true vs. predicted values for different degree resolutions.
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(a) Scatter plot of model trained with
533×467 pixel XRD patterns .

(b) Scatter plot of model trained with
320×280 pixel XRD patterns.

(c) Scatter plot of model trained with
160×140 pixel XRD patterns.

Figure 4-7. Scatter plots of the same CNN-based model trained on XRD images with
systematically lower resolution.

48



5. MACHINE LEARNING DENOISING OF EXPERIMENTAL DATA

5.1. Leveraging Deep Learning to de-noise experimentally obtained XRD
patterns.

In this section we leverage deep learning (DL) to separate the diffraction signal from noise of
experimentally obtained XRD patterns. For specific details of the experimentally obtained XRD
patterns please refer to Chapter 2. Recently, DL methods have enjoyed significant success in the
computer vision and image segmentation field [55] given their unique ability to learn complicated
relationships [41]. Specifically, Convolutional Neural Networks (CNNs) have shown great
promise and success in this area thanks to their unparalleled capacity for uncovering relationships
within input data with spatially distributed features, such as images or video, in an automated and
data-driven manner [41, 56]. Furthermore, by adequately incorporating uncertainty
quantification[57, 58] into CNNs one is now capable of establishing models that provide a
distribution of predictions of segmented images, which in turn allows for the adequate
consideration of uncertainty in the segmentation process.

The DL-based model used to separate the relevant data from the noise that is present on the
experimentally obtained XRD patterns was a U-net architecture [56] specially tailored in previous
work to account for uncertainty by using Monte Carlo dropout[57, 58] . The work of Roberts et
al. [57] provides specific details about the architecture of the model used and the methodology for
incorporating uncertainty into DL-based image segmentation models.

The DL-based model was trained on 20 different experimentally obtained XRD patterns and it
provides a prediction for a new XRD pattern by classifying each pixel in the XRD image as either
noise or not noise. In order for the model to be able to provide an accurate prediction it leverages
domain-expertise guided segmentation in addition to the experimental patterns. For the case of
this work, a segmented label was obtained for each of the 20 different patterns by first applying a
median denoising filter to reduce background noise. After this, grayscale intensity thresholding
was performed to obtain our final labels. These labels were then used to provide the DL-based
model with examples of the desired segmentation and its fidelity.

Once the model is trained, it provides a distribution of predictions for each pixel (using Monte
Carlo dropout). Thus, enabling the DL-model to also account for uncertainty in the prediction of
the class of each pixel [57]. Subsequently, the model enhances the prediction by classifying as
noise the pixels that show the highest uncertainty. Lastly, a final prediction is made by leveraging
traditional image processing methods to fill gaps in the pixel clusters identified as relevant data.
Specifically, we use the binary_dilation and binary_erosion functions from the
Scikit-image library’s morphology module [59]. As a result, by adequately leveraging
Monte Carlo dropout and integrating it with traditional image processing methods we are able to
obtain an accurate and robust segmentation.
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Figure 5-1. Segmentation results obtained using a U-NET based de noising model that
accounts for uncertainty.

Figure 5-1 shows the segmentation results of using the DL-based segmentation algorithm
introduced earlier in this section. Figure 5-1 (a) shows the original image and Figure 5-1 (b)
shows the expert label that the model used to segment the data. Figure 5-1 (c) shows the resultant
DL-based prediction of the segmented image. Figure 5-1 (d) shows the probability map with
which the DL-based model accounts for the uncertainty, Figure 5-1 (e) shows a refined prediction
using the information obtained with the probability map (i.e., the uncertainty). The refined
segmentation shown in Figure 5-1 (e) was obtained by classifying as noise the pixels that showed
the highest uncertainty. Nevertheless, notice that this causes the prediction shown in Figure 5-1
(e) to have gaps within the clusters for pixels that have not been classified as noise. For that
reason, Figure 5-1 (f) shows a further refined segmentation were the gaps in the image were filled
using traditional image processing methods (e.g., dilation/erosion techniques).

As it can be seen from Figure 5-1 the DL-based model trained in this section successfully learned
to separate diffraction signal from noise given 20 training examples with labels provided by a
subject matter expert.
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6. CONCLUSIONS AND FUTURE WORK

This one-year LDRD was very successful in establishing a basic simulated XRD capability,
proving the concept of machine learning image analysis, and applying these new tools to
experimental data. We are very excited to be able to extend this research project to a new
three-year LDRD in FY23. This new project allows us to mature and extend our current work to
increase the impact of this new capability.

We accomplished several specific goals this year. Specifically, we were able to code and validate
new LAMMPS tools for 2D XRD pattern creation. We were able to produce CdS 2D XRD
training data for wurtzite and rock salt structures. We were able to augment this code with
advanced calculation capabilities, e.g. broad X-ray spectrum. Moreover, we completed training of
machine learning pattern recognition models (CNN-based) for single crystal CdS. And, we
demonstrated noise filtering models trained from Thor experimental data. Finally, we were able to
apply these new tools to ambient and dynamic experiments.

In FY2022, we were able to communicate recent findings from this LDRD (SimXRD) and our
recent LDRD 213088 (ThorXRD). This included two peer-reviewed publications and five
conference presentations.

Peer-reviewed Publications

1. T. Ao, D. Morgan, B. Stoltzfus, K. Austin, J. Usher, E. Breden, L. Pacheco, S. Dean, J.
Brown, S. Duwal, H. Fan, P. Kalita, M. Knudson, J.M.D. Lane, “A Compact X-ray
Diffraction System for Dynamic Compression Experiments on Pulsed-power Generators,”
Rev. Sci. Instrum., 93:053909, 2022.

2. David Montes de Oca Zapiain, Dane V. Morgan, Bryce A. Thurston, Tommy Ao, Mark A.
Rodriguez, Marcus Knudson, J. Matthew D. Lane, “Simulated X-ray Diffraction and
Machine Learning for Interpretation of Dynamic Compression Experiments,” AIP Conf.
Proc., (to be submitted)

Invited and Contributed Presentations

1. “Phase Transition Mechanisms in Cadmium Sulfide from X-ray Diffraction Comparisons of
High-pressure Experiments and Molecular Dynamics Simulation,” J Matthew D Lane,
Bryce A Thurston, Tommy Ao, David Montes de Oca Zapiain, Mark A Rodriguez, Marcus
D Knudson. APS March Meeting, Mar 2022, Chicago IL.
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2. “X-ray diffraction of materials under ramp compression on the Thor pulsed-power
generator,” Tommy Ao, Dane V Morgan, J Matthew D Lane, Kevin N Austin, Eric W
Breden, Justin L Brown, Sakun Duwal, Hongyou Fan, Patricia Kalita, Marcus Knudson,
Lena M Pacheco, Mark A Rodriguez, Brian S Stoltzfus, Joshua M Usher. APS Shock
Compression of Condensed Matter Conf., Jul 2022, Anaheim CA.

3. “Simulated X-ray Diffraction and Machine Learning for Interpretation of Dynamic
Compression Experiments,” David Montes de Oca Zapiain, Dane V Morgan, Bryce A
Thurston, Tommy Ao, Mark A Rodriguez, Marcus Knudson, J Matthew D Lane. APS
Shock Compression of Condensed Matter Conf., Jul 2022, Anaheim CA.

4. “Transformation mechanisms for the pressure-induced phase transition in single crystal
CdS” Marcus Knudson, Dane V Morgan, Tommy Ao, Mark A Rodriguez, David Montes de
Oca Zapiain, J Matthew D Lane. APS Shock Compression of Condensed Matter Conf., Jul
2022, Anaheim CA.

5. “Simulated X-ray Diffraction and Machine Learning for Interpretation of Dynamic
Compression Experiments,” David Montes de Oca Zapiain, Dane Morgan, Bryce Thurston,
Tommy Ao, Brendan Donohue, Carianne Martinez, Mark A. Rodriguez, Marcus D.
Knudson, and J. Matthew D. Lane , Jul 2022, Sandia ML/DL Workshop

Looking forward we aim to make several improvements to the XRD simulation tool, including the
incorporation of c/a distortion, automated peak labeling, efficiency improvements, and a user
interface. For the machine learning, we will be extending our orientation determination algorithm
to full orientation angles, developing transfer tools between simulated and experimental data,
incorporating active learning approaches to extract symmetries, and generalizing the approach to
powder samples.

This year our focus has been on computation, but going forward, we would like to actively
incorporate experiments and new data in CdS, Bismuth and especially tamper materials like LiF
and TPX. These experiments will initially focus of dynamic platforms such as Thor and DCS.
However, we aim to move to include high-fidelity powder characterization and calibration
through the Rodriguez lab.

Through new features, new models and new applications we aim to significantly extend the
efficiency, usability and impact of these new simulated analysis tools.
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