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Abstract

The tearing parameter criterion and material softening failure method currently used in the mul-
tilinear elastic-plastic constitutive model was added as an option to modular failure capabilities.
The modular failure implementation was integrated with the multilevel solver for multi-element
simulations. Currently, this implementation is only available to the J, plasticity model due to the
formulation of the material softening approach. The implementation compared well with multilin-
ear elastic-plastic model results for a uniaxial tension test, a simple shear test, and a representative
structural problem. Necessary generalizations of the failure method to extend it as a modular
option for all plasticity models are highlighted.
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1 Introduction

The tearing parameter criterion and material softening failure method currently used in the multi-
linear elastic-plastic (MLEP) material model was recently added as an option to modular failure
capabilities in the Library of Advanced Materials for Engineering (LAME) [1, 2]. Currently, this
implementation is only available to the J, plasticity model due to the formulation of the material
softening approach. The implementation was verified against analytical solutions for both a uniax-
ial tension and a pure shear boundary-value problem [1]. The initial J, plasticity implementation
was for a single element.

The MLEP material model uses the tearing parameter as a failure criterion and a critical crack
opening, linear softening model as a failure mechanism. For multi-element simulations, Wellman
[3] noted convergence issues with the direct implementation of this failure technique in the MLEP
constitutive model and the resolution of these issues with a multilevel solver algorithm. For the
initial, single element J, plasticity implementation [1], the multilevel solver is not used. This
memo details the integration of the failure model implementation in J, plasticity with the multilevel
solver for multi-element simulations and demonstrates the modular softening failure capabilities
on a representative structural problem.

2 Theory

2.1 Tearing parameter

For the modular failure criterion, a tearing parameter damage variable d is implemented [4] as a
normalization of the modified tearing parameter 7, in Wellman [3] and defined as
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Here, 0., 1s the maximum principal stress and pressure p = %tr(O') is the trace of the Cauchy
stress tensor 0. Also, &” is the equivalent plastic strain and (-) are Macaulay brackets. The damage
variable has two model parameters; m, a fitting exponent, and tff” , the critical tearing parameter.
During loading, the damage value increases from d = 0 in the initial state to the critical damage
value d = 1. For uniaxial tension, the integrand in the damage variable is one and the tearing
parameter is equal to the equivalent plastic strain, ¢, = &°.

2.2 Failure method

For the failure method in Wellman [3], failure initiates at the critical damage value (Figure 1).
Prior to failure initiation, the underlying plasticity model is unaltered; the material response is
linear elastic until yield (g,) and then elastic-plastic until critical damage (g4). Once the damage
(tearing parameter) criterion is satisfied (d > 1), stress decays linearly to zero over a critical crack
opening strain of magnitude &, after which the stress remains zero at failure (¢7). The Macaulay
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brackets ensure the damage variable (1) is non-zero, and failure initiates only for tensile stress
states. This failure method will be referred to as the critical crack opening strain, linear softening
method. Details of the transition between plasticity and failure, the stress decay method, and their
algorithmic implementation may be found in SAND2021-13778 R [1].
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Figure 1: Stress-strain curve for plasticity model with failure.

3 Algorithm

The failure method in Section 2.2 describes the process applicable to any finite element. However,
for multi-element simulations, Wellman [3] discusses convergence issues with the direct imple-
mentation of this technique in the constitutive model and the resolution of these issues with a
multilevel solver algorithm. To assist in the coupling of the constitutive model to the multilevel
solver, a set of five crack failure flags is defined for each element as follows:

(1) Crack flag = 0.
The damage criterion, d,;; > 1, has not been satisfied. Crack initiation has not occurred
in the element. Material response is the underlying plasticity model.

(2) Crack flag = 1.
The damage criterion, d,.; > 1, has been satisfied for the element.

(3) Crack flag = 2.
The element that exceeded the damage criterion the most out of all elements marked
with crack flag = 1. Mark as a transition step and use partitioned stress decay.

(4) Crack flag = 3.
The element is in failure. Material response is stress decay.

(5) Crack flag = 4.
The element has failed. Stress is identically zero.
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The multilevel solution algorithm is described in Box 1. The plasticity response and stress decay
response are local to the constitutive model (multilevel solver Level 0) while the inter-element
damage criterion comparison is nonlocal and managed outside the constitutive model by the solver
(multilevel solver Level 1).

(1) Start new load step.
(2) Multilevel solver: Level 0

(a) Converge solution.
(i) Undamaged elements (crack flag = 0) respond according to the underlying plas-
ticity model.

(i1) Transition element (crack flag = 2) response is part plasticity and part stress
decay.

(iii)) Damaged elements (crack flag = 3) undergo stress decay.
(iv) Failed elements (crack flag = 4) remain zero stress.

(b) Mark undamaged elements (crack flag = 0) which exceed the damage criterion by
advancing crack flag = 1.

(c) If an element underwent the transition step (crack flag = 2), advance to the decay
regime by setting crack flag = 3.

(d) For all elements that have decayed to zero stress, advance crack flag = 4.

(e) Update state variables.
(3) Multilevel solver: Level 1

(a) Do any elements exceed the damage criterion (crack flag = 1)?
No—-goto (1)
Yes — continue
(b) From all possible elements undergoing the transition step from plasticity to failure

(crack flag = 1), select the element most exceeding the damage criterion and set crack
flag = 2.

(c) For remaining elements with crack flag = 1, reset crack flag = 0.
(d) Return to (2)

Box 1 : Multilevel solution algorithm for failure.

At the start of a new load step, the multilevel solver begins in Level 0. All elements are either
undamaged (crack flag 0), in the stress decay failure regime (crack flag 3), or failed with the stress
identically zero (crack flag 4). For this set of crack flags, the first solution iteration is converged;
undamaged elements (crack flag 0) respond according to the underlying plasticity model, stress
decay elements (crack flag 3) linearly decay the stress according to the failure technique detailed
in [1], and failed elements (crack flag 4) remain unchanged with zero stress. Stress decay elements
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which decay to zero stress are marked as failed (crack flag 4). After the first solution iteration, the
undamaged elements (crack flag 0) are checked against the damage criterion and all that exceed
the criterion are marked with crack flag 1.

After the first solution iteration, control is passed to multilevel solver Level 1. Here, the solver
checks if any element is marked as exceeding the damage criterion (crack flag 1). If not, the first
solution iteration is the converged solution, control is passed back to multilevel solver Level 0,
and the next load step is initiated or the simulation completed. However, if elements are marked
with crack flag 1, the Level 1 solver identifies the undamaged element which exceeded the damage
criterion the most and marks this element (setting crack flag 2) for a transition step from plasticity
to failure. All remaining elements that exceeded the damage criterion (crack flag 1) are reset to
undamaged elements (crack flag 0). Solution control is returned to the Level 0 solver and a second
solution iteration is converged. During this iteration, the transition element (crack flag 2) response
is part plasticity and part stress decay according to the failure technique detailed in [1]. After the
partitioned stress decay, the transition element (crack flag 2) is advanced to the stress decay regime
(crack flag 3). Again, the undamaged elements (crack flag 0) are checked against the damage
criterion and all that exceed the criterion are marked with crack flag 1. This set of elements is
possibly different than the set in the previous solution iteration as the transitioned element may
alter the stress state in the neighboring elements.

Solution control iterates between the Level O solver and Level 1 solver as one element completes
the transition step per iteration. When no more undamaged elements exceed the damage criterion at
the end of a multilevel solution iteration, the next load step is initiated or the simulation completed.

3.1 Implementation

The guide to interactions between LAME material models and Sierra multilevel solver capabilities
[5] was followed to implement the failure model for multi-element simulations.

Communication between LAME material models and Sierra/Solid Mechanics for material failure
is facilitated by the six element state variables: crack_flag_old, crack_flag new,
failure_measure_old, failure_measure_new, decay_old, and decay_new. These fields are
allocated in the matParams data structure when the use_failure flag is set to true.

The crack_flag variables describe the failure state of an element as enumerated above with one
exception. For implicit simulations, a crack flag of 2 or 20 are treated as identical; the value of 20
is used to indicate that Sierra/Solid Mechanics set the crack failure flag in its marking routine. The
failure measure variables store the damage value d and are used to rank marked elements to
select the element which exceeded the damage criterion the most out of all marked elements. The
decay variables store the stress decay factor used to linearly decay the element stress. The stress
decay factor is initially 1 and decreases to 0 when the element fails and the stress is identically
zero. These variables are used to proportionally decay other influencing factors, such as hourglass
force, in a compatible manner.
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4 Verification

The tearing parameter criterion and material softening method was implemented as a modular fail-
ure option for the J, plasticity model [1]. For a single element, the modular failure implementation
was verified analytically for a uniaxial tension test and a pure shear test. Here, the modular fail-
ure implementation was integrated with the multilevel solver for multi-element simulations and is
compared with MLEP results for a uniaxial tension test, a simple shear test, and a representative
structural problem.

4.1 Uniaxial tension

The boundary-value problem is uniaxial tension of a 3 X 3 X 1 block of unit cubes. Two faces of
the block, the (x;x3)-plane and the (x,x3)-plane intersecting at the origin, are fixed in their normal
directions. A constant logarithmic strain rate ramp load is applied to the block in the x;-direction
by specifying the applied displacement in this direction as

u = @) Z 1y, )

where ¢, is the loading strain and ¢, is the ramp loading time (Figure 2). Here, the loading strain
ise, = 0.05 and 7, = 1 s. The logarithmic strain in the applied displacement direction is

€11 ZSL(—). (3)
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Figure 2: Applied loading and strain history for uniaxial tension.

The material parameters used are shown in Table 1. For the plasticity model, a linear hardening
rule is assumed and given by

oE’)=0,+H'E, 4)

where o, is the yield stress and H’ the hardening modulus.

For the center element, all material parameters are the same as in Table 1 with the exception of the

critical tearing parameter, which was set to t;ri’ = 0.03. The deformation is homogeneous prior to
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E 70 GPa

y 0.25 MPa
HARDENING MODEL LINEAR ‘
FATLURE MODEL TEARING_PARAMETER_SOFTENING ‘

oy 200 MPa

H’ 500 MPa

tf,”" 0.04

Eccos 0.005

m 4.0

Table 1: The material properties for the J;, plasticity model with tearing parameter failure.

failure initiation; the lower critical tearing parameter of the center element will initialize failure in
this element.

The results of the analysis, averaged over the nine elements, are shown in Figure 3 and Figure 4.
The averaged axial Cauchy stress, damage variable, and yield surface radius match well for the J,
plasticity model with modular failure and the MLEP model.

The axial stress-strain response in each element of the middle row of the block is shown in Figure 5.
Axial stress plots at two axial strains are depicted in Figure 6. Again, the results match well for
the J; plasticity model with modular failure and the MLEP model.

The averaged axial stress is linear elastic until yield and then elastic-plastic until damage initiates
in the center element. The axial stress then softens as the center element stress decays until the
center element stress is identically zero at € = 0.0336. As the center element decays, the left and
right elements of the middle row bear more of the load. After the center element stress decays to
zero, the stress in the left and right elements of the middle row continues to increase until failure
initiates simultaneously in these elements and their stress decays to zero at € = 0.0361. At this
point, the three elements in the middle row have failed, the stress is zero throughout the block, and
the top layer of elements moves as a rigid body under additional displacement loading.

The critical tearing parameter t;’” of the center element was set lower than the critical tearing pa-
rameter of the remaining blocks to initialize failure in this element and demonstrate integration of
the multilevel solver. If the critical tearing parameter of the left and right elements of the middle
row were reduced to approach the critical tearing parameter of the center element, the stress-strain
curves of the left (red) and right (black) elements in Figure 5 shift left toward the center (blue)
element stress-strain curve and the magnitude of their peak stress decreases. That is, after failure
initiation and stress decay occurs in the center element, the left and right elements of the middle
row bear more of the load as before, but also undergo failure initiation at a smaller axial strain due
to their reduced critical tearing parameter. As their critical tearing parameter is reduced, the left
and right elements of the middle row initiate failure and stress decay prior to full failure of the
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center element. When the critical tearing parameter of all elements in the middle row are equal, all
three elements fail simultaneously.

1.2
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Figure 3: Stress-strain response for uniaxial tension.
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(a) Tearing parameter damage variable
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Figure 4: The tearing parameter damage variable and yield surface radius for uniaxial tension.
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Figure 5: Stress-strain response in individual elements for uniaxial tension.

(a) e = 0.0336

[ 2.7e+02
200

— 150

— 100

[50
-1.9e+01

stress_11

(b) € = 0.0361

Figure 6: Axial stresses at failure strains for the three middle row elements for uniaxial tension.
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4.2 Simple shear

A second boundary-value problem is simple shear of a 3 X 3 X 1 block of unit cubes. The x, = 0
face of the block is fixed. The faces with x;-normals are fixed in the normal directions. A constant
strain rate ramp load (Figure 7) is applied to the top surface of the block in the (x;x;)-plane by
specifying the applied displacement in the x;-direction as

u = 8L(IL)X2. (5)

L

Here, the loading strain is £, = 0.05 and #;, = 1 s. The shear strain is

€ = lSL (i) (6)
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Figure 7: Applied loading and strain history for simple shear.

The material parameters used are the same as in Table 1 with the same exception of the critical
tearing parameter for the center element being set to t;”" = 0.03.

The averaged stress-strain results of the analysis are shown in Figure 8. The results match well
for the J, plasticity model with modular failure and the MLEP model. The comparisons for both
the uniaxial tension test and simple shear test show that the multilevel solver was implemented
consistently for the two models.

Note, in [1], a pure shear test was used to verify the single element implementation against an
analytical solution. Here, the purpose was to compare the results of the J, plasticity model imple-
mentation to the MLEP implementation for a multi-element simulation involving shear. For ease
of boundary condition application, a simple shear test was used instead of a pure shear test.

4.3 Round bar specimen

The final boundary-value problem, for a representative structural problem, is uniaxial tension of
a round bar specimen. A quarter model is used due to symmetry. The three symmetry planes are
fixed in their normal directions. The same constant logarithmic strain rate ramp load (2) is applied
to the top surface of the bar. Here, the loading strain is &, = 0.005 and 7, = 1 s.
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Figure 8: Stress-strain response for simple shear.

Again, the material parameters used are the same as in Table 1 with the exception of the critical
crack opening strain being set to €.,, = 0.01. For lower critical crack opening strains, the MLEP
model had convergence issues without an adaptive time stepping scheme. The J; plasticity model
implementation did not have these same convergence issues for lower critical crack opening strains.
This may be attributed to the inclusion of a line search algorithm in the J, plasticity model return
map not available in the MLEP model.

The axial stress-strain results of the analysis, averaged over all elements in the bar, are shown in
Figure 9. The results match well for the J, plasticity model with modular failure and the MLEP
model.

Figure 10 shows the crack failure flags for the round bar specimen at complete failure. Both the
J> plasticity model implementation and the MLEP model fail in a single cross-sectional band of
elements and have similar localized damage patterns surrounding the failure band.

The first element to damage is on the axis of the round bar, roughly at the midpoint of the half-
gauge length (Figure 11(a)). Next, elements damage radially outward from the axis of the bar in
a single cross-sectional band of elements. The element layers above and below the initiation layer
also begin to damage, but with smaller magnitude than the initiation layer (Figure 11(b)). After the
damaged elements of the initiation layer reach roughly half the gauge radius, a vertical cylinder of
elements, four to five elements in height at half the gauge radius, fails completely (Figure 11(c)).
Damage continues to cause elements to fail completely both outward and inward from the gauge
half radius until an entire cross-sectional band of elements fails (Figure 11(d)). The stress is then
zero throughout this layer and the top section of the bar moves as a rigid body under additional
displacement loading.

As the cross-sectional band of elements progressively fails, the load carrying capacity of this layer
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decreases. The axial stress in any other cross-sectional layer decreases as well and the axial strain
in these layers unloads. In the averaged stress-strain response (Figure 9), this resembles unload-
ing although the bar undergoes monotonically increasing displacement loading. The slope of the
unloading-type curve is controlled by the failure rate which, in turn, is controlled primarily by the
critical crack opening strain, &...s.
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Figure 9: Stress-strain response for the round bar specimen.
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Figure 10: Crack failure flags for the round bar specimen.
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Figure 11: Crack failure flag progression at the failure initiation cross-section for the J; results.

5 Future work

The J, plasticity model implementation is a first step towards adding the failure model as a modular
failure option for any plasticity model. It was selected since both the J, plasticity model and the
MLEP model use a von Mises yield surface. Many aspects of the failure propagation theory are
completely general; however, the stress decay is achieved by scaling of the maximum yield stress.
This limits the failure model to isotropic plasticity models with yield surfaces described in terms
of aradius. Also, J; plasticity is rate-independent. For this model to be modular with any plasticity
model, and anisotropic models and rate-dependent models in particular, the theory will need to be
generalized.

6 Conclusion

The tearing parameter criterion and material softening method currently used in the multilinear
elastic-plastic constitutive model was added as a modular failure option for the J, plasticity model.
The implementation was integrated with the multilevel solver to add the capability for multi-
element simulations. The implementation compared well with MLEP results for a uniaxial tension
test, a simple shear test, and a representative structural problem. Necessary generalizations of the
failure method to extend it as a modular failure option for all plasticity models were highlighted.
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