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ABSTRACT

Capactiance/inductance corrections for grid induced errors for a thin slot models are given

for both one and four point testing on a rectangular grid for surface currents surrounding

the slot. In addition a formula for translating from one equivalent radius to another is given

for the thin-slot transmission line model. Additional formulas useful for this slot modeling

are also given.
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I. Transmission Line Equations for the Slot Filamentary Magnetic Current

in an Infinite Ground Plane

For a rectangular slot in an infinite ground plane separating two half spaces Fig. 1 (slot

length c is much greater than the slot depth d and width w (or cross sectional dimensions

in general)) we can write the integro-differential equation for the filamentary slot equivalent

magnetic current Im(z) as [1]

H>
z (a, z) +

1

4

µ
∆YL

d2

dz2
Im −∆YCIm

¶
= −Hinc

z (a, z) (1)

H>
z (a, z) =

i

ωµ0

µ
d2

dz2
+ k2

¶Z h

−h
eikRa

4πRa
Im
¡
z0
¢
dz0 (2)

where Im ≡ I−m = −2V , V is voltage difference across the slot between the left and right

conductors (Fig. 1., [1]), the slot is along the z-axis, Ra =
q
a2 + (z − z0)2 where a is the

equivalent radius of the slot with no gasket and no losses present. As in [1] e−iωt time

dependence is assumed and the incident wave impinges on the slot from the y < −d
2 side.

For a rectangular slot of depth d and width w in an infinite, perfectly conducting ground

plane the equivalent radius a is given by eqs. 21-24 and 39 [3]. As d
w → 0, a → w

4 and a

useful uniformly valid approximation to a ≈ w
4 e
− πd
2w . The local admittance per unit length

Yρ0 and the total series impedance Zρ0 [1] depend on the radius ρ0 , which splits the problem

into a local transmission line region and a global region, the quantities ∆YL and ∆YC

∆YL =
1

Zρ0
+

1

iωLext0ρ0

(3)

∆YC = Yρ0 + iωC
0
ρ0 = G− iωCρ0 + iωC0ρ0 (4)

7



Lext
0

ρ0 =
πµ0

2 ln (ρ0/a)
(5)

C0ρ0 =
2

π
�0 ln (ρ0/a) (6)

are independent of ρ0. The transmission line parameters Yρ0 = G−iωCρ0 , Zρ0 = −iωΦ
Iρ0

,∆YL, ∆YC are

obtained from the static two dimensional problem of an infinitely long slot in an ground plane

of infinite extent [1] . These parameters depend on the depth, width, and conductivity of

the slot walls. A gasket with permeability µ0, conductivity σg, and relative permittivity εg

may be added to the slot interior and effects Yρ0 . For the case that wall losses are not small

and d >> w we may use the parallel splitting eq. 40 [1]

1

Zρ0
=

1

−iωLextρ0
+ Y int (7)

eq. 41 [1]

∆YL =
1

−iωLextρ0
+ Y int +

1

iωLext0ρ0

(8)

and eq. 76 [1] which is valid for no gasket or a gasket with permeability µ0 (restrictions are

given in [1])

Y int ≈
2Zs/d

iωµ0
w
d

¡
2Zs
d − iωµ0wd

¢ (9)

If the slot has a gasket with permeability other than µ0 one may find a work-around in

Section 4.2 of [2]. For the remainder of this paper we assume the permeability of the gasket

is µ0 .

∆YL =
1

−iωLextrρ0

+
1

−iωLintrρ0

+ Y int +
1

iωLextr0ρ0

+
1

iωLintr0ρ0

8
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Figure 1: A slot of width w and depth d in an infinite ground plane.

≈ Y int (10)

The losses interior to the slot dominate and the parts of Cρ0 and C
0
ρ0exterior to the slot

cancel

∆YC = G− iωCρ0 + iωC0ρ0

≈ −iωε0
µ
εg +

σg
iωε0

¶
d

w
+ iωε0

d

w
(11)
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II. Transformation of Radius in Thin-Slot Transmission Line Model

Equivalently, the integro-differential equations for the slot equivalent magnetic current at

ρ0 eqs.(25− 26) [1] are

H>
z (ρ0, z) +

1

4

Ã
1

Zρ0

d2

dz2
Im − Yρ0Im

!
= −Hinc

z (12)

H>
z (ρ0, z) =

i

ωµo
(
d2

dz2
+ k2)

Z h

−h
eikRρ0

4πRρ0
Im(z

0)dz0 (13)

∆YL =
1

Zρ0

(14)

∆YC = Yρ0 = G− iωCρ0 (15)

where Im ≡ I−m = −2V due to the assumption (c, λ >> ρ0 >> d).

Eqs. (12-15) may be translated from ρ0 to a by adding
1

iωLext0ρ0

to ∆YL and iωC
0
ρ0 to

∆YC . This is seen by using the approximation [6]

Z h

−h
eikRa

Ra
Im(z

0)dz0 ≈ ΩeIm (z) (16)

where Ωe = Ω+ Ce is Hallen’s antenna fatness parameter, Ω = 2 ln(2h/a) and Ce may be

approximated as Ce = 2 (ln 2− 7/3) and 2h is the length of the slot.

Z h

−h
eikRρ0

Rρ0
Im(z

0)dz0 ≈ (2 ln(2h/ρ0) + Ce) Im (z)

= (2 ln(2h/a) + Ce) Im (z)− 2 ln (ρ0/a) Im (z)

10



≈
Z h

−h
eikRa

Ra

Im(z
0)dz0 − 2 ln (ρ0/a) Im (z) (17)

Equation 17 may be used to approximate 12 as

i

4πωµo
(
d2

dz2
+ k2)

·Z h

−h
eikRa

Ra

Im(z
0)dz0 − 2 ln (a/ρ0) Im (z)

¸

+
1

4

Ã
1

Zρ0

d2

dz2
Im − Yρ0Im

!
= −Hinc

z (18)

i

4πωµo
(
d2

dz2
+ k2)

·Z h

−h
eikRa

Ra

Im(z
0)dz0

¸

+
1

4

"Ã
1

Zρ0

+
1

iω

2

πµo
ln (ρ0/a)

!
d2

dz2
Im −

µ
Yρ0 +

iω2ε0
π

ln (ρ0/a)

¶
Im

#
= −Hinc

z (19)

Using eqs. (5-6) eqs. (12-15) becomes eqs.(1-6).

To mitigate gridding difficulties with extremely small equivalent radii, a transformation

to the alternate equivalent radius a0 = ae
πd
2w may be carried out when modeling a rectangular

slot.

H>
z (a0, z) +

1

4

µ
∆YL

d2

dz2
Im −∆YCIm

¶
= −Hinc

z (20)

H>
z (a0, z) =

i

ωµ0

µ
d2

dz2
+ k2

¶Z h

−h
eikRa0

4πRa0
Im
¡
z0
¢
dz0 (21)

11



∆YL ≈ Y int − 1

iωL0
(22)

≈
1

−iω
1

µ0

d

w
+ Y int

∆YC ≈ −iωε0
µ
εg +

σg
iωε0

¶
d

w
(23)

where L0 = µo
w
d , and C0 = ε0

d
w , the parallel plate inductance and capacitance of interior

rectangular slot region.

III. Transmission Line Equations for the Slot Filamentary Magnetic

Current when no Ground Plane is Present

Multiplying eq. 20 by 2 yields

2H>
z (a0, z) +

1

2

µ
∆YL

d2

dz2
Im −∆YCIm

¶
= −2Hinc

z (a0, z) (24)

Since ρ0 << λ, H
inc
z (a, z) ≈ Hinc

z (a0, z).

If the structure surrounding the slot is not an infinite ground plane, as a slot in a

finite rectangular box with no ground planes, one may need compute unknown currents on

the surface as well as the slot equivalent magnetic current. In this case the incident field

Hinc
z (a0, z) and the magnetic slots currents Im are not imaged so eq. 24 may be re-written

as

Hinc
z

¡
a−0 , z

¢
+Hscatt

z

¡
J−, a−0 , z

¢
+
1

2
H>
z

¡
a−0 , z

¢−Hscatt
z

¡
J+, a+0 , z

¢− 1
2
H>
z

¡
a+0 , z

¢
12



+
1

2

µ
∆YL

d2

dz2
Im −∆YCIm

¶
= 0 (25)

H>
z

¡
a±0 , z

¢
= ± −i

ωµ0

µ
d2

dz2
+ k2

¶Z h

−h
eikRa0

4πRa0
Im
¡
z0
¢
dz0 (26)

where Hscatt
z

¡
J±, a±0 , z

¢
is the magnetic field scattered by the surface current J±

¡
a±0 , z

¢
at

the slot location and 1
2H

>
z

¡
a±0 , z

¢
is the magnetic field scattered by ∓ Im

2 (with no ground

plane image present). Note that

Htan = − bn× J (27)

where Htan is the tangential component of the total H field and the unit normal bn points
away from the metal.

Htan

¡
a−0 , z

¢
= Hinc

z

¡
a−0 , z

¢
+Hscatt

z

¡
J−, a−0 , z

¢
+
1

2
H>
z

¡
a−0 , z

¢
= − cn− × J− ¡a−0 , z¢ (28)

Htan

¡
a+0 , z

¢
= Hscatt

z

¡
J+, a+0 , z

¢
+
1

2
H>
z

¡
a+0 , z

¢
= − cn+ × J+ ¡a+0 , z¢ (29)

and eq 25 becomes

− cn− × J− ¡a−0 , z¢+ cn+ × J+ ¡a+0 , z¢

+
1

2

µ
∆YL

d2

dz2
Im −∆YCIm

¶
= 0 (30)

∆YL ≈
1

−iω
1

µ0

d

w
+ Y int (31)

13



∆YC ≈ −iωε0
µ
εg +

σg
iωε0

¶
d

w
(32)

A capacitive correction from a 2-d electro-static problem that follows may be added to

eq. 30 to account for resolution errors in the charge associated with J±

− cn− × J− ¡a−0 , z¢+ cn+ × J+ ¡a+0 , z¢

−1
2
∆YP

µ
1

k2
d2

dz2
+ 1

¶
Im +

1

2

µ
∆YL

d2

dz2
Im −∆YCIm

¶
= 0 (33)

∆YP = −iω
¡
C0ρ0 (a0)− CPρ0

¢
(34)

where C0ρ0 (a0) is defined by eq. 6 with a replaced by a0 = ae
πd
2w and CPρ0 is numerically

computed capacitance on both the ρ±0 sides between the two portions of the ground planes

(with potential difference V ) out to radius ρ0. In the calculation of C
P
ρ0 there is no attempt

to resolve a0 so it has been set to 0. The unit term in parenthesis times ∆YP is is a capacitive

correction while the 1
2k2
∆Yp is an inductive correction which the may be obtained from a

dual 2-d magneto-static problem or simply by relating the inductance term to the capacitance

term by the velocity of light. If the slot depth is small, a correction for losses exterior to the

slot may be added to this inductive term.

IV. Capacitance Correction for One Point Test and Piecewise Constant

Rectangular Basis Functions

The derivation of the difference capacitance for a one point test at the center of a rectangular

patch is as follows. We take two half planes to be thin and at potential φ (x) = (V/2)sgn(x).

14



The surface charge (which is odd in x) is expanded as

σ =
∞X
n=1

σn {Πn (x/∆)−Πn (−x/∆)} (35)

where Πn (t) = 1 for n − 1 < t < n and vanishes otherwise. It is noted that σn includes

charges from both sides (in y) of the thin ground plane. If only one side is gridded the final

∆YP correction is divided by 2. The basis function width is taken to be the uniform value

∆. The patch capacitance per unit length is thus

CPρ0 =
∆

V

NX
n=1

σn (36)

here N∆ = ρ0. The potential is thus

φ (x, 0) = − 1

2π�0

∞X
n=1

σn

Z n∆

(n−1)∆

£
ln
¯̄
x− x0¯̄− ln ¯̄x+ x0¯̄¤ dx0

= − ∆

2π�0

∞X
n=1

σn

Z n

n−1

£
ln
¯̄
t− t0¯̄− ln ¯̄t+ t0¯̄¤ dt0 (37)

Using Z
ln
¯̄
t0 ± t¯̄ dt0 = ¡t0 ± t¢ £ln ¯̄t0 ± t¯̄− 1¤ (38)

and setting to the location of the quadrature point t = m− 1/2, m ≥ 1 gives

− ∆

2π�0

∞X
n=1

σn [(n−m+ 1/2) {ln |n−m+ 1/2|− 1}− (n+m− 1/2) {ln |n+m− 1/2|− 1}

− (n− 1/2−m) {ln |n− 1/2−m|− 1}+ (n− 3/2 +m) {ln |n− 3/2 +m|− 1}] = V/2

(39)

or

15



−
∞X
n=1

Sn [(n−m+ 1/2) {ln |n−m+ 1/2|− 1}− (n+m− 1/2) {ln |n+m− 1/2|− 1}

− (n− 1/2−m) {ln |n− 1/2−m|− 1}+ (n− 3/2 +m) {ln |n− 3/2 +m|− 1}] = π2/2

(40)

where

Sn =
π∆σn
2�0V

∼ 1

n− 1/2 , n→∞ (41)

CPρ0 =
2

π
�0

NX
n=1

Sn (42)

The capacitance per unit length

Cngρ0 =
2

π
�0

Z N∆

∆

dx

x
=
2

π
�0 ln (N) (43)

The average charge density on the nth interval which goes with this capacitance is

σngn =
2

π∆
�0V

Z n∆

(n−1)∆
dx

x
=

2

π∆
�0V ln

µ
n

n− 1
¶

(44)

or

Cngρ0 =
∆

V

NX
n=2

σngn =
2

π
�0

NX
n=2

Sngn (45)

Sngn = ln

µ
n

n− 1
¶

(46)

16



Subtracting Sngn from Sn and adding the resulting term to the right hand side of eq. 40 as

well gives

−
∞X
n=1

∆Sn [(n−m+ 1/2) {ln |n−m+ 1/2|− 1}− (n+m− 1/2) {ln |n+m− 1/2|− 1}

− (n− 1/2−m) {ln |n− 1/2−m|− 1}+ (n− 3/2 +m) {ln |n− 3/2 +m|− 1}] = π2/2

+
∞X
n=2

ln

µ
n

n− 1
¶
[(n−m+ 1/2) {ln |n−m+ 1/2|− 1}− (n+m− 1/2) {ln |n+m− 1/2|− 1}

− (n− 1/2−m) {ln |n− 1/2−m|− 1}+ (n− 3/2 +m) {ln |n− 3/2 +m|− 1}] (47)

where ∆Sn = Sn − Sngn , for n ≥ 2 and ∆S1 = S1. If we now truncate the left hand side at

n = N we find

−
NX
n=1

∆Sn [(n−m+ 1/2) {ln |n−m+ 1/2|− 1}− (n+m− 1/2) {ln |n+m− 1/2|− 1}

− (n− 1/2−m) {ln |n− 1/2−m|− 1}+ (n− 3/2 +m) {ln |n− 3/2 +m|− 1}] = π2/2

+
∞X
n=2

ln

µ
n

n− 1
¶
[(n−m+ 1/2) {ln |n−m+ 1/2|− 1}− (n+m− 1/2) {ln |n+m− 1/2|− 1}

− (n− 1/2−m) {ln |n− 1/2−m|− 1}+ (n− 3/2 +m) {ln |n− 3/2 +m|− 1}] (48)

To accurately sum the right hand side, the remainder will be applied for large n ≥ n0. Thus

letting

17



Rn0 =
∞X
n=n0

ln

µ
n

n− 1
¶
[(n−m+ 1/2) {ln |n−m+ 1/2|− 1}− (n+m− 1/2) {ln |n+m− 1/2|− 1}

− (n− 1/2−m) {ln |n− 1/2−m|− 1}+ (n− 3/2 +m) {ln |n− 3/2 +m|− 1}] (49)

To approximate Rn0 the Taylor series approximations eqs. (50-59) will be used.

ln (1− x) = −x− 1
2
x2 − 1

3
x3 +O

¡
x4
¢

(50)

ln (1 + x) = x− 1
2
x2 +

1

3
x3 +O

¡
x4
¢

(51)

ln

µ
n

n− 1
¶
= − ln

µ
1− 1

n

¶
∼
½
1

n
+

1

2n2
+

1

3n3
+

1

4n4

¾
(52)

ln (n−m+ 1/2)− 1 ∼ lnn− 1− m− 1/2
n

− (m− 1/2)
2

2n2
− (m− 1/2)

3n3

3

(53)

ln (n+m− 1/2)− 1 ∼ lnn− 1 + m− 1/2
n

− (m− 1/2)
2n2

2

+
(m− 1/2)
3n3

3

(54)

ln

µ
1 +

m− 1/2
n

¶
∼
m− 1/2
n

− (m− 1/2)
2n2

2

+
(m− 1/2)
3n3

3

(55)

ln (n− 1/2−m)− 1 ∼ lnn− 1− m+ 1/2
n

− (m+ 1/2)
2n2

2

− (m+ 1/2)
3n3

3

(56)

ln

µ
1− m+ 1/2

n

¶
∼ −m+ 1/2

n
− (m+ 1/2)

2n2

2

− (m+ 1/2)
3n3

3

(57)

ln (n− 3/2 +m)− 1 ∼ lnn− 1 + m− 3/2
n

− (m− 3/2)
2n2

2

+
(m− 3/2)
3n3

3

(58)

ln

µ
1 +

m− 3/2
n

¶
∼
m− 3/2
n

− (m− 3/2)
2n2

2

+
(m− 3/2)
3n3

3

(59)

18



Rn0 =
∞X
n=n0

ln

µ
n

n− 1
¶
[(n−m+ 1/2) {ln |n−m+ 1/2|− 1}− (n+m− 1/2) {ln |n+m− 1/2|− 1}

− (n− 1/2−m) {ln |n−m− 1/2|− 1}+ (n− 3/2 +m) {ln |n+m− 3/2|− 1}] (60)

Rn0 ∼
∞X
n=n0

·
1 +

1

2n
+

1

3n2
+

1

4n3

¸"µ
1− m− 1/2

n

¶(
lnn− 1− m− 1/2

n
− (m− 1/2)

2

2n2
− (m− 1/2)

3n3

3
)

−
µ
1 +

m− 1/2
n

¶(
lnn− 1 + m− 1/2

n
− (m− 1/2)

2n2

2

+
(m− 1/2)
3n3

3
)

−
µ
1− m+ 1/2

n

¶(
lnn− 1− m+ 1/2

n
− (m+ 1/2)

2n2

2

− (m+ 1/2)
3n3

3
)

+

µ
1 +

m− 3/2
n

¶(
lnn− 1 + m− 3/2

n
− (m− 3/2)

2n2

2

+
(m− 3/2)
3n3

3
)#

(61)

Using the approximations 62-65

·
1 +

1

2n
+

1

3n2
+

1

4n3

¸µ
1− m− 1/2

n

¶
∼ 1− m− 1

n
− m− 7/6

2n2
− m− 5/4

3n3
(62)

·
1 +

1

2n
+

1

3n2
+

1

4n3

¸µ
1 +

m− 1/2
n

¶
∼ 1 +

m

n
+
m+ 1/6

2n2
+
m+ 1

4

3n3
(63)

·
1 +

1

2n
+

1

3n2
+

1

4n3

¸µ
1− m+ 1/2

n

¶
∼ 1− m

n
− m− 1/6

2n2
− m−

1
4

3n3
(64)·

1 +
1

2n
+

1

3n2
+

1

4n3

¸µ
1 +

m− 3/2
n

¶
∼ 1 +

m− 1
n

+
m− 5/6
2n2

+
m− 3/4
3n3

(65)
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eq. 61 becomes

Rn0 ∼
∞X
n=n0

"µ
1− m− 1

n
− m− 7/6

2n2
− m− 5/4

3n3

¶(
lnn− 1− m− 1/2

n
− (m− 1/2)

2

2n2
− (m− 1/2)

3n3

3
)

−
Ã
1 +

m

n
+
m+ 1/6

2n2
+
m+ 1

4

3n3

!(
lnn− 1 + m− 1/2

n
− (m− 1/2)

2n2

2

+
(m− 1/2)
3n3

3
)

−
Ã
1− m

n
− m− 1/6

2n2
− m−

1
4

3n3

!(
lnn− 1− m+ 1/2

n
− (m+ 1/2)

2n2

2

− (m+ 1/2)
3n3

3
)

+

µ
1 +

m− 1
n

+
m− 5/6
2n2

+
m− 3/4
3n3

¶(
lnn− 1 + m− 3/2

n
− (m− 3/2)

2n2

2

+
(m− 3/2)
3n3

3
)#

=
∞X
n=n0

·
(1− 2m) 1

n2
+ (1− 2m) 1

n3

¸
(66)

Rn0 ∼ (1− 2m)
∞X
n=n0

1

n2
+ (1− 2m)

∞X
n=n0

1

n3
=

(1− 2m)
"
π2

6
−
n=n0−1X
n=1

1

n2

#
+ (1− 2m)

"
1.2020569032−

n0−1X
n=1

1

n3

#
(67)

−
NX
n=1

∆Sn [(n−m+ 1/2) {ln |n−m+ 1/2|− 1}− (n+m− 1/2) {ln |n+m− 1/2|− 1}

− (n− 1/2−m) {ln |n− 1/2−m|− 1}+ (n− 3/2 +m) {ln |n− 3/2 +m|− 1}] = π2/2

+
n0−1X
n=2

ln

µ
n

n− 1
¶
[(n−m+ 1/2) {ln |n−m+ 1/2|− 1}− (n+m− 1/2) {ln |n+m− 1/2|− 1}
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− (n− 1/2−m) {ln |n− 1/2−m|− 1}+ (n− 3/2 +m) {ln |n− 3/2 +m|− 1}] +Rn0 (68)

Solving eq. 68 numerically for the difference coefficients with N = 100 and n0 =

2000, gives ∆S1 ≈ 2.44637, ∆S2 ≈ −0.12842, ∆S3 ≈ −0.01168, ∆S4 ≈ −0.00591, ∆S5 ≈

−0.00269, ∆S6 ≈ −0.00149, ∆S7 ≈ −0.00090, ∆S8 ≈ −0.00059, ∆S9 ≈ −0.00041, ∆S10 ≈

−0.00029.

∞X
n=1

∆Sn ≈ 2.2927 (69)

∆CPρ0 = C
P
ρ0 − Cngρ0 ≈

2

π
�0

∞X
n=1

∆Sn (70)

Using eqs. 6 and 43, we can write

C0ρ0 − Cngρ0 =
2

π
�0 ln (∆/a0) (71)

or

C0ρ0−CPρ0 = C0ρ0−Cngρ0 −
¡
CPρ0 − Cngρ0

¢ ≈ 2

π
�0 (ln (∆/a0)− 2.2927) ≈ 2

π
�0 ln

µ
∆/9.902

a0

¶
(72)

It is emphasized that eq. 72 is the correction to the thin-slot transmission line model

out to radius ρ0 [1] when the surfaces on both slides of the slot are gridded using the same

rectangular basis functions and one test point at the center of the basis function.
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V. Capacitance Correction for Four Point Testing with a Uniform Grid of

Rectangular Basis Functions

Equations 35-38 remain valid for using a four point test on a uniform grid of rectangular basis

functions. For this analysis we consider the variation along the length of the slot constant

and only consider variations perpendicular to the length of the slot. Using eq. 38 and setting

t to its value at the quadrature point t = m− 1/2 + d, where [5]

d = ± 1

2
√
3

(73)

and m ≥ 1 yields

∞X
n=1

σn

Z n

n−1

£
ln
¯̄
t− t0¯̄− ln ¯̄t+ t0¯̄¤ dt0 =

∞X
n=1

σn [(n−m+ 1/2− d) {ln |n−m+ 1/2− d|− 1}− (n+m− 1/2 + d) {ln |n+m− 1/2 + d|− 1}

− (n−m− 1/2− d) {ln |n−m− 1/2− d|− 1}+ (n+m− 3/2 + d) {ln |n+m− 3/2 + d|− 1}]

(74)

Note that in the Galerkin scheme the results from the two different d values have equal

weights so their results as well as the right hand sides (V/2 and V/2) may be added to obtain

φ (t∆, 0) =

− ∆

2π�0

∞X
n=1

σn [(n−m+ 1/2− d) {ln |n−m+ 1/2− d|− 1}− (n+m− 1/2 + d) {ln |n+m− 1/2 + d|− 1}
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− (n−m− 1/2− d) {ln |n−m− 1/2− d|− 1}+ (n+m− 3/2 + d) {ln |n+m− 3/2 + d|− 1}]

− ∆

2π�0

∞X
n=1

σn [(n−m+ 1/2 + d) {ln |n−m+ 1/2 + d|− 1}− (n+m− 1/2− d) {ln |n+m− 1/2− d|− 1}

− (n−m− 1/2 + d) {ln |n−m− 1/2 + d|− 1}+ (n+m− 3/2− d) {ln |n+m− 3/2− d|− 1}]

= V (75)

where d now denotes the positive value of d in eq. 73

−1
2

∞X
n=1

Sn [(n−m+ 1/2− d) {ln |n−m+ 1/2− d|− 1}− (n+m− 1/2 + d) {ln |n+m− 1/2 + d|− 1}

− (n−m− 1/2− d) {ln |n−m− 1/2− d|− 1}+ (n+m− 3/2 + d) {ln |n+m− 3/2 + d|− 1}]

−1
2

∞X
n=1

Sn [(n−m+ 1/2 + d) {ln |n−m+ 1/2 + d|− 1}− (n+m− 1/2− d) {ln |n+m− 1/2− d|− 1}

− (n−m− 1/2 + d) {ln |n−m− 1/2 + d|− 1}+ (n+m− 3/2− d) {ln |n+m− 3/2− d|− 1}]

= π2/2 (76)

where Sn and C
P
ρ0 are defined by eqs. 41 and 42. The capacitance per unit length Cngρ0 is

given by eqs. 43 and 45. The average charge density which goes with this capacitance is σngn

(eq. 44). Thus subtracting Sngn from Sn and adding resulting term to the right hand side of

matrix equation eq. 76 gives

−1
2

∞X
n=1

∆Sn [(n−m+ 1/2− d) {ln |n−m+ 1/2− d|− 1}− (n+m− 1/2 + d) {ln |n+m− 1/2 + d|− 1}
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− (n−m− 1/2− d) {ln |n−m− 1/2− d|− 1}+ (n+m− 3/2 + d) {ln |n+m− 3/2 + d|− 1}]

−1
2

∞X
n=1

∆Sn [(n−m+ 1/2 + d) {ln |n−m+ 1/2 + d|− 1}− (n+m− 1/2− d) {ln |n+m− 1/2− d|− 1}

− (n−m− 1/2 + d) {ln |n−m− 1/2 + d|− 1}+ (n+m− 3/2− d) {ln |n+m− 3/2− d|− 1}]

= π2/2 +
1

2

∞X
n=2

ln

µ
n

n− 1
¶
[(n−m+ 1/2− d) {ln |n−m+ 1/2− d|− 1}

− (n+m− 1/2 + d) {ln |n+m− 1/2 + d|− 1}

− (n−m− 1/2− d) {ln |n−m− 1/2− d|− 1}+ (n+m− 3/2 + d) {ln |n+m− 3/2 + d|− 1}]

+
1

2

∞X
n=2

ln

µ
n

n− 1
¶
[(n−m+ 1/2 + d) {ln |n−m+ 1/2 + d|− 1}

− (n+m− 1/2− d) {ln |n+m− 1/2− d|− 1}

− (n−m− 1/2 + d) {ln |n−m− 1/2 + d|− 1}+ (n+m− 3/2− d) {ln |n+m− 3/2− d|− 1}]

(77)

where ∆Sn = Sn − Sngn , for n ≥ 2 and ∆S1 = S1. If we now truncate the left hand side at

n = N we find

−1
2

NX
n=1

∆Sn [(n−m+ 1/2− d) {ln |n−m+ 1/2− d|− 1}− (n+m− 1/2 + d) {ln |n+m− 1/2 + d|− 1}

− (n−m− 1/2− d) {ln |n−m− 1/2− d|− 1}+ (n+m− 3/2 + d) {ln |n+m− 3/2 + d|− 1}]
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−1
2

NX
n=1

∆Sn [(n−m+ 1/2 + d) {ln |n−m+ 1/2 + d|− 1}− (n+m− 1/2− d) {ln |n+m− 1/2− d|− 1}

− (n−m− 1/2 + d) {ln |n−m− 1/2 + d|− 1}+ (n+m− 3/2− d) {ln |n+m− 3/2− d|− 1}]

= π2/2 +
1

2

∞X
n=2

ln

µ
n

n− 1
¶
[(n−m+ 1/2− d) {ln |n−m+ 1/2− d|− 1}

− (n+m− 1/2 + d) {ln |n+m− 1/2 + d|− 1}

− (n−m− 1/2− d) {ln |n−m− 1/2− d|− 1}+ (n+m− 3/2 + d) {ln |n+m− 3/2 + d|− 1}]

+
1

2

∞X
n=2

ln

µ
n

n− 1
¶
[(n−m+ 1/2 + d) {ln |n−m+ 1/2 + d|− 1}

− (n+m− 1/2− d) {ln |n+m− 1/2− d|− 1}

− (n−m− 1/2 + d) {ln |n−m− 1/2 + d|− 1}+ (n+m− 3/2− d) {ln |n+m− 3/2− d|− 1}]

(78)

To accurately sum the right hand side, the remainder will be applied for large n ≥ n0.

Thus letting

Rn0(m+ d) = +
1

2

∞X
n=n0

ln

µ
n

n− 1
¶
[(n−m+ 1/2− d) {ln |n−m+ 1/2− d|− 1}

+ − (n+m− 1/2 + d) {ln |n+m− 1/2 + d|− 1}

− (n−m− 1/2− d) {ln |n−m− 1/2− d|− 1}+ (n+m− 3/2 + d) {ln |n+m− 3/2 + d|− 1}]

(79)

Rn0(m) =
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+
1

2

∞X
n=n0

ln

µ
n

n− 1
¶
[(n−m+ 1/2) {ln |n−m+ 1/2|− 1}− (n+m− 1/2) {ln |n+m− 1/2|− 1}

− (n−m− 1/2) {ln |n−m− 1/2|− 1}+ (n+m− 3/2) {ln |n+m− 3/2|− 1}] (80)

which is the same as eq. 60. Thus Rn0(m+ d) is approximated by inserting (m+ d) into eq.

67.

−1
2

NX
n=1

∆Sn [(n−m+ 1/2− d) {ln |n−m+ 1/2− d|− 1}− (n+m− 1/2 + d) {ln |n+m− 1/2 + d|− 1}

− (n−m− 1/2− d) {ln |n−m− 1/2− d|− 1}+ (n+m− 3/2 + d) {ln |n+m− 3/2 + d|− 1}]

−1
2

NX
n=1

∆Sn [(n−m+ 1/2 + d) {ln |n−m+ 1/2 + d|− 1}− (n+m− 1/2− d) {ln |n+m− 1/2− d|− 1}

− (n−m− 1/2 + d) {ln |n−m− 1/2 + d|− 1}+ (n+m− 3/2− d) {ln |n+m− 3/2− d|− 1}]

= π2/2 +
1

2

n0−1X
n=2

ln

µ
n

n− 1
¶
[(n−m+ 1/2− d) {ln |n−m+ 1/2− d|− 1}

(− (n+m− 1/2 + d) {ln |n+m− 1/2 + d|− 1}

− (n−m− 1/2− d) {ln |n−m− 1/2− d|− 1}+ (n+m− 3/2 + d) {ln |n+m− 3/2 + d|− 1}]

+
1

2

n0−1X
n=2

ln

µ
n

n− 1
¶
[(n−m+ 1/2 + d) {ln |n−m+ 1/2 + d|− 1}

− (n+m− 1/2− d) {ln |n+m− 1/2− d|− 1}− (n+m− 1/2− d) {ln |n+m− 1/2− d|− 1}

− (n−m− 1/2 + d) {ln |n−m− 1/2 + d|− 1}+ (n+m− 3/2− d) {ln |n+m− 3/2− d|− 1}]

+Rn0(m+ d) +Rn0(m− d) (81)
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where d = 1
2
√
3
.

Solving eq. 81 numerically for the difference coefficients with N = 100 and n0 =

2000, gives ∆S1 ≈ 0.29264073E + 01, ∆S2 ≈ −0.29883585, ∆S3 ≈ 0.94811390E − 02,

∆S4 ≈ −0.11380113E − 01, ∆S5 ≈ −0.30238274E − 02, ∆S6 ≈ −0.20373822E − 02, ∆S7 ≈

−0.11872146E − 02, ∆S8 ≈ −0.78313399E − 03, ∆S9 ≈ −0.53814088E − 03, ∆S10 ≈

−0.38625512E − 03 where
∞X
n=1

∆Sn ≈ 2.6160479 (82)

and following the same procedure for the one point quadrature gives

C0ρ0−CPρ0 = C0ρ0−Cngρ0 −
¡
CPρ0 − Cngρ0

¢ ≈ 2

π
�0 (ln (∆/a0)− 2.6160479) ≈ 2

π
�0 ln

µ
∆/13.681546

a0

¶
(83)

It is emphasized that eq. 83 is the correction to the thin-slot transmission line model

out to radius ρ0 [1] when the surfaces on both slides of the slot are gridded using the same

rectangular basis functions and four point test.

VI. A Cavity Backed Aperture above a Slot in an Infinite Ground Plane

If the structure surrounding the slot is an infinite ground plane for y = −d
2 , and cavity

backed slot for y ≥ d
2 , one may need compute unknown currents on the surface as well as the

slot equivalent magnetic current. In this case eqs. 33 and 34 may be re-written to account

for the presence of the infinite ground plane

2Hinc
z (0, z) +H>

z

¡
a−0 , z

¢
+ cn+ × J+ ¡a+0 , z¢

−1
2
∆YP

µ
1

k2
d2

dz2
+ 1

¶
Im +

1

2

µ
∆YL

d2

dz2
Im −∆YCIm

¶
= 0 (84)
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H>
z

¡
a−0 , z

¢
=

i

ωµ0

µ
d2

dz2
+ k2

¶Z h

−h
eikRa0

4πRa0
Im
¡
z0
¢
dz0 (85)

∆YP = −iω
¡
C0ρ0 − CPρ0

¢
=


1
π �0 ln

³
∆/9.902
a0

´
for 1 point testing on rectangles

1
π �0 ln

³
∆/13.681546

a0

´
for 4 point testing on rectangles

 (86)

∆YL ≈
1

−iω
1

µ0

d

w
+ Y int (87)

Y int =
2Zs/d

iωµ0
w
d

¡
2Zs
d − iωµ0wd

¢ (88)

∆YC ≈ −iωε0
µ
εg +

σg
iωε0

¶
d

w
(89)

where the capacitive correction only includes the charge on the y = d
2 side since it is the only

side that is gridded.

VII. Conclusion

The grid corrections ∆YP are useful when d
w is moderate in size but requires rectangular

gridding in the vicinity of the slot, as d
wbecomes large the capacitance of the slot interior

dominates and this correction has little effect and is no longer needed.
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