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Utilizing in situ TEM mechanical testing to elucidate nanoscale
mechanisms dictating mechanical properties of Er
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Macroscopic and Microscopic Helium Effects
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Nanoscale Helium Bubbles
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Emulating erbium hydride aging through ion
irradiation

He implantation of ErD, causes
»Er undergoes a phase transformation from a .
hexagonal to a fcc structure under hydriding, forming surface flaking through bubble
ErH, linkage and crack growth

»Tritium B-decays to *He, which models predict to
remain in the tetrahedral site. Diffusion may occur
through the octahedral site.

~3He in ErT, tends to form platelet structures along the
{111} planes instead of bubbles.

»ErH, usually contains some oxide, Er,0,.

10% volume expansion
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“ Multilayered Er composites to limit He bubble impacts

* Er/Mo multilayered samples fabricated via e-beam
deposition
* Deuterated without formation of intermetallic phases
* He implantation to investigate He bubble nucleation

Er/Mo multilayered composites
show He bubble accumulation
at interfaces

C.A. Taylor, et al. Materials 14 2021.




D/T accumulation changes Er mechanical properties

o
=]

(a) Force

o i
o o

o
o

Force (mN)
w
=]

Stiffness (mN/nm)
e e
3 o

o

=)

o
T

0.00 W

i " 'l L i A A
0 40 80 120 160 200
Depth (nm)

Nanoindentation probes near-
surface mechanical properties of
thin films to decipher impacts of He
on Er properties
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ErD, shows similar hardness as
un-aged ErT,, yet properties of
ErT, changes with time

How are the mechanical
properties altered via
accelerated aging?

J.A. Knapp, et al. JNM, 350 2006.
J.A. Knapp, et al. J. Appl. Phys., 105 2009.
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Rapid Evaluation of Helium in Materials using Sandia’s
FTEM

= In-situ implantation only takes a few hours - tritium aging Quantitative Mechanical Testing

takes several months and rad work.

= . = 111
*In-situ annealing with the Gatan DT stage is used to Minimal control over displacement and no “out-

quickly assess the stability of bubbles and multilayers. of-box” force information
= Hysitron PI-95 Picolndenter In-situ TEM nanomechanical *  Sub nanometer displacement resolution
testing

* Quantitative force information with uN
resolution
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Utilizing in-situ TEM push-to-pull device for tensile
testing

FIB liftout micro-machining to fabricate tensile
bars for TEM testing
" -l

——

500 nm

Displacement
controlled
test, 20 nm/s

. .. Push-to-pull testing using
Nano-tensile bars for in situ TEM Hysitron P1-95

tensile testing successfully
fabricated via FIB liftout

B 4 (1) sandia National Laboratories 8




In-situ TEM tension tests resulted in brittle failure

(d) t = 275NN

t= 341 b3 64 I],':Gﬂ

Similar moduli for ErD, and ErT,,
though lower stress needed for
failure of ErT,

No necking observed, brittle failure

Engineering Stress (MPa)

1800 - I
1600 -
1400 +
1200 -
1000 -
800 -
B0 |-
400 -

200

Stress vs. Strain of ErD, and ErT,

a

ErD,, Modulus= 14.5 GPa| |
ErT,, Modulus = 14.7 GPa| ]

i i i i L i i
.00 gy 0.04 Q.06 S8 Q.0 LU

-~ nal Laboratories 9

Engineering Strain



‘Nanopillar compression likely more elucidating for
brittle material

In-situ TEM nanopillar
compression tests

Hysitron PI-95 indenter
2 um flat tip
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FIB-milled nanopillars of Er on Mo substrate
He implantation profile shows He peak in center of pillar
Peak He concentration: ~5 at.%

Utilizing in situ TEM nanopillar

compression of He-implanted ErD, Displacement controlled test
thin film Load: 0-100 nm at 1nm/s

Hold: 10s

Unload: 100-0 nm at 2nm/s i e
6 (1) Sandia National Laborataries 10




Nanopillar compression of He-implanted ErD2

Aged ErT,:

He concentration of
5at.%

From
nanoindentation:
Yield Strength -
~1.5 GPa

Young’s Modulus -
~165 GPa

J.A. Knapp, et al. J. Appl. Phys., 105 2009.
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Further testing to decipher impacts of D and He
loading

= Nanopillar compression testing on pure Er and ErD,
m Micro-cantilever testing to scale up testing to microscale
m Nano-tensile tests on more ductile He-implanted Pd

m Verify testing routine before testing ErT, to compare to accelerated
aged specimens

Micro-cantilevers of He-implanted ErD, Nanopillars on pure Er metal
for in-situ SEM testing

Utilizing in situ TEM mechanical testing to qualify the accelerated aging
techniques in Er

() Sandia National Laboratories 12



In-situ TEM techniques to elucidate helium effects on
metals and metal hydrides

m Tritiated metals have mechanical properties that change as they age
m Can we simulate their aging through ion implantation?
= He implantation of deuterated metals used to simulate aging of

tritiated metals

m In-situ TEM tensile and compression tests important for determining
mechanical properties of aged and implanted hydrides

Preliminary results show accelerated aging may be useful to qualifying
mechanical properties of aged films
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Access to the I’'TEM and associated facilities is now available through both the Nuclear

Science User Facilities (NSUF) and the Center for Integrated Nanotechnologies (CINT).

http://cint.lanl.gov

4 sl https://nsuf.inl.gov
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Sandia’s Concurrent In situ lon Irradiation TEM
(I3TEM) Facility

Direct real time observation of ion Capabilities
irradiation, 200 kV LaB. TEM
a
10 kV Colutron - 200 kV TEM - 6 MV Tandem ion implantation, or both with nanometer - ¢
resolution = lon beams considered:
= Range of Sputtered lons
= 10 keV D%*
= 10 keV He*

= All beams hit same location

= Nanosecond time resolution

(DTEM)
= Procession scanning (EBSD in
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Heavy lon Irradiation + Gaseous
Implantation
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Sandia’s USER Capabilities

Core Facility - SNL

Nanophotonics & Optical
Nanomaterials

Soft- Biological & Composite
Nanomaterials

Quantum Materials

In-situ Characterization and
Nanomechanics

Gateway Facility - LANL
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