This paper describes obijective technical results and analysis. Any subjective views or opinions that might/be expressed|in SAND2021-12565C
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Laser-Produced Aluminum Plasmas

Expanding in an Applied Electric Field:

Plasma Generation in Single Particle
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3 | Aerosol Mass Spectrometry

Aerosol mass spectrum collected in Atlanta, GA
» Aerosol mass spectrometry is critical oscs ,

HO,

for ol T Lo,

» Climate science: Cloud condensing
nuclei, precipitation

* Atmospheric monitoring: Pollution,
dust storms, forest fires

.
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* The chemical composition of
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particles can indicate their origin or | e
L. E. Hatch et al., Environ. Sci. Technol. 45, 5105 (2011).

hazardousness.
- Real-time measurements provide Aerosol mass spectrometer in a climate study in the
accurate information on reactive Sierra Nevada Mountains
particles. W e | e _ _ N
- Small size and weight desirable for ETeamiel  Single particle specira facilitate
AP e ) categorization of particles:

field/vehicle tests. “}_l

i‘ Dust
= Biol.
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Other

* Measuring a mass spectrum for
individual particles provides more
information and is especially useful R _
for source attribution. A. P. Ault, et al., J. Geophys. Res. 116, D16205 (2011).

Aerosol chemistry trailer
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+ I Single Particle Aerosol Mass Spectrometer (SPAMS)
» Conditions based on SPAMS 3.0 by

Livermore Instruments Al Particles o
* An aerodynamic lens focuses the _"‘_
incoming particles into a beam into a .‘K
differentially pumped chamber. Siy Aerodynamic
1IZIN
« First sizing laser (405 nm, continuous) Lase? — Lens
detects particle and measures its
aerodynamic diameter. J
- lonization laser (248 nm, 8 ns) Negative | | Positive
vaporizes and ionizes. Mass Spec | ! Mass Spec
* An applied field (2.8 x 10° V/m)
separates negative and positive ions. ¢ lonization
* In this study, we focused on spherical To Pump Laser

Al particles.

- Goal: Better understand ionization mechanisms in SPAMS systems using
numerical modeling.

* Results may aid in future designs and analysis of results.



Global Model Description
Global Plasma Model

* 0-D, well-stirred reactor
approximation.

Reactions Transport Expansion
* Feasible to achieve ps timescales p rxns y R2 AV
and address some problem- ne z (aRHS — LHS)R, — I, ooy T
specific issues. ediffy —7eTe y v dt
* Al, e, Al*, 6 excited states. 3
| 9 (2 an T ) rans
* 90 reactions: 3t = Pohmic + Z A€, iR,

* Electrons: excitation, ionization,
recombination, superelastic

3 3
* Photons: excitation, ionization, ( kgT, ) e, diff — ( kgne T) 4: _],Md_"
inverse Bremsstrahlung radiation

* Penning ionization, quenching

* Two temperatures (T, T,). n, = number density of species I
I, 4irr= electron diffusion flux
* Maxwellian energy distributions. R = plasma radius LHS
_ V = plasma volume R: =k l_[ n.
» Uniform photon flux. k = reaction rate of reaction | B

Ae = energy change



« | Including Electric Field Effects in 0D

* Expansion into vacuum causes plasma density
and radii to rapidly vary over many orders of
magnitude.

* We must address multiple limits of behavior:
* Plasma is dense enough to shield the E

* Plasma density is too low to shield E_ ¢4
* Electrons undergo many collisions across the plasma.
 Electrons are accelerated out of the plasma collisionlessly.

* Electron niortveAta

applied-

Jation:Collisions

dimenelle = N.€ | E pnii ——Z{EEQinE]R — MyN, UV
dt e applied 35{] elteteVm
5 3 3 mgn.u,dV
_meneueﬁ_meuere.diﬁﬁ TV dt
Convection/Expansion
1 |8kgT, e dyiasma o _Q  _Xiqm v
Feaiff = 4 | Tm, exp(— kpT, ) plasma = gge R~ 4meyR
\ _

*Once e leave the control volume, they are
ignored:
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7 ‘ Benchmarking Electric Field Effects

* Toy problems to check the

approach: no chemistry, no o
expansion. n 2 °
P B 260001 £
. . QL 3 2
* Aleph, electrostatic PIC-DSMC c 0
model O W 4000- 9
»w o £
S & =
: @)
* 3D wedge Q) € 2000+ c
* Collisionless: . 8 100 ]
e R=12 um, n, = 1012 em™ 10712 107 19_10 107° 107% 107’ 10-12 10-11 10-10 109 108 1077
- r : Time (s) Time (s)
cT.=100K, T.= 0K
* Elastic collisions: ¢ w2500 X .
. a0 ) c 5 o 1054Nny =10°cm’
* R=85um, n, =107 cm~ O £ 2000- 3
T =40K, T, =0K 7R 3109 10057
e Sy & = W 15009, = 109 cm3%» - o e I
. . o O « Al c
* Elastic collision, o0(v) « 1/v QO © € 1034 I
@ 1000 —
. _9 QO cC 1
* Runtime: ® £ 5001 £ 102;
o = o
LLl 0 +rr—— w 10! +——r—---v-——r————rm
10-11 10711 10710 10-°
Time (s) Time (s) L



s I Species Densities

cE=2.8x10°V/m 10°°
10

* 1 um Al 10
* 8 md, 248 nm ~ 10
— 10
* Electric field removes E 10

electrons from the 2

plasma at20-50 ns. @ *°
* Decreasing the laser a e
pulse duration would 10

not improve the 10"
mass resolution. 10

* Removal of electrons
interrupts rapid three- ()
body recombination.




o I lonization Mechanisms
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» As applied field accelerates
electrons T, increases rapidly.

. Tg continues to cool due to
adiabatic expansion.

Photon Flux (1025 cm-2s-1)

Global lonization Rate (s1)

Penning

10 . .

Global lonization Rate (s1)

(a) 0 2 4 6

Time (ns)

* Global ionization rate =
volumetric rate x plasma
volume.

* The primary ionization
mechanism is:

e +A* s AlY+e +e

e + Al

=

o

=

[

ol o sl

107 L1111 .
505152535455 1

10
Time (s)
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* As e are accelerated out of the

plasma, some electron impact
lonization occurs.

* This process only produces ~
100 ions. (<< 10° ions present)




o I Vary Applied Field
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Electric Field (106 V/m)

* Total number of Al* ions at
1 us

* 1 um Al particle.

1.0

 Applied field has negligible impact before charge separation.
 Higher field means earlier charge separation.

* Total ion count increases as the electrons are removed from the
plasma earlier in time, preventing more recombination.
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1 I Comparison with Experimental Data

* Spherical Al particles
were generated using
an Al(AcAc), precursor.

=
T

()

*Conversion from signal
to total number of ions
has significant

Number of Al*
Detected (10%)
%]

—

uncertainty. N FRNE I P ST T

- Significant Al2* was 6 1 2 3 4 3
unexpected! Particle Aerodynamic Diameter (um)

*Spectra collected with P . . . . | .

Livermore Instruments 5 2700 7 Ao crariospecta-1onx
SPAMS 3.0. S 2600 - :
n
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2 I Comparison with Experimental Data

*E=28V/m
* 8 mJ, 248 nm

* Expansion timescales where
tuned (T = 40 ns) to match the
magnitude of the experimental
data at 1 um.

*In model, scaling with particle
radius depends on the details of
the expansion parameters (e.g.
value of v,).
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i3 1 Concluding Remarks

* A method for approximating electron heating and
extraction from a plasma expanding into vacuum was
developed and tested.

* lonization mechanisms in a single particle aerosol mass
spectrometer (SPAMS) have been modeled.

* The dominant ionization mechanism is e- + Al*.

* The primary role of the electric field is to extract electrons,
interrupting recombination.

* Negligible ionization occurs due to the applied field
accelerating the electrons.

* Experimentally, ion counts are only weakly dependent
on particle size.

* Important questions:
* How does 3-body recombination scale with vacuum
expansion?

* What are the timescales, limiting behavior for the expansion
into vacuum?

* Where is the Al?* coming from?

Number of Particles







15 ‘ Photoexcitation and Expansion
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Density (cm3)

Number of Particles

Time (s)
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Global Photon Absorption Rate (s1)
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Temperature (K)

Number of lons

bkl | L | ML | R L | o """_ 10 1 1 1 1 1 1 1 8000 I 1 I I 1 8000
] 10 - e
T 47000 — -1 7000
8| Te —
S < = N 000
B _ =~ v Al+ 415
S 6f N+ 5000 o S 6L
il = 4 2000
G L. 4000 ® 5
- — Q -
()] (O] .
N {3000 ¢ o 4F 3000
52 e 5
> -
== 42000 = 2000
ok 2t
1000 41000
0 1 1 1 1 1 0
@ "6 7 8 9 10 11 12

Laser Energy (m))
8000

109_ T T T T T
7000
e +Al* (x0.1)
6000
8
5000 n n 10
C c
S 0
4000 prar ]
N 8
3000 8 g
- ~ 10’
2000
1000
Penning
0 6 1 1 1 ] 1 1 1 106 1 1 ] 1 ]
10 b ° 1 2 3 4 5 6 7 8 ) 06 7 8 9 10 11 12

Paricle Diameter (um) Laser Energy (m))

Temperature (K)



