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2 GaN may be Advantageous when Scaled to Medium Voltage

[1] D. Ji, B. Ercan, and S. Chowdhury, “Experimental Determination of Impact Ionization Coefficients of Electrons and Holes in Gallium Nitride Using Homojunction 
Structures,” Appl. Phys. Lett. 115, 073503 (2019).
[2] J. A. Cooper and D. Morisette, “Performance Limits of Vertical Unipolar Power Devices in GaN and 4H-SiC,” Elec. Dev. Lett. 41, 892 (2020).
[3] I. C. Kizilyalli, A. P. Edwards, O. Aktas, T. Prunty, and D. Bour, “Vertical Power PN Diodes Based on Bulk GaN,” IEEE Trans. Elec. Dev. 62(2), 414 (2015).
[4] D. Ji and S. Chowdhury, “On the Progress Made in GaN Vertical Device Technology – Special Issue on Wide Band Gap Semiconductor Electronics and Devices,” 
Int. J. High-Speed Elec. Sys. 28(01n02), 1940010 (2019).

• Critical field of GaN ~2.8 MV/cm at ND = 1×1016 cm-3 
and room temperature based on most recent 
impaction ionization measurements [1]

• Slightly higher than EC of SiC at the same temperature 
and doping [2]

• But higher mobility of GaN ~1200 cm2/Vs [3] 
compared to ~950 cm2/Vs for SiC [2] at the same 
doping and temperature lead to improvements in 
power converter efficiency [4]

• But devices are not widely available – a vertical GaN 
foundry is needed that monitors yield, reliability, etc.



3 Lateral vs. Vertical GaN Power Devices

Lateral Device
• Current flow and voltage drop parallel to surface
• Availability of heterostructures is an advantage
• Electric field management is challenging – voltage 

scaling is lateral (consumes more chip area)
• Commercial GaN power devices available from 

many manufacturers, but generally <650 V

Vertical Device
• Current flow and voltage drop perpendicular to 

surface
• Architecture is better-suited to high voltage 

devices – voltage scaling accomplished by 
thickening drift region (does not consume 
more chip area)

• But requires native substrates and low doping

Vertical PN Diode



4 IV Curves for Representative MV Vertical GaN PN Diode
• MOCVD growth, step-etched JTE (30 mm step width for device below)
• Device shown has 0.063 mm2 area; 1 mm2 devices also fabricated and tested 

• Vb ~4.2 kV with very low leakage current until breakdown; not clear if limited by drift region or JTE 
• Current spreading assumes 45-degree angle   Rsp,on = 5.1 mW cm2

Noise floor of 10 kV SMU

1 nA
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5 Commercialization Potential: Vertical GaN Foundry

Lot # of wafers Experiments

1 2 Edge termination

2 4 Vary Anode thickness
Alignment to dot-core

3 4 Type I (uniform) substrates

4 4 Vary drift layer thickness

5 6 Vary anode doping and other  
process variations

6 4 Baseline Process w/ 
improved epi and high yield 

wafers

7 3 Baseline Process w/ 
improved epi and new mask

8 4 New mask, varying implant 
profiles

9 4 Large-area mask, Back side 
process demo

• Epitaxial growth done at 
Sandia by MOCVD and 
wafers delivered to NRL for 
characterization and 
processing

• 35 wafers delivered to 
date, 23 processed through 
metals/isolation

• >26,000 devices processed 
to date
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6 Foundry Electrical Testing and Results

Typical 
foundry 
wafer

Wafer 
under 
test

Forward IV:
• Several amps of 

current 
demonstrated for 
1 mm2 devices

Reverse IV:
• >1.3 kV breakdown 

demonstrated
• Positive temperature 

coefficient of breakdown 
consistent with avalanche

T. Anderson. M. Ebrish



Avalanche Ruggedness of Vertical GaN
• Avalanche breakdown mechanism demonstrated via temperature dependence
• Avalanche ruggedness demonstrated in real power switching circuits
• Very different from the situation for GaN-on-Si power devices, where avalanche 

breakdown does not occur

Current

Voltage

10 A

1200 V

500 ns

O. Aktas and I. C. Kizilyalli, IEEE EDL 36(9), 890 (2015) 

M. P. King et al., IEEE TNS 
62(6), 2912(2015)
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8 Special Application: Protection for the Electric Grid

J. S. Foster Jr. et al., “Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse 
(EMP) Attack: Critical National Infrastructures,” Defense Technical Information Center (2008).

Electromagnetic pulses 
are a threat to the grid
• Very fast E1 component 

(< 1 ms)
• Unaddressed by current 

SOA technology (LSAs)

Transient protection is 
needed for MV grid-
connected systems GaN time to 

breakdown <1 ns

J. Flicker

Use fast avalanche to 
clamp voltage and shunt 

current to protect grid 
equipment
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