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Abstract—Building domain-specific accelerators is becom-
ing increasingly paramount to meet the high-performance
requirements under stringent power and real-time constraints.
However, emerging application domains like autonomous
vehicles are complex systems with constraints extending beyond
the computing stack. Manually selecting and navigating the
design space to design custom and efficient domain-specific
SoCs (DSSoC) is tedious and expensive. Hence, there is a need
for automated DSSoC design methodologies. In this paper, we
use agile and autonomous UAVs as a case study to understand
how to automate domain-specific SoCs design for autonomous
vehicles. Architecting a UAV DSSoC requires consideration
of parameters such as sensor rate, compute throughput, and
other physical characteristics (e.g., payload weight, thrust-to-
weight ratio) that affect overall performance. Iterating over
several component choices results in a combinatorial explosion
of the number of possible combinations: from tens of thousands
to billions, depending on implementation details. To navigate
the DSSoC design space efficiently, we introduce AutoPilot, a
systematic methodology for automatically designing DSSoC
for autonomous UAVs. AutoPilot uses machine learning to
navigate the large DSSoC design space and automatically select
a combination of autonomy algorithm and hardware accelerator
while considering the cross-product effect across different UAV
components. AutoPilot consistently outperforms general-purpose
hardware selections like Xavier NX and Jetson TX2, as well as
dedicated hardware accelerators built for autonomous UAVs.
DSSoC designs generated by AutoPilot increase the number of
missions on average by up to 2.25x, 1.62 %, and 1.43x for nano,
micro, and mini-UAVs, respectively, over baselines. Further, we
discuss the potential application of AutoPilot methodology to
other related autonomous vehicles.

Keywords-Robotics; Domain-Specific Architectures; ML for
Systems; Autonomous Machines; IoT and Edge Computing;
Mobile Systems

I. INTRODUCTION

Domain-specific SoC (DSSoC) architectures are increas-
ingly popular due to their higher performance and energy
efficiency than general-purpose processors. However, in
DSSoCs, the trade-off of achieving higher efficiency is the
loss of flexibility compared to general-purpose processors.

_T_This work was done while the author was at Harvard University.
This work was done while the author was at Harvard University.

Moreover, as the underlying domain can be complex and
diverse, the lack of flexibility and scalability (for rapidly
evolving domains) translates to increased cost, thus increasing
the barrier to designing DSSoCs.

To reduce design cost and improve the scalability of
domain-specific architectures, Firstly, we need systematic
methodologies and tools to understand the domain and its
unique constraints to design a balanced compute system.
Secondly and more importantly, there is a need to define
correct metrics to design and evaluate different domain-
specific architectures. Lastly, there is a need for design
automation for DSSoCs as domain requirements change
rapidly. To that end, in this work, we aim to answer the
following research question: How do we systematically design
DSSoCs for a rapidly evolving domain?

To answer the question, we take autonomous UAVs as an
example to show the need for a systematic methodology and
evaluation metrics. Autonomous UAVs are an extraordinarily
complex and diverse domain in which the traditional com-
puting platform is just one component among many other
components involving sensors, autonomy algorithms, onboard
compute and the UAV platform itself. To achieve mission-
level performance, we must understand the implications of
other components have on the design of onboard compute.
Moreover, in the context of autonomous systems, when the
sensor configuration, compute, or body-dynamics changes,
the optimal DSSoC design point can change dramatically, as
we demonstrate in our evaluation. To this end, it becomes
crucial to have flexible and agile DSSoC accelerator design
methodologies.

In this paper, we introduce AutoPilot to provide a sys-
tematic methodology for automatically designing DSSoC for
autonomous UAVs. We use the AutoPilot to demonstrate
the shortcomings of existing methodologies and trends in
designing DSSoC architectures. The high-level usage model
is that given a high-level specification of autonomy task, UAV
type, and mission goals, AutoPilot automatically navigates
the large design space to perform full-system DSSoC co-
design to generate a combination of autonomy algorithm
and corresponding hardware accelerator to maximize UAV



performance (e.g., number of missions).

AutoPilot has three main steps (Fig. 1): (1) Train several
end-to-end autonomy algorithms for a given autonomy task
(autonomous navigation) using reinforcement learning [43],
or supervised learning [52], [71], and validate task-level
functionality (D in Fig. 1). (2) Perform multi-objective
algorithm-hardware co-design to maximize task success rate,
compute performance and minimize power using Bayesian
optimization [33] (@ in Fig. 1). This ensures that we
traverse the large design space rapidly and obtain several
interesting design candidates. (3) Finally, we perform full-
system co-design across UAV components using the F-1
model [46] to select the optimal compute and autonomy
algorithm combination for a given UAV to maximize its
mission performance, i.e., number of missions (3) in Fig. 1).
This step accounts for the cross-product effect across the
full-UAV stack and is critical to maximize UAV performance
(as we demonstrate).

AutoPilot offers a complete solution for automatically
navigating the UAV DSSoC design space and performing
co-design across the entire system stack, including sensors,
autonomy algorithms, onboard compute, and UAV dynamics.
To demonstrate the scalability and generalizability of Au-
toPilot, we apply it to three different UAV types and three
domain randomized environments (total nine combinations).
These auto-generated domain randomized environments have
varying degrees of obstacle densities and represent common
deployment use cases for UAVs. For instance, autonomous
navigation for a farming use case may be sparse (low-
obstacle), whereas a search and rescue operation can be
a dense-obstacle scenario.

The evaluation of AutoPilot generated designs reveal
that the traditional design methodologies such as selecting
a low-power design [60], [80], high throughput designs,
or high efficiency (throughput/W) do not always improve
mission-level performance. Instead, AutoPilot generated
designs are more balanced as they account for the domain-
specific interactions between various UAV parameters such
as sensors, UAV physics, etc. As a result, the domain-specific
AutoPilot methodology consistently outperforms general-
purpose hardware selections like Xavier NX and Jetson TX2.
It also outperforms dedicated hardware accelerators built for
autonomous UAVs across diverse representative scenarios, as
they do not take into account domain-specific characteristics.

More broadly, when we compare the results from AutoPilot
to prior work, we come to the following general conclusions:

o Evaluating DSSoCs needs the right set of metrics. While

evaluating DSSoCs, there is a tendency to use traditional
isolated compute-system metrics, such as low-power,
high-throughput, or high-compute efficiency, based
on single kernel-level performance (e.g., SLAM [31],
[60], [80]). But this can be misleading, resulting in
under or overdesign. DSSoCs especially for SWaP
constrained systems, must take into account domain-

Prior End-to-End Hardware UAV Components Provides
Automated?
‘Work Autonomy? Acceleration Sensor | UAV Physics Design
Methodology?
Navion [80] X Only VIO X X X
Hadidi et al [31] x Only SLAM X X
RoboX [70] X Only Motion Planning X
MavBench [17] X X X X
PULP-DroNet [60] Full end-to-end stack X X X
AutoPilot
Full End-to-End Stack
(This Work) (Section V-C) | (Section V-C)

Table I: Comparison of prior work on autonomous UAVs. AutoPilot
provides an automated methodology for co-design across the cyber-
physical system stack for end-to-end UAV autonomy.

relevant constraints (e.g., weight) in evaluating proposed
system capabilities.

o Full-system co-design is important. It is essential to look
at the whole (U)AV (sensing, computation, actuation,
body dynamics) to derive constraints for a DSSoC
design. To achieve that, we must take into account all
three phases: autonomy algorithms, intelligent hardware-
software co-design, and specifically we must apply
safety-constraints (e.g. stopping distance).

o There is ‘no one size fits all’ DSSoC design. Our results
show that the optimal DSSoC design is sensitive to
changes in sensing, computation, and actuation pipeline.
As such, there is a need for customizing DSSoC design
as UAVs come in various shapes and sizes. AutoPilot
is an agile methodology to cope with the changes.

In summary, the goal of this work is to understand how
to design a balanced DSSoC for an emerging application
area, specifically UAVs, considering the whole system
characteristics and SWaP constraints, as that affects the end
DSSoC design. Our primary technical contributions are as
follows:

 Introduce AutoPilot, a domain-specific system-on-chip
(DSSoC) design automation methodology for AVs. We
decompose the methodology into three stages: (1)
domain-specific, front-end task specification, (2) domain-
agonstic multi-objective DSE and a (3) domain-specific
backend.

o We apply AutoPilot for autonomous UAVs. We quanti-
tatively show that AutoPilot generates optimal DSSoC
designs that increase the number of missions by 2.25x,
1.62x, and 1.43x for nano, micro, and mini-UAVs
respectively, over general purpose hardware accelerators.

o We provide a detailed taxonomy based on AutoPilot to
show how we can extend the methodology to other AV
domains that can benefit from DSSoCs.

II. BACKGROUND AND RELATED WORK

Prior work related to AutoPilot can be categorized into the
following: autonomy algorithm design for UAVs, hardware



accelerator design for autonomous UAVs, full-Stack UAV
design, and accelerators design for other robots.

Autonomy Algorithms for UAVs. There are two main
categories of autonomy algorithms, namely Sense-Plan-Act
(SPA) and End-to-End (E2E) learning-based.

In SPA, the algorithm is broken into distinct stages: sensing,
planning, and control. Specifically, sensor data is used to
create a map [20], [23], [69] of the environment. Then, the
planning stage [28], [40] processes the map to determine the
best trajectory. Finally, the control stage uses the trajectory
information, which actuates the rotor for the robot to follow
the trajectory. Harris et al. [32] provides one of the early
works on a co-simulation framework for characterizing the
performance and power of embedded computers used in
mobile UAVs. The work characterized image-processing
kernels such as FAST [68] and BRIEF [18], building blocks
for mapping and navigation tasks. However, their work [32]
needs additional kernels and workloads to make the UAV
fully autonomous. MAVBench [17] is another related work
that provides a complete benchmarking suite for autonomous
UAVs based on the SPA paradigm. MAVBench is one of
the early works showing that 95% of the UAV battery
power is spent on rotors, and only 5% of the power is
spent on onboard electronics (including sensor and compute).
Therefore, optimizing onboard computing to maximize the
velocity can reduce the mission energy to improve mission
performance.

E2F learning is an alternate paradigm where the algorithms
process raw input sensor information (e.g., RGB, Lidar)
and use a neural network model to produce output actions
directly. The E2E learning methods do not require maps or
separate planning stages and hence are computationally faster
compared to the SPA paradigm [22], [52], [60]. The E2E
models trained using supervised learning are DroNet [52]
and Trailnet [67], [78]. The E2E model for UAVs trained
using reinforcement learning includes CAD2RL [71] and
source seeking application [22].

AutoPilot. In contrast to these prior works, where the
general theme is to design one autonomy algorithm for a
given task, AutoPilot trains several E2E autonomy algorithms.
This gives greater flexibility in designing custom DSSoCs
as the UAV type or deployment scenario evolves.

Hardware Accelerator for Autonomous UAVs. Domain-
specific hardware accelerators for robots is an area of
emerging interest. Recent work proposed a low-power
accelerator [60] for the E2E paradigm, but it is only limited to
nano-UAVs running DroNet [52]. Navion [80] is a specialized
accelerator for improving Visual-Inertial-Odometry (VIO)
in autonomous UAVs using the conventional SPA paradigm.
VIO is just one of the many stages required for full autonomy
in UAVs. In the context of motion planning for UAVs,
RoboX [70] generates an accelerator for model predictive
control from a high-level DSL. All three hardware accelerator
approaches target low-power designs or higher compute effi-

ciency (throughput/W) without considering other interactions
of other UAV parameters on the onboard compute.

AutoPilot. Though the goal of AutoPilot is also to design
custom DSSoCs for UAVs. Our work differs from prior work,
which does not consider the effect of other UAV parameters
on the computing platform. Table I captures these differences
compared to prior work on designing hardware accelerators
for autonomous UAVs. Instead, we show that choosing a
balanced compute system and other UAV components is key
to maximizing domain-specific metrics like mission-level
performance. AutoPilot improves upon state-of-the-art by
providing an automatic design methodology for generating
DSSoCs given a UAV specification.

Autonomous UAVs Design Space Exploration. Recently,
Hadidi et al. [31] quantified the enormity of the UAV design
space and its various components needed for autonomous op-
erations (e.g., UAV mechanical components, flight controllers,
sensor, payload weight, etc.). However, despite quantifying
the UAV design space, the benefits of hardware accelerator
design are studied only for the mapping stage in the SPA
pipeline. As we have described in the autonomy algorithms
for UAV section above, a fully autonomous UAV requires
the synthesis of many computationally-intensive kernels
(e.g., mapping, motion planning) [17], [51], [54]. Park et
al. [61] explored the design space of drone infrastructure
for large-scale delivery services. However, this work focuses
on the selection of batteries with no mention of compute
or autonomous UAV operations, which is the focus of this
work.

AutoPilot. By comparison, AutoPilot evaluates the effects
of other components for a fully autonomous UAV. Compared
to Hadidi et al. [31], which focuses only on one of the
many components required for full autonomy (SLAM kernel),
AutoPilot focuses on the end-to-end system. We come to
a different conclusion from a holistic system perspective,
where optimizing DSSoC compute based on only kernel
speed-up numbers (high throughput, low-power, or higher
compute efficiency) can be misleading. Compared to Park
et al. [61], AutoPilot specifically focuses on the onboard
computer design (DSSoCs) to enable autonomy in UAVs.
AutoPilot provides a systematic automated solution to navi-
gate the enormous design space to produce optimal DSSoCs
for different UAV types and deployment scenarios while
maximizing mission-level performance.

Other Robots. Outside of the domain of aerial robots,
there has been work [55], [56], [58] showing the benefits of
designing custom hardware accelerators for motion planning.
In particular, Robomorphic Computing [58] provides a
general methodology to synthesize custom hardware based on
robot parameters (e.g., joint constraints). However, it focuses
only on one of many stages required to achieve autonomy,
i.e., motion planning for articulated robots (e.g., arms). By
contrast, AutoPilot provides full end-to-end autonomy for
UAVs.
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Figure 1: AutoPilot methodology for automating domain-specific SoCs for UAVs. The general methodology can be extended to other
AVs (see Section VII). Phase 1-Domain-Specific Front End: Multiple E2E models trained using Air Learning [43] simulator based on
high-level task specification. Success rates and hyper-parameters stored in a database. Phase 2-Domain-Agnostic Multi-Objective HW-SW
Co-design: Multi-objective DSE using Bayesian optimization to find E2E model and accelerator designs that are optimal in success rate,
and accelerator power and performance. Phase 3-Domain-Specific Back End: F-1 UAV tradeoff model [46] used to find the E2E model

and accelerator that maximizes UAV mission performance.

III. AuTOPILOT

AutoPilot is a DSSoC methodology for automating HW-
SW co-design, specifically in the context of UAVs. It
consists of three stages (Fig. 1) to systematically perform
the domain-specific system co-design; it leverages domain-
specific insights to deliver SoC designs that are superior to
more conventional architectural based methods. We make
this conscious decision to perform DSSoC automation in Au-
toPilot in three phases instead of a single-phase optimization
problem because: (1) Reuse the design as much as possible
since architectural simulation and E2E model training can
be slow processes; (2) A bad design point for one UAV
type can be a balanced design that maximizes mission-level
performance for another UAV. Phase 1 is a domain-specific
front end. The front end is designed to collect domain-
specific information. In AutoPilot, the front end designs a
collection of E2E-based autonomy algorithm implementations
that are functionally correct for performing autonomous UAV
tasks. It takes an input specification of the autonomous
UAV tasks and trains several E2E autonomy algorithms for
a given task using reinforcement learning [43]. Phase 2
is domain-agnostic, focused on performing optimizations.
AutoPilot performs multi-objective HW-SW co-design, or
automated design space exploration (DSE) using Bayesian
optimization [33] to find the Pareto frontier of E2E algorithms
and hardware accelerators that are optimal in terms of task
success rate, power, and runtime performance. Finally, Phase
3 is a domain-specific back end that performs full-system
UAV co-design based on its size, sensor characteristics (e.g.,
framerate and weight), and the design candidates (Pareto
frontier designs) produced in Phase 2. Finally, a combination
of the algorithm and an accelerator are automatically selected
to maximize the number of missions.

A. Domain-Specific Front End for Task Specification

In this phase, the user provides a domain-specific task-level
specification for an application (e.g., Source Seeking [22]),
which includes some rough estimates about the environments
such as obstacle densities. It also includes key metrics such
as success rate, real-time latency constraints, etc. AutoPilot
uses this information to configure the Air Learning [43]
environment generator. Air Learning provides a high-quality
implementation of RL algorithms that can be used to train a
neural network navigation policy for the UAV. Air Learning
includes a configurable environment generator [1] with
domain randomization [83] that allows changing various
parameters (e.g., the number of obstacles and size of the
arena) to aid in generalizability. These parameters are config-
ured based on the autonomy task specification. AutoPilot uses
Air Learning to automatically train, evaluate and validate the
E2E autonomy algorithms (Section II) for a given UAV task.

To determine the E2E model for each robot task (defined by
environment complexity, i.e., obstacles), AutoPilot starts with
the base multi-modal template used in Air Learning (Fig. 2a)
and varies its hyperparameters (e.g., number of layers and
filters) to create many candidate neural network (NN) policies.
We start from a known template and vary the parameters
inside the template because not all the layers within the E2E
model improve UAV task-level performance. Using domain
knowledge, we can seed the search process to explore regions
that quickly give us desired results. For example, making the
template layers deeper and wider gives a acceptable trade-off
between the number of parameters and task-level success
rate, as shown in Fig. 2b. The task-level success rate of 60%
to 91% is comparable to autonomous navigation task success
rate reported in robotics literature [27], [29], [71], [73], [78]
for similar difficulty levels.



Based on these template parameters and the desired
success rate, AutoPilot launches several Air Learning train-
ing instances. Each of the NN policies that achieve the
required success rate is evaluated in a domain random
environment [83], and its task-level functionality is validated.
The validated NN policies are updated into an Air Learning
database along with their success rates, which are then
used by Bayesian optimization in the next DSE phase
(Section III-B). It is important to note that this NN parameter
seed selection may be inappropriate for a different task
(similar to how ImageNet trained models might fail if applied
to medical images). The goal of this phase is to have
the flexibility to train several NN models, and there is no
restriction on search space size.

B. Domain-Agnostic Multi-Objective DSE

In this phase, AutoPilot performs a domain-agnostic
automated multi-objective design space exploration (DSE)
to find the Pareto frontier of the algorithms and DSSoC ac-
celerator architectures that achieve optimal task success rate,
performance, and power for a given autonomy task. Success
rate is only affected by neural network hyperparameters (e.g.,
number of layers and filters). The runtime and power depend
on the E2E model and accelerator architectural parameters.

Success rates for the policies are accessed from the
Air Learning database. At the same time, a cycle-accurate
simulator is used to evaluate accelerator performance and
power for the different policies and hardware configurations.
Finally, we use Bayesian optimization to achieve rapid
convergence to optimal solutions without performing an
exhaustive search.

Air Learning Database. This database is used for storing
the training results of various autonomy algorithms trained
using Air Learning. Each entry in the database has an
algorithm identifier, the hyperparameters used for training,
and the success rate for the policy after validation.

DSSoC Template. We assume a basic UAV DSSoC that
includes a parameterized template for hardware accelerator
shown in Fig. 3a. The specification of various components in
the DSSoC is tabulated in Table III. The onboard compute
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designs.

system consists of two ultra-low-power cores for running the
flight controller, an accelerator sub-system (Systolic array-
based), an external memory (DRAM), and an onboard RGB
sensor connected to the system bus. The flight controller
software stack is a Propotional, Integral, Derivative (PID)
controller that runs bare-metal on the microcontroller unit
(MCU), similar to Bitcraze Crazyflie [2], [22]. We also
assume that the camera is interfaced with the system using
a camera parallel interface [63] or MIPI [50] similar to this
work [60] from which the accelerator sub-system can directly
fetch the inputs to process the images. Also, we assume that
the filter weights are loaded into the system memory as a one-
time operation. To ensure that the DSSoC is adaptable and
balanced for a given UAV and task, AutoPilot only changes
the NN accelerator IP as per the change in deployment
scenario or UAV types.

In the E2E paradigm (Section II), majority of the DSSoC
time and energy is spent processing the NN policy [22],
[52], [60], and its performance will dominate the overall
throughput of the autonomy algorithm. For each frame from
the sensor, the algorithm running on the accelerator sub-
system generates high-level action commands that the flight
controller interprets to generate low-level motor signals to
control the UAV’s physical rotors. Hadidi et al. [31] shows
that the actuation cost (flight controller) is minimal compared
to computation cost in typical scenarios. Hence, we focus
our parameterization on the NN component although when
we conduct our analysis and report results we consider the
entire SoC shown in Figure 3a.

DSSoC Performance Estimation. AutoPilot uses SCALE-
Sim, a configurable cycle-accurate systolic array-based NN
accelerator simulator [72]. In addition, it exposes various
architectural parameters such as array size (number of MAC
units), scratchpad memory size for the input feature maps
(ifmap), filters and output feature maps (ofmaps), dataflow
mapping strategies, as well as system integration parameters,
e.g., memory bandwidth. For example, enumerating the
number of PE’s, SRAM sizes give a acceptable trade-off



Hyper-parameter Potential Values

Neural # Layers [2,3,4,5,6,7,8,9, 10]
Network # Filter [32, 48, 64]
# PE Row [8, 16, 32, 64, 128, 256, 512, 1024]
Hardware # PE Column [8, 16, 32, 64, 128, 256, 512, 1024]

IFMAP/Filter/OFMAP

[32, 64, 128, 256, 512, 1024, 2048, 4096]
SRAM Size (KB)

Table II: E2E model and architectural parameters tuned in AutoPilot
for design of DSSoCs.

Components Name Peak Power Throughput Functionality Parameters
Flight Controller Stack, .
ULP MCU |ARMVS-M [5]| 0.38 mW [4] 100 MHz [4] . Fixed
Driver stack
Sensor OV9755 [3] 100 mW [3] |30-90 FPS [3] Sensor Fixed
Sensor Interface| MIPI [50] 22 mW [53] 62.6 MHz Camera Interface Fixed
E2E NPU Systolic Array |0.7 W to 8.24 W | 22-200 FPS |E2E Model Processing Unit| Variable

Table III: The DSSoC spec used in AutoPilot for autonomous
UAVs. The ultra low-power MCU and camera sensors are fixed.

between performance and power as shown in Fig. 3b. Taking
these architectural parameters, the SCALE-Sim generates the
runtime latency.

DSSoC Power Estimation. To estimate the total DSSoC
power, we add the power of individual components in the
SoC as shown in Figure 3a. For estimating the power of the
accelerator, we run a given NN policy on a cycle-accurate
simulator. The cycle-accurate simulator produces SRAM
traces, DRAM traces, number of read/write access to SRAM,
number of read/write access to the DRAM. Using the SRAM
and DRAM trace information, we model the SRAM power in
CACTI [49] and DRAM power in Micron DRAM model [9].
For estimating the power for the systolic array, we multiply
the array size with the PE energy. The PE power is modeled
based on prior work [48].

For the MCU cores, we use Cortex-M cores that implement
the ARMv8-M ISA [5]. Each core consumes about 0.38 mW
in a 28 nm process clocked at 100 MHz [4]. We also account
for the power of the ultra-low-power core into our final power
numbers. For the ULP camera, we assume it consumes 100
mW and form factor of 6.24 mm x 3.84 mm [3]. We account
for the camera power in our overall power calculation.

Design Space. The searched design factors of both
autonomy algorithms and DSSoC templates are shown in
Table II. For autonomy algorithm space, we follow [43]
and adopt the multi-modal template where all solutions are
validated in AirLearning. For DSSoC space, we search PE
array size and RAM size for input feature maps, filters, and
output feature maps. More parameters can be exposed to
the Bayesian optimization. Varying these parameters gives
us wide range of performance/power profiles as tabulated in
Table III.

Bayesian Optimization. AutoPilot uses Bayesian optimiza-
tion [33] for algorithm-hardware design space exploration.
Bayesian optimization is effective for optimizing black-

Knee-Point

=
K=y < o
o i f
E 2 I8
£ 5 2Vsub| - 8 IE
2 k3] k] 5 &
= Effect of throughput {5 ® £
ect of throughpu ] & g
f f) f
fiq fiof sub 'k over
k1 'k2 'k3 Action Throughput (Hz)

Action Throughput (Hz)

(a) Effect of compute weight. (b) Optimal design.

Figure 4: (a) Mapping design candidates to F-1 to assess impact of
compute weight and compute throughput on UAV performance. (b)
Mapping design candidates to F-1 to select optimal design candidate
for a UAV system.

box functions [75], [79] that are expensive to evaluate
and cannot be expressed as closed-form expressions. But
the bayesian optimization method can be replaced with
reinforcement learning [81], evolutionary algorithms [88],
simulated annealing [84] etc.

In AutoPilot, we use Bayesian optimization to optimize
three objective functions: (i) task success rate, (ii) DSSoC
power, and (iii) accelerator inference latency (runtime).
A Pareto-optimal DSSoC design achieves maximum task
success rate, minimum inference latency, and SoC power.
The algorithm tunes NN policy hyper-parameters (such as
the number of layers and filters) and accelerator hardware
parameters (e.g., number of processing elements, SRAM
sizes) to converge to Pareto-optimal NN policies and DSSoC
designs.

Bayesian optimization initially evaluates the objective
functions at random parameters, followed by intelligently
selecting those that will optimize the objectives. The algo-
rithm builds a Bayesian statistical model for each objective
function using a Gaussian process (GP). These GP models are
updated as the Bayesian optimization proceeds and samples
new parameters. A GP distribution is defined by mean and
covariance. The mean is the expected value of a function
at some parameter value. The covariance, called the kernel,
models the dependence between the function values at two
distinct parameter values. In this paper, the widely-used
squared exponential (SE) kernel is used due to its simplicity,
leading to fast computation [65]. The right selection of
parameter values is determined by an acquisition function
computed using the GP-predicted objective values. The
algorithm selects those inputs that maximize the acquisition
function until all the optimal solutions are found.

In particular, the S-Metric-Selection-based Efficient Global
Optimization (SMS-EGO) is used as the acquisition function.
It has been shown to be highly effective for multi-objective
optimization and handling a large design space compared
to other acquisition strategies such as expected improve-
ment [64]. SMS-EGO uses hypervolume to determine the
degree to which a candidate point is optimal. A hypervolume
is the volume enclosed between a candidate point and a fixed
reference point in the Pareto space. Since the hypervolume
of a Pareto-optimal point is higher than a non-optimal point,
the approach maximizes the hypervolume until all the points



Base-UAV System Autonomy Components

UAV

(Fixed) (Custom Designed)
Name Batter; Base
UAV . 'y Flight Sensor | Autonomy | Onboard
T Capacity Controll UAV |Sensor F te| Algorithm | C "
ype ‘ontroller ramerate orithm | Compute
P (mAh) Weight 8 P
6250 piD E2E
AscTec Pelican | mini-UAV Controller | 1650 g| RGB | 30/60 FPS Custom
(fixed) (custom)
- 100 KHz
1480 pID E2E
DJI Spark | micro-UAV (ixed) Controller | 300 g | RGB | 30/60 FPS om) Custom
(fixe 100 KH-= (custom
500 PID E2E
Zhang et al [89] | nano-UAV X Controller| 50 g | RGB | 30/60 FPS Custom
(fixed) 100 KHz (custom)

Table IV: In our experiments, we keep the base UAV system fixed
(size, battery, sensor type) and focus on co-design of components
needed for achieving autonomy. As the UAV type changes, the
weight of the UAV also changes and this will impact the design of
DSSoCs for autonomous UAV.

with the highest hypervolume (i.e, Pareto-optimal) are found.

However, not all Pareto-optimal DSSoC designs generated
at this stage will result in optimal UAV performance (e.g.,
maximize the number of missions). Some of these designs
will be over-provisioned or under-provisioned. Both these
scenarios negatively affect the overall UAV performance.
Hence, to determine which of the DSSoC designs is better
suited for a given UAV, we need to perform full-system UAV
co-design where we account for sensor, onboard compute,
and its impact on UAV physics.

C. Domain-Specific Back End

To lower the DSSoC design to the target UAV platform,
AutoPilot’s Phase 2 prunes a large design space of ~10'8
designs to ~100s of design candidates using domain-specific
knowledge. These 100s of design candidates represent a
sample of low-power, high-performance, or Pareto-optimal
designs in terms of performance and power. However,
enumerating 100s of design candidates is still tedious and
requires a systematic way of selecting one of the designs
for a UAV. Hence, the goal of Phase 3 is to determine the
holistic evaluation of these design candidates and other UAV
components.

Compute Weight Modelling. Since the payload weight
affects the UAV physics, it is important to estimate the weight
of the onboard computer. The onboard computer typically
has two components: a motherboard where SoC is mounted
and a passive heatsink for cooling the SoC. The heatsink
weight is proportional to the TDP of the SoC.

For the motherboard weight, we assume that the final SoC
is mounted on a PCB along with all electrical components
weighing 20g (which per our analysis is typical for Ras-Pi [§],
CORAL [6] like systems). For the heatsink weight, we use
a heat sink calculator [7] which determines the heatsink
volume required for cooling. The weight of the heatsink is
then determined by multiplying the estimated volume with
the density of aluminum (commonly used heatsink material).

Full-System Co-Design. A DSSoC design is a tailored
SoC that maximizes the system efficiency, over its own

efficiency metrics such as throughput, latency, power or
area. AutoPilot filters the generated SoC designs with the
highest success rate (based on the input specification) from
the designs generated in Phase 2. It does this by mapping the
filtered design candidates to the F-1 UAV tradeoff model [45],
[46].

The F-1 [45], [46] is a roofline-like visual performance
model built on top of a UAV safety model [51]. Each base
UAV system has a unique F-1 plot that can gather insights
about different bounds and bottlenecks. F-1 model can help
identify if the system performance of a given UAV is bounded
by sensor, compute or body dynamics, and it can aid a system
architect in understanding the optimal compute design or
selection for autonomous UAVs. The F-1 model plots the
relationship between safe velocity and action throughput as
shown in Fig. 4. The safe velocity is the maximum velocity
at which the UAV can travel safely without colliding with an
obstacle. Conversely, by relative motion (and switching the
frame of reference), if the UAV is hovering, the same model
can also determine the maximum velocity of an incoming
object that the UAV can avoid before colliding. The action
throughput is the decision-making rate, i.e., the output of the
sensor-compute-control pipeline.

The F-1 model also considers the compute throughput and
how the compute payload weight affects the UAV’s physics,
i.e., maximum acceleration, which can be determined by its
thrust-to-weight ratio [57]. Prior work shows that UAV flight
time can drop by 22% if the accelerator is not balanced with
other UAV components [22], [60]. The F-1 model can also
determine whether a combination of autonomy algorithm and
onboard compute is over-provisioned, under-provisioned, or
optimal for a given UAV system [46].

To understand the role of F-1 in AutoPilot, consider three
DSSoC designs, ‘A, ‘B, and ‘C,” generated from the multi-
objective DSE in Phase 2. Assume that all the designs achieve
the same compute throughput but at different thermal design
power (TDPs), with ‘A’ being the lowest and ‘C’ being the
highest. Mapping these designs on the F-1 model (Fig. 4a)
gives insight into which designs achieve better UAV mission-
level performance. DSSoC design ‘A’ has the same action
throughput as ‘B’ and ‘C’ but with the lowest power. Hence,
it has the lowest heatsink weight. DSSoC design ‘C’ has the
highest power; hence ‘C’ has the highest heatsink weight,
thus translating to a higher compute payload weight. The
onboard compute weight lowers the UAV’s ability to move
fast, and the lowering of ceilings captures this effect in
Fig. 4a for ‘B’ and ‘C. Lowering the safe velocity will
imply mission energy and the number of missions it can
perform [17]. Thus, AutoPilot will select DSSoC ‘A’ over
the other two designs.

Another utility of the F-1 model in AutoPilot is to
determine if a DSSoC design candidate is balanced, over-
provisioned, or under-provisioned. The minimum value of
action throughput to maximize safe velocity (Vg.y.) is called



the knee-point. For example, in Fig. 4b, design ‘O’ is
optimal because it achieves the minimum action throughput to
maximize V,y.. Likewise, ‘A’ is over-provisioned (achieves
more throughput than required), and ‘X’ is under-provisioned.
AutoPilot will choose design ‘O’ over the other two designs.
The F-1 model bounds the DSE across sensing, compute, and
actuation [45]. In a scenario where the sensing/compute stage
is overly optimized and the flight controller becomes the
bottleneck, the F-1 model will guide Autopilot to select
a DSSoCs design balanced across the sensor, compute,
and actuation pipeline. This balanced design across the
sensing/compute/control stage will result in maximal UAV
performance.

Architectural Fine-Tuning. In the case when no optimal
design exists that achieves the knee-point, certain designs
may require some architectural tuning to shift the design
close to the knee-point. AutoPilot provides two options: (i)
The design points can be user-defined, or (ii) the design
point closest to the knee-point can be selected. Architectural
tuning can be performed using various optimizations until the
optimized design is at (or very close to) the base knee-point
in the F-1 roofline. We seed the AutoPilot system with two
optimization techniques for starters: frequency scaling and
technology node scaling. Ideally, any optimization technique
such as HW-SW co-design, microarchitecture, and device-
level optimization can be a part of the architectural fine-tuning
step.

Total Execution Time. One round of AutoPilot design flow
takes 3 to 7 days. Phase-1 and Phase-2 take the most amount
of total time, while Phase-3 time is negligible. However,
Phase-1 can be parallelized using advances in massively
distributed RL frameworks like ACME [35], QuaRL [44] or
Seed-RL [24], which are designed to drastically reduce the
training time.

IV. EXPERIMENTAL SETUP

Autonomy Task. We train autonomous navigation tasks
in Air Learning [43] for three different environments: low,
medium, and dense obstacles. Autonomous navigation is one
of the key building blocks in achieving autonomy and is used
in many practical applications like search and rescue, source-
seeking [22], and package delivery [86]. Each E2E model
for autonomous navigation is trained for one million steps or
until convergence. This is a standard training methodology
for reinforcement learning, and the same methodology is
used for building real autonomous UAV applications [22],
[71].

Base UAV Systems and Autonomy Components. To
show the scalability of AutoPilot methodology, we take a
representative UAV from each size category: mini, micro,
and nano-UAV (Table IV). The UAV system includes a
frame, flight controller, battery, and rotors (all included in
the base weight). The flight controller is solely dedicated to
stabilizing and controlling the UAV. The flight controller

firmware is computationally lightweight and is run on
microcontrollers [11], [12] that are tightly integrated into the
UAV platform. The flight controller uses onboard sensors,
such as the Inertial Measurement Unit (IMU) [13] and
GPS, to stabilize and control the UAV. To recover from
unpredictable errors (sudden winds or damaged rotors),
the inner-loop typically runs at closed-loop frequencies of
up to 1 kHz [30], [41]. We keep the UAV system fixed
and focus on designing the optimal DSSoC and autonomy
algorithm to maximize the overall operational efficiency of
the autonomous UAV system. More importantly, as the UAV
type changes, its base weight also changes, which will impact
the selection/design of DSSoCs.

Domain-Specific Evaluation Metrics. Unlike traditional
computing systems, the important operational efficiency
metric for autonomous UAVs is the number of missions,
which captures how many times the UAV can complete
similar missions on a single battery charge. For example, in
a package delivery use case, a higher number of missions
means more packages delivered with lower downtime spent
recharging. This metric is affected by the choice of onboard
compute combined with several other key UAV components.

For a given UAV, we define the number of missions as:

Ebatter )
Y
Ninissions = ) ( 1 )

Emission

where Epgrery is the total energy available in the UAV (a
function of battery mAh rating) and E,;;ssi0n 1 the total energy
expended by the UAV per mission.

We can define E,;si0, for a single mission as:

Emission = (P otors T P, compute +P, others) * Iission s (2)

where Prorors, Peompute> and Pyspers refer to the power consump-
tion of the rotor propulsion, compute, and other electronic
components (e.g., sensors, ESC) in the UAV, respectively.
tmission 15 the time for completing the mission. Intuitively,
Eq 2 suggests that the amount of energy expended in a
mission corresponds to the duration of the time the UAV
flies (mission time), and the total power dissipation of its
components.

The mission time #5500, depends upon the distance
Do peration and the UAV velocity. For a fixed distance, mission
time is determined by how fast the UAV can travel through a
dynamic environment filled with obstacles. The UAV needs
to travel as quickly as possible while safely navigating around
obstacles. We define this safe traveling speed as the safe
velocity, Vi,r.. Maximizing Vs, lowers the mission time,
increasing the total possible number of missions.

Using these terms, we can re-write Eq 2 as follows:

Dopemtion
Emission = (Prolors + Pcompute + Pothers) s (3)

Vta fe

Then, substituting Eq 3 in Eq 1, we get:

Ehattery * Vsafe

N C))

Npissions =
(Protam + Pcompute + Pothers) * Doperutian
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Figure 5: Comparison of AutoPilot generated designs with other designs (TX2 and Xavier NX, PULP [60]) for three different deployment
scenarios (low obstacle, medium obstacles, and dense obstacle environments) and three UAV categories (mini-UAV, micro-UAV, and
nano-UAVs). (a), (b), and (c) denotes the number of missions (higher is better) on a single battery charge for three UAV types and
three different deployment scenario. The degradation in the number of missions are compared with mean performance of TX2, NX, and
PULP [60] and annotated in the plots with AutoPilot generated design as baseline. All the points except P-DroNet (PULP-DroNet) [60]
runs the same policy. For P-DroNet, we use the numbers reported from their work.

According to Eq. 4, to maximize the number of missions,
the optimization objective is to increase the UAV’s safe

velocity (Viur.) or increase the battery capacity (Epuiery)-

Increasing the battery capacity is non-trivial since UAV size
impacts the SWaP constraints. However, proper selection
of various UAV components (compute, sensors, etc.) can
maximize safe velocity. It is important to note that E,jssion,
Vsafe> and Doperarion are not constants, and it depends upon
the mission characteristics. But the fundamental relationship
between them holds true.

Note that Vs, reported from AutoPilot is relative and
measured from a frame of reference. If the UAV hovers,
the safe velocity corresponds to the ability to dodge an
incoming obstacle traveling at Vy,r.. If the UAV travels
at Vi, it corresponds to the velocity it can travel safely
and stop to avoid the collision. For example, even in an
inspection crawling “autonomous robot” in an unpredictable
and dynamic environment, its sensing-compute-actuation
pipeline must achieve a high safe velocity to avoid incoming
dynamic obstacles or static obstacles when in motion. Hence,
safe velocity is an important metric for autonomous UAVs.

V. EVALUATION

This section evaluates AutoPilot’s co-design results for
different UAVs and deployment scenarios compared to
baseline designs. We then compare AutoPilot methodology in

selecting designs versus several traditional design strategies.

Next, we characterize the effects of cyber-physical parameters
such as sensor type and UAV agility on the compute co-design
process. Finally, we analyze the cost of design specialization
versus its impact on overall UAV mission efficiency.

The insights based on AutoPilot generated designs for
autonomous UAVs are: (1) As the UAV type (e.g., mini-UAV
vs. nano-UAVs) or deployment complexity changes (e.g., low
clutter environment vs. densely cluttered environment), we
must customize either the autonomy algorithm or DSSoC
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Figure 6: Visualization of DSSoC architectural parameter variations
for nine scenarios (three UAVs and three deployment scenarios). The
scales are normalized to the lowest value for each architectural pa-
rameter to show the variations requirements as the UAV components
change. The variation of architectural parameters exemplifies the
need for custom DSSoCs to maximize mission-level performance
as per UAV type or deployment scenario.

to maximize the mission-level performance. This need for
customization underscores the necessity of DSSoCs for this
domain. Furthermore, since AutoPilot automates the DSSoC
design, it rapidly generates balanced DSSoCs as the domain
evolves, thus being a scalable and generalizable methodology;
(2) We show that traditional methodology, in most cases,
results in choosing a high throughput, low-power, or high-
efficiency design. These traditional design methodologies
do not consider domain-specific mission-level performance
metrics. Instead, when designing DSSoCs using AutoPilot,
domain-specific component (Phase 1 and Phase 3) play
a critical role in maximizing mission-level performance;
(3) When designing DSSoCs for a given UAV, its sensor
performance and UAV’s physics will greatly change the
performance requirements for the DSSoCs thus the need for
agile and scalable methodology like AutoPilot.

A. DSSoC Scalability and Generalizability

In this experiment, we demonstrate that the AutoPilot
methodology is scalable and generalizable in generating
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Figure 7: (a) Phase 2 Pareto frontier designs with different
performance and power profiles. (b) Relationship between weight
and power for all designs. (c) Relationship between velocity and
weight for all the generated designs. Various compute power and
heatsink weights results in various safe velocity. (d) Hardware
architecture. We show four designs: high throughput (HT), low
power (LP), high perf/Watt compute efficiency (HE) and Autopilot
(AP). (e) Compute throughput (FPS). (f) Power consumption. (g)
Compute efficiency (FPS/W).

DSSoC designs that maximize the number of missions across
three UAV types and three different deployment environment
scenarios.

The different classes of UAVs evaluated are a mini-UAV
(AscTec Pelican), a micro-UAV (DJI-Spark), and a nano-
UAV (used in Zhang et al. [89]) whose specifications are in
Table IV. The different deployment scenarios with varying
levels of complexity evaluated are low, medium, and dense
obstacles. For example, four obstacles with the goal position
randomly change every training episode in the low-obstacle
scenario. In the medium scenario, four fixed and up to
three randomly-placed obstacles exist. The goal position
also changes randomly during every training episode. In the
dense obstacle scenario, there are four fixed obstacles in the
dense scenario and up to five randomly placed obstacles.
These auto-generated domain randomized environments have
varying degrees of obstacle densities. However, they represent
common deployment use cases for UAVs. For instance,
autonomous navigation for a farming use case could be
very sparse (low-obstacle). In contrast, a search and rescue
operation in a forest or a racing UAV represents a dense-
obstacle scenario.

The co-design goal is to choose an onboard DSSoC system
and autonomy algorithm that maximizes the number of
missions the UAV can perform on a single battery charge
(Eq. I and Eq. 3).

Co-Design Comparison Results. Fig. 5 shows the com-
parison in the number of missions between designs generated
using AutoPilot methodology and two general-purpose sys-
tems (Jetson TX2 and Xavier NX) and PULP [60]. The
motivation for PULP is designing a low-power chip for nano-
UAVs. To that end, it achieves 6 FPS at 64mW. However,
despite achieving low power, they report degradation of 22%
in flight time, as they did not consider the effects of the
weight of compute. They custom-designed PULP for one
model (DroNet) and one UAV type (nano-UAV) to achieve
low power. For PULP, we report the numbers as is, and
this is an optimistic comparison for PULP. For instance, the
AutoPilot generated E2E models have 109x to 121 x larger
than DroNet [52]. Running AutoPilot generated E2E models
on PULP [60] will result in poorer performance than 6 FPS at
64 mW [60]. Even with an optimistic performance estimation
for PULP running AutoPilot-generated E2E models (i.e.,
PULP producing the same 6 FPS at 64 mW for models that
are 109 x larger than DroNet), we show that AutoPilot-
generated DSSoCs consistently outperform PULP across
different UAV types and deployment complexity in terms of
mission-level performance.

On a fully charged battery, AutoPilot generated optimal
designs achieve 1.33x to 1.43x more missions for mini-
UAV compared to TX2, Xavier NX, and PULP [60]. For
micro-UAVs, AutoPilot on average achieves 1.34x to 1.62x.
Likewise, for nano-UAV, AutoPilot on average achieves 2.3 x
more missions, thus enabling higher operational efficiency
than an ad-hoc selection of general-purpose designs.

The AutoPilot DSSoC generation methodology for the
onboard hardware and autonomy algorithm for these UAV
types and deployment scenarios consistently outperforms
general-purpose hardware (Jetson TX2 and Xavier NX) and
a domain-specific hardware accelerator built for UAVs [60].
This demonstrates the flexibility of AutoPilot, compared to
prior works that focus on a specific UAV type [22], [31],
[60], [80].

DSSoC Architectural Parameter Variations. Visualizing
the various DSSoC architectural parameters selections across
all the nine scenarios (three UAVs and three deployment
scenarios) to gain insights into the designs that AutoPilot
generates is shown in Fig. 6. The deployment scenario affects
the complexity of the models. For the low obstacle scenarios,
a model with five layers and 32 filters achieves the highest
success rate. A model with four layers and 48 filters achieves
the highest success rate for the medium obstacle scenarios.
Finally, a model with seven layers and 48 filters achieves
the highest success rate for the dense obstacle scenarios.

The increasing complexity of the autonomy algorithm
means the onboard compute for a specific UAV has to
achieve similar performance while keeping the power and
weight constant. Therefore, AutoPilot selects architectural
parameters (PE size, cache size, etc.) intelligently to satisfy
the performance, power, and weight constraints for the mini-
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Figure 8: (a) Comparison of high performance (HP) and AutoPilot
design (AP) in terms of the number of missions. (b) F-1 plot for
nano-UAV (Table 1V) to understand the degradation when using
HT over AP.

UAV as shown in Fig. 6. For instance, as the complexity
of the task increases, the compute design becomes bigger
(as seen by the larger spread in parameter space Fig. 6).
But AutoPilot only chooses those parameters to keep the
power and weight nearly identical (or never exceed a certain
limit). Manually enumerating these points (isolated or one-
size accelerator designs) would not maximize the mission
performance as the UAV type or deployment scenario changes.
However, automating the co-design space allows AutoPilot to
consistently generate DSSoC designs that maximize mission
performance, even when changing UAV types.

B. Pitfalls of Conventional Domain-Agnostic DSE

In the following experiments, we demonstrate the im-
portance of having a balanced DSSoC for UAVs rather
than selecting onboard compute based on traditional SoC
design strategies: maximizing compute throughput alone;
optimizing for low power alone, and even Pareto optimal
selection with respect to both compute throughput and power
(compute efficiency). Our results show that compared to high
throughput (HT), low power (LP), or high compute efficiency
(HE), a balanced DSSoC design by AutoPilot maximizes
overall mission efficiency in autonomous UAVs.

1) HT, LP, HE vs. AutoPilot (AP) DSSoCs: Ideally,
what differentiates between AutoPilot generated DSE versus
traditional DSE (e.g., [66]) is the critical Phase 3 (See Fig. 1).
Hence, we take an intermediate DSSoC design from Phase
2 of AutoPilot and show how a lack of full-system design
degrades the mission performance of autonomous UAVs, even
though on isolated compute metrics, the traditional designs
outperform AutoPilot generated designs.

To demonstrate the degradation, we choose a nano-UAV
whose specifications are in Table IV. The output of Phase 2
(from Fig. 1) for this task is shown in Fig. 7. Out of many
Pareto optimal designs, we label three DSSoC designs in
Fig. 7 as ‘HT’ (high throughput design), ‘LP’ (low-power
design), and ‘HE’ (High efficiency) to highlight the design
strategies outlined above. Additionally, we label the AutoPilot
selected design (labeled as ‘AP’) that performs full-system
co-design to select the onboard DSSoC design. The AP
DSSoC is not Pareto optimal as it is neither high throughput,
low-power, nor high compute efficiency (performance/watt)
DSSoC design (but later, we show how it is, in fact, the best
for this nano-UAV).
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Figure 9: (a) Comparison of LP and AP in terms of missions. (b)
F-1 plot for nano-UAV (Table IV) to understand the degradation
when using LP over AP.

Fig. 7 results show that all traditional designs (HT, LP,
and HE) outperform AP purely on isolated compute metrics.
For instance, comparing high-throughput design (HT) with
AutoPilot generated DSSoC design (AP) for the same E2E
algorithm, we see from Fig. 7(c) that HT achieves 4.47 x
(due to large PE and memory capacity as shown in Fig. 7(b))
throughput than AP; hence should be able to process the
algorithm faster to generate high-level decisions.

Likewise, Fig. 7(d) compares the low-power design and
the AutoPilot DSSoC design. The low-power design (LP)
consumes 1.23x less power compared (due to less PE’s and
memory capacity as shown in Fig. 7(b)) to AutoPilot’s design
(AP). Hence, the LP design should consume less energy from
the battery to run the same E2E algorithm.

Lastly, Fig. 7(e) compares the high-efficiency design (HE)
with AutoPilot design. The HE design achieves 96 FPS
at 1.5 W (= 64 FPS/W) compared to AutoPilot generated
design which achieves 46 FPS at 0.83 W (= 55 FPS/W)
running the same E2E algorithm. Hence, a high-efficiency
design should run the autonomy algorithm 1.16x efficiently
compared AutoPilot design for the same power.

However, when the full UAV system and UAV mission-
level performance are taken into account, we show that
AutoPilot generated designs consistently outperform these
traditional design choices in mission-level performance.
Figures 8a-10a show that AP consistently performs better
than HT, LP, and HE by 2.25x, 1.8x, 1.3 %, respectively, in
terms of the number of missions performed. In Section V-B2,
Section V-B3, and Section V-B4 we perform a deep-dive
analysis to understand why AutoPilot generated designs
outperform traditional architectural DSE designs on mission-
level metrics.

2) Pitfalls of High-Throughput (HT) DSSoC: A high
compute throughput for a given autonomy algorithm allows
the UAV to make decisions faster, which can be helpful
in a highly dynamic environment. As the complexity of
the autonomy algorithm increases, choosing high-throughput
designs can be the traditional choice from an architectural
DSE. However, traditional high throughput design does not
directly translate to an overall increase in the number of
missions. Furthermore, these design choices do not consider
the domain-specific characteristics of UAVs and hence have
pitfalls that require careful introspection.

While Fig. 7(c) shows that HT achieves 4.47x higher
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Figure 10: (a) Comparison of HE and AP in terms of the number
of missions. (b) F-1 plot for nano-UAV (Table 1V) to understand
the degradation when using HE over AP.

throughput than AutoPilot’s AP design, AP outperforms HT
by 2.25x in Figure 8a for mission metrics. HT achieves
a throughput of 205 FPS while consuming 8.24 W (65 g),

whereas AP achieves a throughput of 46 FPS at 0.7 W (24 g).

Comparing these two designs purely on isolated metrics, HT
is more throughput than AP; hence should be able to process
the E2E autonomy algorithm faster. But the AP DSSoC’s
lighter compute payload weight has less impact on the UAV’s
body dynamics while delivering enough compute throughput
that maximizes the safe velocity. Thanks to the full-system
UAV co-design in Phase 3 of AutoPilot, AP outperforms HP
in the number of missions by 2.25 x.

To provide deeper insights we plot these DSSoC candidates
on the F-1 model [46] for the nano-UAV (Table IV). Recall
from Section III-C that the F-1 model is used to understand
an optimal DSSoC design for a given UAV and also shows
the effects of the performance of the sensor-compute-control
pipeline and how the weight of the payload affects the UAV
physics. Since the high throughput design (HT) consumes
11.7 x more power than AutoPilot design (AP), the heatsink
needed to cool HT is also larger than what is required to cool
the AP system. Larger heatsink weight adds to the overall
weight of the HT system, which lowers the UAV’s ability
to move faster (and safely). This effect is captured in F-1
plot shown in Fig. 8b. The reduction in safe velocity affects
the UAV’s mission time, energy, and the number of missions
(Eq. 4).

3) Pitfalls of Low Power (LP) DSSoC: A low-power

design (LP) does not always reduce the mission energy.

Fig. 9a shows the mission metrics for LP and AP. AP achieves
1.8 more missions compared to LP.

While conventional wisdom recommends DSE to select a
low-power DSSoC design as UAVs have a limited onboard
battery, AutoPilot’s DSSoC methodology balances the DSSoC
power with other domain-specific components to maximize
UAV’s safe velocity. Fig. 9b shows the F-1 roofline plot for
LP and AP. The LP design achieves an action throughput of
18.4 Hz, which is 2.5x lower than what the UAV’s physics
can allow. Due to the lower decision-making rate for LP,

the UAV must lower its safe flying velocity to fly safely.

Lowering safe velocity increases the mission flight time, thus

increasing the mission’s total energy consumption (Eq. 2).
Therefore, we conclude that choosing a low-power onboard

compute does not necessarily lower the mission energy since
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Figure 11: UAV agility increases compute throughput requirement.

the decision-making rate (action throughput) also plays a
role in the UAV’s ability to fly faster, which can lower
mission time and overall mission energy. Thus, compromising
performance for low pow consumption can degrade mission
performance, and full-system UAV co-design is necessary
to ensure optimal onboard compute is selected for a given
UAV system.

4) Pitfalls of High-Efficiency (HE) DSSoC: General design
methodologies co-designing HW-SW together [66] focus
on selecting higher efficiency designs (i.e., throughput/W).
However, when designing DSSoCs for UAVs, these higher
compute efficiency designs do not always maximize UAV’s
mission-level performance. To demonstrate this, Fig. 10a
shows the mission level metrics of HE and AP designs. We
observe that AP achieves 1.3x more number of missions
compared to HE. However, despite HE achieving higher
energy efficiency (64 FPS/W) compared to AP (55 FPS/W),
we still observe degradation in HE’s mission-level metrics.

Fig. 10b shows the F-1 plot with AutoPilot design and high-
efficiency (HE). The knee-point for the nano-UAV is around
46 FPS, whereas the HE achieves a throughput of 96 FPS
at 1.5 W (over-provisioned by ~2x). The over-provisioned
HE design also consumes relatively higher power. Thus, the
heatsink required to cool HE design will be higher than AP,
thus increasing the compute weight for the HE design. The
increasing payload weight lowers the nano-UAV’s ability
to move faster (Fig. 4a), thus this lowers the safe velocity,
captured by the F-1 model’s ceilings, which in turn lowers
the mission energy and the number of missions (Eq 4).

C. UAV Agility’s Impact on DSSoC Design

In this section, we demonstrate how UAV’s need for
agility impacts the DSSoCs design requirements needed
to run the autonomy algorithms. UAV’s agility is typically
characterized by its maximum acceleration (which depends
upon the UAV’s thrust-to-weight ratio) [25], [57]. However,
it is important to note that the increase in payload weight
(onboard compute, heatsink, etc.) lowers the thrust-to-weight
ratio (lowers maximum acceleration), making the UAV less
agile. Hence, there is a need to account for these physical
effects when designing onboard compute for these different
classes of UAVs.

To demonstrate the increase in compute requirement with
UAV’s agility, we take two UAV’s namely DIJI-spark and
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Table V: Design Trade-off comparisons.

nano-UAV [89]. The specification of these UAVs is in
Table IV. The nano-UAV has a more thrust-to-weight ratio
than DJI-Spark. We assume that both UAVs are equipped
with 60 FPS sensors (to avoid being sensor-bound).

Fig. 11a shows the mapping of DJI-Spark and nano-UAVs
to the F-1 model [46]. The optimal compute throughput
required to maximize the mission performance for the DJI-
spark is around 27 Hz, whereas, for the nano-UAV, it is
46 Hz. The respective knee-points suggest that the sensor-
compute-control pipeline needs to make decisions at 27 FPS
for DJI-spark and 46 FPS for nano-UAV to maximize the
safe velocity.

AutoPilot’s DSSoC methodology performs full-system
UAV co-design to select the designs closer to the optimal
point in the F-1 model. For example, for the nano-UAV,
AutoPilot chooses design 2x more compute throughput than
the design point it chooses for DJI-spark without affecting
the UAV physics as shown in Fig. 11b.

As UAVs become more agile and smaller, the need for
balanced and high-performance DSSoCs increases. In such
scenarios, the AutoPilot methodology is advantageous since it
automates the full-system UAV co-design to generate DSSoC
that maximizes mission performance without impacting the
UAV’s physics.

VI. SPECIALIZATION COST VS. MISSION EFFICIENCY

Our results demonstrate that when the UAV components
or type changes, we see the need for re-optimizing (or a
new custom design). Customization for UAVs is a trade-off
between operational efficiency and design effort (cost). We
quantify the trade-off between using single designs versus
domain-specific hardware.

In this case, we take the AutoPilot design point for a
medium obstacle density scenario for a mini-UAV. We com-
pare this design point against general-purpose design (e.g.,
TX2 and Intel NCS) and optimal specialized HW accelerators
designed for other scenarios (e.g., the AutoPilot generated
designs for low obstacle and dense-obstacle scenarios but
reused medium obstacles scenario). Table V tabulates the
cost of these trade-offs. Compared to the deployment-specific
hardware specialization, we observe 27% to 67% degradation
in the number of missions possible depending upon the choice
of onboard compute. Hence, deployment-specific hardware
specialization is key to achieving that goal if operational
efficiency is important. However, if cost is critical, then
general-purpose designs (or reusing single designs) can save
design costs with a 27% to 67% reduction in the number of

missions. However, it is important to note that this can also
increase the operational cost of grounding and recharging
the UAVs frequently.

In summary, the trade-off between mission efficiency and
the cost of computing exists, but the AutoPilot DSSoC
methodology can reduce the DSSoC design complexity (cost).

VII. METHODOLOGY GENERALIZATION DISCUSSION

AutoPilot methodology splits the DSSoC design prob-
lem for UAVs into three phases namely, Domain-Specific
Front End, Domain-Agnostic Multiobjective HW-SW Co-
Design and the Domain-Specific Back End. Our results
consistently demonstrate the efficacy of our methodology
in designing DSSoCs for autonomous UAVs. To that end,
in this section, we provide a qualitative discussion on how
AutoPilot methodology (Fig. 1) can extend to other closely
related domains where the onboard computer is just of the
many components. Since autonomous UAVs by themselves
are quite complex, and the relationship between various
UAV components is quite nuanced, we primarily focus
on one domain and quantitatively demonstrate how the
AutoPilot DSSoC methodology can automatically generate
many DSSoCs for various UAVs and deployment scenarios.
Other autonomous vehicle domains, such as self-driving
cars, are much more complex due to the driving rules
(speed limit, traffic signs, road topology). Our learnings
from designing DSSoCs for autonomous UAVs provide a
generalizable template to extend to other robotic domains.
Nonetheless, we strongly believe quantitative validation is
necessary to fully discern various trade-offs and potential
gains for individual domains.

Table VI provides a generic high-level taxonomy of
AutoPilot methodology for other closely related domains
such as self-driving cars and articulated robots (i.e., robotic
arms). Our experience suggests an opportunity to design
characterization tools like F-1 that couples physics, sensing,
compute latency, and actuation latency for articulated robots.
Also, more importantly, similar to UAVs, we believe we
should not optimize for isolated compute metrics when
targeting articulated robots; rather, we must think of the
holistic autonomous system. Next, we explain how we would
extend the AutoPilot methodology to each of these domains
individually.

UAV with SPA Autonomy Algorithms. Phase 1. In the
domain-specific front end, the Air Learning simulator [43]
used in this work can be replaced with AirSim [74] or
MAVBench [17] as the robot simulator to develop and
validate SPA based autonomy algorithm. Phase 2. In domain-
agnostic multi-objective HW-SW co-design, the systolic array
template used in this work can be replaced by hardware
templates for SLAM [80], OctoMAP [37], motion-planning
accelerators [70]. Phase 3. In the domain-specific back end,
we can still use the F-1 model [46] to evaluate the impact
of other UAV parameters on the DSSoC design.



Phase 1 Phase 2 Phase 3
Aut Domain-Specific Front End in-Agnostic Multiobjective HW-SW DSE Domain-Specific Back End
. y
Domain ML-Based AV Safety
Algorithm Paradigm | Robot Simulator Environment HW-SW Co-Design
Method Model
UAV E2E
Air Learning [43] Systolic Arrays [72] BO [33] F-1 Model [45]
(Our Work) (Section 2)
Systolic Arrays [26], [72], Simba [77],
PEDRA [14], Edge-TPUs [38], Eyeriss [19], BO [33], RL [81],
E2E (See Section 2) {14 g {381, Eyeriss [19] {331 (81
AirSim [74], Gym-FC [41] Mapping Optimization [34], [47], GA [88], SA [84]
Movidius [10], MCU [22], PULP [60], Magnet [85]
UAVs Perception: SLAM [80], Octomap [37] BO [33], RL [81], F-1 Model [45]
SPA (Section 2) MavBench [17]
Motion Planning: Robox [70] GA [88], SA [84]
Self-Driving Hybrid (PPC+NN) CARLA [21], Appollo [62], Systolic Arrays [26], [72], Simba [77], Eyeriss [19], BO [33], RL [81], Intel RSS [76],
Cars AirSim [74], EyeQ [36], Tesla FSD [82], Magnet [85] GA [88], SA [84] Nvidia SFF [59]
End-to-End Learning Robot Farms (Qt-OPT), Systolic Arrays [26], [72], Simba [77], Eyeriss [19],
(NN-Based) Gazebo EyeQ [36], Tesla FSD [82], Magnet [85]
Articulated Perception: SLAM [80], Oct 37 BO [33], RL [81],
erception [80], Octomap [37] [33], [81], ANYpulator (7]
Robots SPA Gazebo [42] Motion Planning: Murray et al. [55], Robomorphic Computing [58], | GA [88], SA [84]
RACOD [15]

Table VI: This work (cells highlighted in

) uses a specific set of frameworks to build three phases (Domain-specific Front End,

Domain-Agnostic Multiobjective HW-SW DSE, and Domain-Specific Back End) as laid out by the AutoPilot methodology for DSSoC
design for UAVs. Our evaluation (Section V) shows that it is important to consider these three phases as it improves the mission-level
performance of UAVs. Nonetheless, future work can construct a similar methodology for other autonomous vehicles using other components
which serve a similar purpose. To that end, we provide a taxonomy for extending AutoPilot methodology to other closely related domains,
such as self-driving cars and articulated robots (cells highlighted in gray). In the ML-based methods, BO refers to Bayesian Optimization,
RL refers to Reinforcement Learning, GA refers to Genetic Algorithms, and SA refers to Simulated Annealing.

Self-Driving Cars. In Phase I, Air Learning can be
replaced with Apollo [62], CARLA [21] or AirSim [74] to
validate the autonomy algorithms. In Phase2 custom hardware
accelerators [19], [26], [36], [77], [82], [85] to run these
multiple neural networks efficiently can replace the systolic
array-based hardware template in phase 2. In Phase 3, the F-1
model can be replaced with Intel RSS [76], Nvidia SFF [59]
or its derivatives as the safety model.

Robotic Arms and Other Articulated Robots. For
robotic arms, the Air Learning simulator in phase 1 can
be replaced with Gazebo [42] or QT-OPT [39] with the
articulated robot model. In Phase 2, the SCALE-Sim [72]
simulator used in this work can be replaced with any

architectural DSE tool or hardware accelerator template.

For SPA, the hardware accelerator template should include

perception and mapping [37], motion-planning [55], [58].

For E2E-based autonomy algorithms for these robots, any
NN hardware accelerator template [19], [26], [34], [38],
[47], [85] can be used instead of SCALE-Sim. In phase
3, the F-1 model [46] used in this work can be replaced
with safety model for the robot arm [16], [87]. In general,
there is an opportunity to develop a unified characterization
and bottleneck analysis tools like F-1 [46], RSS [76], and
SFF [59], which tie the sensor, compute, and robot physics
interactions to evaluate their impact on onboard compute
design for these articulated robots.

Choice of ML-Based Optimizer. Lastly, irrespective of
the domain, Bayesian optimization used in phase 2 of this

work can be replaced with the genetic algorithms [88],
reinforcement learning [81], or simulated annealing [84]
to perform multi-objective HW-SW DSE.

VIII. CONCLUSION

AutoPilot is a DSSoC design methodology that auto-
matically generate an optimal autonomy algorithm (E2E
Model) and its hardware accelerator from a high-level user
specification for autonomous UAVs. It can be adapted to
perform full-system co-design for the Sense-Plan-Act (SPA)
paradigm. The only requirement for AutoPilot is that the SPA-
based algorithm and hardware templates be parameterizable.
Moreover, the general methodology we have developed for
AutoPilot, such as full-stack UAV co-design for identifying
the balanced design point, architectural fine-tuning, and
selecting the optimal design points by showing how it affects
the overall mission can also be adapted to other types of
autonomous vehicles such as self-driving cars and “ground”
drones.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their feedback on improving the manuscript’s quality. The
authors would also like to thank Dr. Gage Hills (Harvard) for
providing constructive feedback during several iterations of
this paper. The work was sponsored in part by IARPA award
2022-21100600004 and 2022-21102100013. Part of this work
was performed under the auspices of the U.S. Department of



Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.

[

—

2

—

13

—

[4

—_

[5

—

[6

—_

[7

—

(8

—_—

(9]

(10]

(11]

[12]

(13]

(14]

[15]

REFERENCES

https://github.com/harvard-edge/airlearning, title = Air Learn-
ing Environment Generator, year = 2020.
https://www.bitcraze.io/products/crazyflie-2-1/,  title =
CrazyFlie 2.1 Product Page, year = 2020.

https://www.ovt.com/sensors/OV9755, title = OV9755,Color
CMOS 720p (1280x720) HD Image Sensor with OmniP-
ixel A®3-HS Technology, year = 2020.

Arm Cortex-M33. [Online]. Available: https://developer.arm.
com/Processors/Cortex-M33

ARMvV8-M  Technical Reference manual. [Online].
Available: https://static.docs.arm.com/ddi0553/a/DDI0S53A_

e_armv8m_arm.pdf

“Coral-SoM-datasheet.” [Online]. Available: https://coral.ai/
docs/som/datasheet/

“Heat sink size calculator,” https://celsiainc.com/resources/

calculators/heat-sink-size-calculator/, (Accessed on
01/29/2020).
“Raspberry  pi,”  https://www.pololu.com/blog/598/new-

product-raspberry-pi-3-model-b.

“Micron  ddr4  power  calculator”  https://media-
www.micron.com/-/media/client/global/documents/
products/power-calculator/ddr4_power_calc.xlsm?rev=
a8aS5e30d8a7ed 1cdadcaad2df73934b4, 2016.

“News announcements,” https://www.movidius.com/news/
intel-movidius-myriad-2-vpu-enables-advanced-computer-
vision-and-deep-learn, May 2017.

“All about multirotor drone fpv flight -controllers.”
https://www.getfpv.com/learn/new-to-fpv/all-about-
multirotor-fpv-drone-flight-controller/, 2020.

“Pixhawk 1 flight controller.” https://docs.px4.io/v1.9.0/en/
flight_controller/pixhawk.html, 2020.

M. Achtelik, T. Zhang, K. Kuhnlenz, and M. Buss, “Visual
tracking and control of a quadcopter using a stereo camera
system and inertial sensors,” in 2009 International Conference
on Mechatronics and Automation. 1EEE, 2009, pp. 2863—
2869.

A. Anwar and A. Raychowdhury, “Autonomous navigation
via deep reinforcement learning for resource constraint edge
nodes using transfer learning,” IEEE Access, vol. 8, pp. 26 549—
26560, 2020.

M. Bakhshalipour, S. B. Ehsani, M. Qadri, D. Guri,
M. Likhacheyv, and P. B. Gibbons, “Racod: algorithm/hardware
co-design for mobile robot path planning,” in Proceedings
of the 49th Annual International Symposium on Computer
Architecture, 2022, pp. 597-609.

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

K. Bodie, C. D. Bellicoso, and M. Hutter, “Anypulator:
Design and control of a safe robotic arm,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2016, pp. 1119-1125.

B. Boroujerdian, H. Genc, S. Krishnan, W. Cui, A. Faust,
and V. J. Reddi, “Mavbench: Micro aerial vehicle
benchmarking,” in Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-
51. IEEE Press, 2018, pp. 894-907. [Online]. Available:
https://doi.org/10.1109/MICRO.2018.00077

M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha,
and P. Fua, “Brief: Computing a local binary descriptor very
fast,” IEEE transactions on pattern analysis and machine
intelligence, vol. 34, no. 7, pp. 1281-1298, 2011.

Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolu-
tional neural networks,” IEEE journal of solid-state circuits,
vol. 52, no. 1, pp. 127-138, 2016.

M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte,
and M. Csorba, “A solution to the simultaneous localization
and map building (slam) problem,” IEEE Transactions on
robotics and automation, vol. 17, no. 3, pp. 229-241, 2001.

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“Carla: An open urban driving simulator,” in Conference on
robot learning. PMLR, 2017, pp. 1-16.

B. P. Duisterhof, S. Krishnan, J. J. Cruz, C. R. Banbury, W. Fu,
A. Faust, G. C. H. E. de Croon, and V. J. Reddi, “Tiny robot
learning (tinyrl) for source seeking on a nano quadcopter,” in
IEEE International Conference on Robotics and Automation
(ICRA), 2021.

A. Elfes, “Using occupancy grids for mobile robot perception
and navigation,” Computer, vol. 22, no. 6, pp. 46-57, 1989.

L. Espeholt, R. Marinier, P. Stanczyk, K. Wang, and M. Michal-
ski, “Seed rl: Scalable and efficient deep-rl with accelerated
central inference,” arXiv preprint arXiv:1910.06591, 2019.

D. Falanga, S. Kim, and D. Scaramuzza, “How fast is too
fast? the role of perception latency in high-speed sense and
avoid,” IEEE Robotics and Automation Letters, vol. 4, pp.
1884-1891, 2019.

H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash,
J. Zhao, D. Grubb, H. Liew, H. Mao et al., “Gemmini: Enabling
systematic deep-learning architecture evaluation via full-stack
integration,” in 2021 58th ACM/IEEE Design Automation
Conference (DAC). 1EEE, 2021, pp. 769-774.

A. Giusti, J. Guzzi, D. C. Ciresan, F. He, J. P. Rodriguez,
F. Fontana, M. Faessler, C. Forster, J. Schmidhuber, G. D.
Caro, D. Scaramuzza, and L. M. Gambardella, “A machine
learning approach to visual perception of forest trails for
mobile robots,” IEEE Robotics and Automation Letters, vol. 1,
no. 2, pp. 661-667, 2016.

D. Gonzalez, J. Perez, V. Milanes, and F. Nashashibi, “A review
of motion planning techniques for automated vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17,
no. 4, pp. 1135-1145, 2016.



[29]

(30]

(31]

(32]

[33]

(34]

(35]

(36]

(37]

(38]

(39]

T. Guo, N. Jiang, B. Li, X. Zhu, Y. Wang, and
W. Du, “Uav navigation in high dynamic environments:
A deep reinforcement learning approach,” Chinese Journal
of Aeronautics, 2020. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1000936120302247

D. Gurdan, J. Stumpf, M. Achtelik, K.-M. Doth, G. Hirzinger,
and D. Rus, “Energy-efficient autonomous four-rotor flying
robot controlled at 1 khz,” in Proceedings 2007 IEEE Interna-
tional Conference on Robotics and Automation. 1EEE, 2007,
pp. 361-366.

R. Hadidi, B. Asgari, S. Jijina, A. Amyette, N. Shoghi,
and H. Kim, “Quantifying the design-space tradeoffs
in autonomous drones,” in Proceedings of the 26th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ser.
ASPLOS 2021. New York, NY, USA: Association for
Computing Machinery, 2021, pp. 661-673. [Online]. Available:
https://doi.org/10.1145/3445814.3446721

C. B. Harris and R. I. Bahar, “A research tool for the power
and performance analysis of sensor-based mobile robots,” in
2017 New Generation of CAS (NGCAS), 2017, pp. 25-28.

M. Havasi and J. M. Lobato, “Bayesian optimiza-
tion,” https://github.com/cambridge-mlg/gemS5-aladdin/tree/
master/bo_script, 2018.

K. Hegde, P-A. Tsai, S. Huang, V. Chandra, A. Parashar, and
C. W. Fletcher, “Mind mappings: enabling efficient algorithm-
accelerator mapping space search,” in Proceedings of the 26th
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021, pp.
943-958.

M. Hoffman, B. Shahriari, J. Aslanides, G. Barth-Maron, F. Be-
hbahani, T. Norman, A. Abdolmaleki, A. Cassirer, F. Yang,
K. Baumli et al., “Acme: A research framework for distributed
reinforcement learning,” arXiv preprint arXiv:2006.00979,
2020.

Intel, “Mobileye and nio partner to bring level 4
autonomous vehicles to consumers in china and beyond.”
https://mnewsroom.intel.com/news/mobileye-nio-partner-
bring-level-4-autonomous-vehicles-consumers-china-
beyond/#gs.3152m?2.

T. Jia, E.-Y. Yang, Y.-S. Hsiao, J. Cruz, D. Brooks, G.-Y.
Wei, and V. J. Reddi, “Omu: A probabilistic 3d occupancy
mapping accelerator for real-time octomap at the edge,” in
Design, Automation and Test in Europe (DATE), Mar 2022.

A. Jones, A. Yazdanbakhsh, B. Akin, C. Angermueller,
J. P. Laudon, K. Swersky, M. Hashemi, R. Narayanaswami,
S. Chatterjee, and Y. Zhou, “Apollo: Transferable architecture
exploration,” in ML for Systems Workshop at NeurIPS 2020,
2020.

D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog,
E. Jang, D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke
et al., “Scalable deep reinforcement learning for vision-based
robotic manipulation,” in Conference on Robot Learning.
PMLR, 2018, pp. 651-673.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

[50]

[51]

S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” The international journal of robotics
research, vol. 30, no. 7, pp. 846-894, 2011.

W. Koch, R. Mancuso, and A. Bestavros, “Neuroflight:
Next generation flight control firmware,” arXiv preprint
arXiv:1901.06553, 2019.

N. Koenig and A. Howard, “Design and use paradigms
for gazebo, an open-source multi-robot simulator,” in 2004
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (IEEE Cat. No.04CH37566), vol. 3, 2004, pp.
2149-2154 vol.3.

S. Krishnan, B. Boroujerdian, W. Fu, A. Faust, and V. J.
Reddi, “Air learning: a deep reinforcement learning gym
for autonomous aerial robot visual navigation,” in Machine
Learning (Special Issue on Reinforcement Learning for
Real Life). Springer, 2021, pp. 1-40. [Online]. Available:
https://doi.org/10.1007/s10994-021-06006-6

S. Krishnan, M. Lam, S. Chitlangia, Z. Wan, G. Barth-maron,
A. Faust, and V. J. Reddi, “QuaRL: Quantization for
fast and environmentally sustainable reinforcement learning,”
Transactions on Machine Learning Research, 2022. [Online].
Available: https://openreview.net/forum?id=xwWsiFmUEs

S. Krishnan, Z. Wan, K. Bhardwaj, A. Faust, and V. J. Reddi,
“Roofline model for uavs: A bottleneck analysis tool for
designing compute systems for autonomous drones,” /IEEE
International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2022.

S. Krishnan, Z. Wan, K. Bhardwaj, P. Whatmough, A. Faust,
G.-Y. Wei, D. Brooks, and V. J. Reddi, “The sky is not the limit:
A visual performance model for cyber-physical co-design in
autonomous machines,” IEEE Computer Architecture Letters,
vol. 19, no. 1, pp. 38-42, 2020.

H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer, and
A. Parashar, “Maestro: A data-centric approach to understand
reuse, performance, and hardware cost of dnn mappings,” IEEE
micro, vol. 40, no. 3, pp. 20-29, 2020.

H. Li, M. Bhargav, P. N. Whatmough, and H. . Philip
Wong, “On-chip memory technology design space explorations
for mobile deep neural network accelerators,” in 2019 56th
ACM/IEEE Design Automation Conference (DAC), June 2019,

pp- 1-6.

S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi,
“Cacti-p: Architecture-level modeling for sram-based structures
with advanced leakage reduction techniques,” in Proceedings
of the International Conference on Computer-Aided Design.
IEEE Press, 2011, pp. 694-701.

K. Lim, G. S. Kim, S. Kim, and K. Baek, “A multi-lane
mipi csi receiver for mobile camera applications,” IEEE
Transactions on Consumer Electronics, vol. 56, no. 3, pp.
1185-1190, Aug 2010.

S. Liu, M. Watterson, S. Tang, and V. Kumar, “High speed
navigation for quadrotors with limited onboard sensing,”
in 2016 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2016, pp. 1484-1491.



[52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scara-
muzza, “Dronet: Learning to fly by driving,” IEEE Robotics
and Automation Letters, vol. 3, no. 2, pp. 1088-1095, 2018.

Y.-C. Lu, Z.-Y. Chen, and P.-C. Chang, “Low power multi-lane
mipi csi-2 receiver design and hardware implementations,” in
2013 IEEE International Symposium on Consumer Electronics
(ISCE), 2013, pp. 199-200.

K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu,
A. Makineni, K. Saulnier, K. Sun, A. Zhu, J. Delmerico
et al., “Fast, autonomous flight in gps-denied and cluttered
environments,” Journal of Field Robotics, vol. 35, no. 1, pp.
101-120, 2018.

S. Murray, W. Floyd-Jones, Y. Qi, D. J. Sorin, and G. D.
Konidaris, “Robot motion planning on a chip.” in Robotics:
Science and Systems, 2016.

S. Murray, W. Floyd-Jones, Y. Qi, G. Konidaris, and D. J. Sorin,
“The microarchitecture of a real-time robot motion planning
accelerator,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1EEE, 2016, pp.
1-12.

NASA, “Thrust to weight ratio.” https://www.grc.nasa.gov/
www/k-12/airplane/fwrat.html.

S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe,
S. Devadas, and V. J. Reddi, “Robomorphic computing:
A design methodology for domain-specific accelerators
parameterized by robot morphology,” in Proceedings of
the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems,
ser. ASPLOS 2021. New York, NY, USA: Association
for Computing Machinery, 2021, pp. 674-686. [Online].
Available: https://doi.org/10.1145/3445814.3446746

D. Nistér, H.-L. Lee, J. Ng, and Y. Wang, “The safety force
field,” NVIDIA White Paper, 2019.

D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza,
and L. Benini, “A 64mw dnn-based visual navigation engine
for autonomous nano-drones,” IEEE Internet of Things Journal,
2019.

S. Park, L. Zhang, and S. Chakraborty, “Design space
exploration of drone infrastructure for large-scale delivery
services,” in 2016 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). ACM, 2016, pp. 1-7.

Z. Peng, J. Yang, T.-H. P. Chen, and L. Ma, A First
Look at the Integration of Machine Learning Models in
Complex Autonomous Driving Systems: A Case Study on
Apollo. New York, NY, USA: Association for Computing
Machinery, 2020, pp. 1240-1250. [Online]. Available:
https://doi.org/10.1145/3368089.3417063

P. PLee, L. J. Bernstein, R. M. Guidash, and T.-H. Lee,
“Integrated cmos active pixel digital camera,” Patent, 2004.

W. Ponweiser e al., “Multiobjective optimization on a limited
budget of evaluations using model-assisted S-Metric selection,”
in PPSN, 2008, pp. 784-794.

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

(77

C. Rasmussen and C. Williams, “Gaussian processes for
machine learning,” MIT press, Cambridge, MA, 2005.

B. Reagen, J. M. Herndndez-Lobato, R. Adolf, M. Gelbart,
P. Whatmough, G.-Y. Wei, and D. Brooks, “A case for efficient
accelerator design space exploration via bayesian optimization,”
in 2017 IEEE/ACM International Symposium on Low Power

Electronics and Design (ISLPED). IEEE, 2017, pp. 1-6.

S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel,
D. Dey, J. A. Bagnell, and M. Hebert, “Learning monocular
reactive uav control in cluttered natural environments,” in 2013
IEEE international conference on robotics and automation.
IEEE, 2013, pp. 1765-1772.

E. Rosten and T. Drummond, “Machine learning for high-
speed corner detection,” in Computer Vision — ECCV 2006,
A. Leonardis, H. Bischof, and A. Pinz, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 430-443.

R. B. Rusu and S. Cousins, “3d is here: Point cloud library
(pcl),” in 2011 IEEE international conference on robotics and
automation. 1EEE, 2011, pp. 1-4.

J. Sacks, D. Mahajan, R. C. Lawson, and H. Esmaeilzadeh,
“Robox: an end-to-end solution to accelerate autonomous
control in robotics,” in Proceedings of the 45th Annual
International Symposium on Computer Architecture. 1EEE
Press, 2018, pp. 479—490.

F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight
without a single real image,” in Robotics: Science and Systems
Conference. 1EEE, 2017.

A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina,
and T. Krishna, “A systematic methodology for characterizing
scalability of dnn accelerators using scale-sim,” in 2020 IEEE

International Symposium on Performance Analysis of Systems
and Software (ISPASS). 1EEE, 2020, pp. 58-68.

N. J. Sanket, C. M. Parameshwara, C. D. Singh, A. V. Kurut-
tukulam, C. FermAYller, D. Scaramuzza, and Y. Aloimonos,
“Evdodgenet: Deep dynamic obstacle dodging with event
cameras,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA), 2020, pp. 10651-10657.

S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-
fidelity visual and physical simulation for autonomous vehi-
cles,” in FSR, 2017.

B. Shahriari et al., “Taking the human out of the loop: a
review of Bayesian optimization,” Proceedings of the IEEE,
pp. 148-175, 2016.

S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal
model of safe and scalable self-driving cars,” arXiv preprint
arXiv:1708.06374, 2017.

Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik,
N. Jiang, B. Keller, A. Klinefelter, N. Pinckney, P. Raina
et al., “Simba: Scaling deep-learning inference with multi-chip-
module-based architecture,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 14-27.



(78]

[79]

(80]

[81]

[82]

[83]

[84]

(85]

[86]

[87]

[88]

[89]

N. Smolyanskiy, A. Kamenev, J. Smith, and S. Birchfield,
“Toward low-flying autonomous mav trail navigation using
deep neural networks for environmental awareness,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2017, pp. 4241-4247.

J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian
optimization of machine learning algorithms,” in NIPS, 2012,
pp- 2960-2968.

A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, and V. Sze,
“Navion: A 2-mw fully integrated real-time visual-inertial
odometry accelerator for autonomous navigation of nano
drones,” IEEE Journal of Solid-State Circuits, vol. 54, no. 4,
pp. 1106-1119, 2019.

R. S. Sutton and A. G. Barto, Reinforcement learning: An
introduction. MIT press, 2018.

Tesla, “Tesla‘s autopilot,” https://www.tesla.com/autopilotAl.

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and
P. Abbeel, “Domain randomization for transferring deep neural
networks from simulation to the real world,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). 1EEE, 2017, pp. 23-30.

P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,”
in Simulated annealing: Theory and applications. Springer,
1987, pp. 7-15.

R. Venkatesan, Y. S. Shao, M. Wang, J. Clemons, S. Dai,
M. Fojtik, B. Keller, A. Klinefelter, N. Pinckney, P. Raina
et al., “Magnet: A modular accelerator generator for neural
networks,” in 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 1EEE, 2019, pp. 1-8.

Z. Wan, B. Yu, T. Y. Li, J. Tang, Y. Zhu, Y. Wang,
A. Raychowdhury, and S. Liu, “A survey of fpga-based robotic
computing,” IEEE Circuits and Systems Magazine, vol. 21,
no. 2, pp. 48-74, 2021.

M. Wassink and S. Stramigioli, “Towards a novel safety
norm for domestic robotics,” in 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 1EEE, 2007,
pp- 3354-3359.

D. Whitley, “A genetic algorithm tutorial,” Statistics and
computing, vol. 4, no. 2, pp. 65-85, 1994.

X. Zhang, B. Xian, B. Zhao, and Y. Zhang, “Autonomous
flight control of a nano quadrotor helicopter in a gps-denied
environment using on-board vision,” IEEE Transactions on
Industrial Electronics, vol. 62, no. 10, pp. 6392-6403, 2015.



